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Abstract: In Bio-Informatics application, the analysis of protein sequence is a kind of computation 
driven science which has rapidly and quickly growing biological data. Also databases used in these 
applications are heterogeneous in nature and alignment of protein sequence using physical techniques 
is expensive, slow and results are not always guaranteed/accurate. So this application requires cross-
platform, cost-effective and more computing power algorithm for sequence matching and searching a 
sequence in database. Grid is one of the most emerging technologies of cost effective computing 
paradigm for large class of data and compute intensive application which enables large-scale 
aggregation and sharing of computational data and other resources across institutional boundaries. We 
proposed the Grid architecture for searching of distributed, heterogeneous genomic databases which 
contained protein sequences to speed up the analysis of large scale sequence data and performed 
sequence alignment for residues match.  
 
Key words: Grid computing, bio-informatics, sequence alignment, dynamic programming 

 
INTRODUCTION 

 
 Grid computing, most simply stated, is distributed 
computing taken to the next evolutionary level. The 
goal is to create the illusion of a simple yet large and 
powerful self managing virtual computer out of a large 
collection of connected heterogeneous systems sharing 
various combinations of resources. 
 Another key technology in the development of grid 
networks is the set of middleware applications that 
allows resources to communicate across organizations 
using a wide variety of hardware and operating 
systems. The promise of grid computing is to provide 
vast computing resources for computing problems that 
require supercomputer type resources in a more 
affordable  way.  Grid  computing also offers 
interesting    opportunities    for    firms   to  tackle 
tough   computing  tasks like financial modeling 
without incurring high cost for supercomputing 
resources. 
 Grid computing is applying the resources of many 
computers in a network to a single problem at the same 
time usually to a scientific or technical problem that 
requires a great number of computer processing cycles 
or access to large amounts of data. Grid computing is 
thought of as a form of network-distributed parallel 
processing. It can be confined to the network of 

computer workstations within a corporation or it can be 
a public collaboration.  
 Inexpensive systems such as Beowulf clusters have 
become increasingly popular in both the commercial 
and academic sectors of the bioinformatics community. 
Clusters typically consist of a master node that 
distributes the bioinformatics application amongst the 
other nodes. The PC clusters can be used to replace 
mainframe systems or supercomputers and save much 
hardware cost. According to efficiency and cost, using 
parallel version software and cluster system is a good 
way and it will become more and more popular in the 
near future. Grid computing offers significant 
enhancements to the capabilities for computation, 
information processing and collaboration.  
 Bioinformatics and computational molecular 
biology are concerned with the use of computing and 
mathematical sciences as tools to advance traditional 
laboratory based biology. The need to process an 
exponentially growing amount of biological 
information for further scientific advances and to 
understand its role in heredity, chemical processes 
within the cell, drug discovery, evolutionary studies etc. 
 Proteins are polymers also called polypeptides 
consisting of a sequence of amino acids. There are 
twenty amino acids that are found in proteins. Figure 1 
shows the full name and abbreviation of 20 amino acid 
of protein. 
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Full Name Abbrev. Full Name Abbrev. 
Alanine A Ala Methionine M Met 
Cysteine C Cys Asparagine N Asn 
Aspartic acid D ASP Proline P Pro 
Glutamic acid E Glu Glutamine Q Gln 
Phenylalanine F Phe Arginine R Arg 
Glycine G Gly Serine S Ser 
Histidine H His Threonine T Thr 
Isoleucine I Ile Valine V Val 
Lysine K Lys Tryptophan W Trp 
Leucine L Leu Tryosine Y Tyr 

 
Fig. 1: Protein names 

 
 Proteins were first characterized by their primary 
sequences, the amino acid sequence[1] and then folded 
into complex tertiary (3D) structure, which decided the 
corresponding biological functions. The motivation 
behind the structural determination of proteins was 
based on the belief that structural information would 
ultimately result in a better understanding of intricate 
biological processes. 
 Protein sequence alignment is one of the 
bioinformatics research projects, facilitating everything 
from identification of gene function to structure 
prediction of proteins. Alignment of two sequences 
showed how similar the two sequences were, where 
there were differences between them and the 
correspondence between similar subsequences. 
Similarity simply means that two sequences are similar, 
by some criterion. All of this represents important 
information for biologists. The successful techniques 
for prediction of the protein three dimensional 
structures rely on aligning the sequence of a protein of 
unknown structure. To attempt to align the protein 
sequence for large proteins, we needed better 
algorithms and larger computational resources like 
those afforded by either powerful super computer or 
distributed computing. 
 

RELATED WORKS 
 
 The NdPASA[6] is a novel protein sequence 
pairwise alignment algorithm. This method employs 
neighbor-dependent propensities of amino acids as a 
unique parameter for alignment. NdPASA optimizes 
alignment by evaluating the likelihood of a residue pair 
in the query sequence matching against a corresponding 
residue pair in the template sequence. Statistical 
analysis of the performance of NdPASA indicated that 
the introduction of sequence patterns of secondary 
structure derived from neighbor-dependent sequence 
analysis clearly improved alignment performance for 
sequence pairs sharing less than 20% sequence identity. 
For sequence of pairs sharing 13-21% sequence identity 

NdPASA improved the accuracy of alignment over the 
conventional global alignment algorithm using 
BLOSUM 62 by an average of 8.6% 
 Pattern Hunter[7] is a general purpose homology 
search tool, it uses novel approaches to substantially 
improve sensitivity and speed simultaneously. One new 
idea in Pattern Hunter was the introduction of an 
optimized spaced seed. In Blast, exact matches of k 
continuous letters is used as a seed to find long matches 
around it, whereas in Pattern Hunter, a seed is k 
discontinuous letter matches, where the relative 
positions of the k letters are optimized in advance. This 
has helped Pattern Hunter to significantly increase its 
sensitivity over Blast. Given k seeds, computing the hit 
probability under the uniform distribution is NP-hard. 
The problem of finding k optimal seeds is NP-hard. 
Using optimized multiple spaced seeds; Pattern Hunter 
is faster than Smith-Waterman at approximately the 
same sensitivity, for DNA sequence search. But 
investigation is going on for new multiple optimal seed 
schemes to approximate the Smith-Waterman 
sensitivity for protein-protein searches. 
 In the subquadratic sequence alignment 
algorithm[8] data compression techniques were 
employed to speed up the alignment of two strings. 
Instead of dividing the dynamic programming matrix 
into uniform-sized blocks they employed a variable 
sized block partition and speeding up dynamic 
programming by keeping and computing only a 
relevant subset of important values. Here the dynamic 
programming solution to the string comparison 
computation problem can be represented in terms of a 
weighted alignment graph. The subquadratic sequence 
comparison algorithms presented were perhaps close to 
optimal in time complexity. However, an important 
concern was the space complexity of the algorithms. If 
only the similarity score value was required, the 
classical, quadratic time sequence alignment algorithm 
could easily be implemented to run in linear space by 
keeping only two rows of the dynamic programming 
table alive at each step. If the recovery of either global 
or local optimal alignment traces was required, 
quadratic-time and linear-space algorithms could be 
obtained by applying Hirschberg’s refinement to the 
classical sequence alignment algorithms. 
 ParAlign[9] is a parallel sequence alignment 
algorithm specifically designed to take advantage of 
SIMD technology. The initial filtering method used in 
the ParAlign was very sensitive (few false negatives), 
but gave too many unwanted false positives in some 
cases. This happened occasionally with certain query 
sequences and was caused by repetitions in the 
sequences. An improved statistical evaluation method 
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was needed in order to improve performance. The 
Smith-Waterman algorithm was generally considered to 
be the most sensitive, but long computation times 
limited the use of this algorithm. Special purpose 
hardware with parallel processing capabilities 
performed smith-waterman searches at high speed, but 
these machines were expensive. 
 

PROPOSED SYSTEM (NPSAG) 
 
 NPSAG has three grid sites named as Site1, Site2 
and SiteN were connected to the grid environment as 
shown in Fig. 2. Each site had more than one grid node. 
Grid Index Information Server (GIIS), Global scheduler 
(GS), Local Scheduler (LS), Sequence Alignmenter 
(ALIG) and Sequence Updater were the components of 
NPSAG. User can get the services available in a Grid 
using GIIS and submit the sequence alignment of some 
protein structure as a request to GS through Grid GUI. 
Global Scheduler (GS) will direct the jobs to the local 
grids and execute the tasks in local grids using Local 
Scheduler (LS). 
 In each grid, the service discovery discovered what 
were the services and grid nodes available and collected 
the information from local sites and updated the same 
to GIIS. Each grid node became a peer node. All nodes 
in the grid had equal capability. 
 User can login to Grid using Grid GUI and search 
similar sequences for the particular protein sequence. 
NPSAG searched the grid and found out the more 
suitable protein sequence from GIIS and distributed to 
the destinations grid sites through the use of Global 
Scheduler. Once the location is found out from the 
NPSAG,  direct  communication  will  be  established to  
 

GUI

GIIS

GS

L
S

SEQ Updater

A
L
IG

LALIG

GALIG

L
S

SEQ Updater

A
L
IG

LALIG

GALIG

L
S

SEQ Updater

A
L
IG

LALIG

GALIG

Site  1

Site 2

Site N

 
 

Fig. 2: Architecture of proposed system 

the desired grid sites and align the protein sequence for 
residues match using alignmenter. NPSAG has 2 main 
alignmenters namely Local Alignmenter (LALIG) and 
Global Alignmenter (GALIG). 
 If any new protein sequences are discovered by a 
person who is the participant of grid environment then 
he can update these details to the grid GIIS with the use 
of content distribution algorithm[5]. Content distribution 
system creates a distributed storage medium that allows 
for the publishing, searching and retrieval of files by 
members of its network. By use of content distribution 
the new data are updated to the GIIS in a faster manner. 
The Gird server in the NPSAG updates this information 
to in the GIIS. From the GIIS it can be distributed to the 
local grids with the use of sequence updater. 
 

IMPLEMENTATION 
 
 To form an alignment between two sequences, 
spaces were inserted in arbitrary positions in the 
sequences so that they ended up with same length and 
then each character or space in one sequence would 
have a corresponding character or space in the other 
sequence. An alignment score can then be assigned to 
such an alignment: if a character is in sequence A 
matches its corresponding character in sequence B, it 
will receive a score of 1 (match); otherwise it will 
receive a score of -1(mismatch) and if one of the two 
characters is a space, it will receive a score of -2 (gap) 
and the total score over the whole sequence is the score 
of this alignment. The optimal alignment problem was 
to find the maximal score of all possible alignments 
between two sequences. This maximal score can be 
used to measure the similarity between the two 
sequences. 
 Computational approach for sequence alignment 
generally falls into two categories: global alignment 
and local alignment. Global alignment is a form of 
alignment that assumes that the two proteins are 
basically similar over the entire length of one another. 
By contrast, a local alignment searches for segments of 
the two sequences that match well. There is no attempt 
to force entire sequences into an alignment; just those 
parts that appear to have good similarity, according to 
some criterion identify regions of similarity within long 
sequences that are often widely divergent overall. 
Global alignments, which attempt to align every residue 
in every sequence, are most useful when the sequences 
in the query set are similar and of roughly equal size. A 
general global alignment technique is called the 
Needleman- Wunsch algorithm and is based on 
dynamic programming. Local alignments are most 
useful for dissimilar sequences that are suspected to 
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contain regions of similarity or similar sequence motifs 
within their larger sequence context. The Smith- 
Waterman is general local alignment method also based 
on dynamic programming. 
Global Alignment: 
 
F T F T A L I L L A V A V 
F - - T A L - L L A - A V 
 
Local Alignment: 
 
F T F T A L I L L - A V A V 
- - F T A L - L L A A V - - 
 
Global and Local Alignments 
 
GALIG: The standard global alignment algorithm 
computes the similarity between two sequences A and 
B of lengths m and n, respectively, using a dynamic 
programming approach. Dynamic programming is a 
strategy of building a solution gradually using simple 
recurrence. The key observation for the alignment 
problem was that the similarity between sequences A 
[1...n] and B [1...m] could be computed by taking the 
maximum of the three following values:  
 
• The similarity of A [1...n -1] and B [1...m -1] plus 

the score of substituting A[n] for B[m]  
• The similarity of A [1...n -1] and B [1...m] plus the 

score of deleting aligning A[n]  
• The similarity of A [1...n] and B [1...m -1] plus the 

score of inserting B[m]  
 
From this observation, the following recurrence can be 
derived: 
 
sim ( A[1..i], B[1..j] ) = max { 
 sim ( A[1..i -1], B[1..j -1] ) + sub ( A[i], B[j] );  
 sim ( A[1..i -1], B[1..j] ) + del ( A[i] );  
 sim ( A[1..i], B[1..j -1] ) + ins ( B[j] ) }  
 
Where sim (A, B) is a function that gives the similarity 
of two sequences A and B and sub (a, b), del (c) and ins 
(c) are scoring functions that give the score of a 
substitution of character a for character b, a deletion of 
character c and an insertion of character c, respectively. 
This recurrence is complete with the following base 
case: sim (A [0], B [0]) = 0  
Where A[0] and B[0] are defined as empty strings. To 
solve the problem with this recurrence, the algorithm 
builds an (n +1) × (m +1) matrix M where each M[i, j] 
represents the similarity between sequences A[1..i] and  
B[1..j] The first row and the first column represent 
alignments of one sequence with spaces. M [0, 0] 

represents the alignment of two empty strings and is set 
to zero. All other entries are computed with the 
following formula:  
 
M[i, j] = max {  
M[i -1, j -1] + sub ( A[i], B[j] ); 
 M[i -1, j] + del ( A[i] );  
 M [i, j -1] + ins ( B[j] ) }  
 
 The matrix can be computed either row by row 
(left to right) or column by column (top to bottom). In 
the end, M [n, m] will contain the similarity score of the 
two sequences. Once the matrix has been computed, the 
actual alignment can be retrieved by tracing a path in 
the matrix from the last position to the first. The trace is 
a simple procedure that compares the value at each M 
[i, j] to the values of its left, top and diagonal entries 
according to the formula given above. It is often useful 
to see the dynamic programming solution for the 
sequence alignment problem as a directed weighted 
graph with (n +1) × (m +1) nodes representing each 
entry (i, j) of the matrix and having the following 
edges:  
 
• ((i -1, j -1), (i, j)) with weight equals to sub (A[i], 

B[j]) 
• ((i -1, j), (i, j)) with weight equals to del (A[i]) 
• ((i, j -1), (i, j)) with weight equals to ins (B[j])  
 
 A path from node (0, 0) to (n, m) in the alignment 
graph corresponds to an alignment between the two 
sequences and the problem of retrieving an optimal 
alignment was converted to the problem of finding a 
path in the graph with highest weight. 
 
LALIG: Local alignment was defined as the problem 
of finding the best alignment between substrings of 
both sequences. The main difference was that M[i, j] 
contains the similarity between suffixes of A[1..i] and 
B[1..j]. As a result, the recurrence relation is slightly 
altered because an empty string is a suffix of any 
sequence and, therefore, a score of zero is always 
possible. The formula for computing M [i, j] becomes:  
 
 M [i, j] = max {0;  
 M[i -1, j -1] + sub ( A[i], B[j] );  
 M[i -1, j] + del ( A[i] );  
 M[i, j -1] + ins ( B[j] ) }  
 
 Another important distinction was that the score of 
the best local alignment was the highest value found 
anywhere in the matrix. This position was the starting 
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point for retrieving an optimal alignment using the 
same procedure described for the global alignment case. 
The path ended, however, as soon as an entry with 
score zero was reached. It is trivial to see that the 
Smith-Waterman algorithm has the same time and 
space complexity as the Needleman-Wunsch[10]. 
 The dynamic programming method is guaranteed 
to find an optimal alignment given a particular scoring 
function; however, identifying a good scoring function 
is often an empirical rather than a theoretical matter. 
Although dynamic programming is extensible for more 
than two sequences, it is prohibitively slow for large 
numbers or extremely long sequences. This method 
requires large amounts of computing power or a system 
whose architecture is specialized for dynamic 
programming. Hence the computation complexity of 
this problem can be overcome by using a dynamic 
hierarchical environment like Grid Computing. 
 

PERFORMANCE ANALYSIS 
 
 Here we have included a sample observation of our 
work to indicate the behavior of protein sequence 
alignment, the graphs in Fig. 3 and 4 indicates that the 
time and number of proteins are directly proportional to 
each other as the number of protein for analysis 
increases,  the  time  required  to analyze also increases. 
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Fig. 3: Performance analysis in single system 
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Fig. 4: Performance analyses in grid environment 

Better accuracy was achieved when we performed 
analysis over a large database of proteins and hence the 
degree of accuracy improved over the increase of 
proteins. 
 To cope with the computational requirements for 
analysis on a large database, our work included Grid 
Computing environment. In grid computing 
environment time for sequence alignment was reduced. 
Hence our approach was a nimble process. 
 

CONCLUSION AND FUTURE WORK 
 
 The physical methods, X-ray crystallography and 
nuclear magnetic resonance (NMR) spectroscopy can 
accurately perform protein sequence alignment; but 
these experimental methods are labor intensive and 
time consuming and for some proteins are not 
applicable at all. The computational prediction of 
accurate protein structure from the amino acid sequence 
remains a big challenge. It requires large computing 
power like super computer. 
 We have proposed an approach in aligning the 
protein sequence using Grid Computing. Our prediction 
approach matches the given sequence with the genomic 
database in one grid and provides the similar sequence. 
This was performed the sequence alignment in local 
grid using the dynamic programming method. Content 
distribution algorithm is used to distribute the sequence 
information to all other grids. Our approach has several 
advantages. First, it provides an interesting measure, 
match rate, for any protein sequence. Second, future 
improvement of our approach is incremental: as more 
protein structures are discovered each month, the 
alignment accuracy will likely get better automatically. 
Another advantage is that, the architecture of our 
system is flexible enough to allow other biological 
knowledge as well as machine learning techniques to be 
incorporated into the model to further improve its 
alignment accuracy. Our system could make a very 
useful addition to the current armory of sequence 
alignment methods available to protein chemists, 
genome annotators and bioinformaticians. 
 In future, we plan to implement the same problem 
in semantic grid. In GALIG and LALIG, we use some 
efficient Genetic algorithm operators to improve the 
over all performance of NPSAG. 
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