
Journal of Computer Science 4 (4): 290-297, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: Choon How Choo, Department of Software Engineering, Faculty of Computer Science and
Information Technology University of Malaya, 50603 Kuala Lumpur, Malaysia PH: 6012-9107928

290

Towards Persistence Framework-Based Rapid Application Development

Toolkit for Web Application Development

Choon How Choo and Sai Peck Lee
Department of Software Engineering, Faculty of Computer Science and

Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia

Abstract: Software systems must be delivered quickly in order to respond to today’s rapid changing
business environments. Persistence framework was introduced to overcome the problem of object-
relational impedance mismatch, occurred in most enterprise applications that need access to a
relational database. However, most of these persistence frameworks are difficult to configure and use,
thus do not really contribute much to the improvement of software developers’ overall productivity.
This study proposes the concept, architecture, design and development of a rapid application
development toolkit that will leverage on a persistence framework to subsequently provide an easy-to-
use and customizable front-end web application development environment for developers to perform
rapid web application development. Unlike prior efforts, the combination of the features of rapid
prototyping, code generation and configuration wizard on top of the persistence framework provided
by the proposed rapid application development toolkit enables developers not only to deliver their
target web applications within a shorter timeframe through an easy-to-use front-end environment, but
also to achieve encapsulation of database access from the business objects of a web application.

Key words: Rapid-prototyping, code generation, framework reuse

INTRODUCTION

 In a rapid changing environment, software systems
must be delivered quickly in order to meet business
delivery schedules. Spending months and years
developing systems to high standards is fruitless if over
time requirements change beyond recognition. Software
development must serve its customers. Simple value-
for-money systems that work are better than expensive
and complex ones delivered late, over-budget and
difficult to maintain[1].
 Rapid Application Development (RAD) has long
been promised to be a boon to the computing
community. The idea is to develop a method of
designing software so that the whole process is quick,
painless and nearly effortless. The tools used should be
easy to learn, powerful and allow the designers to
interface their freshly minted application with other
applications, databases and file types[2]. While no
universal definition of RAD exists, it can be
characterized in two ways: as a methodology
prescribing certain phases in software development
(similar in principle to the spiral, iterative models of
software construction) and as a class of tools that allow
for speedy development of objects, graphical user

interfaces and reusable code for client/server
applications[3].
 Vidyadharan[4] described the approach of rapid
application development through automatic code
generation of model objects and persisting them using
object persistence frameworks. Most of the application
source code can be generated based on rapid application
development framework which helps reduce
development timeframe. Some companies offer
products that provide some or all of the tools for RAD.
These products include requirements gathering tools,
prototyping tools, computer-aided software engineering
tools, language development environments such as
those for the Java platform, groupware for
communication among development members and
testing tools. RAD usually embraces object-oriented
programming methodology, which inherently fosters
software reuse[5]. The most popular object-oriented
programming languages, C++ and Java, are offered in
visual programming packages, often described as
providing rapid application development.
 What is a persistence framework? In computer
science, Persistence refers to the characteristic of data
that outlives the execution of the program that created
it. Without this capability, data only exists in memory

J. Computer Sci., 4 (4): 290-297, 2008

 291

and will be lost when the memory loses power, such as
on computer shutdown[6]. A framework is a basic
conceptual structure used to solve a complex issue[7]. In
the software context, a framework is a reusable design
for a software system (or subsystem). A software
framework may include support programs, code
libraries, a scripting language, or other software to help
develop and glue together the different components of a
software project[8]. Frameworks are also defined as a set
of classes that embodies an abstract design for solutions
to a family of related problems or a set of objects that
collaborate to carry out a set of responsibilities for an
application subsystem domain[9]. A persistence
framework moves the program data in its most natural
form (in-memory objects) to and from a permanent data
store (database)[10]. Most such frameworks require
developers to maintain lots of meta-data describing how
to map the object data into the relational database.
However, with the advent of advanced language
features (reflection), most of this meta-data can be
obtained at runtime[11].
 This study is organised as follows. First, the
motivation of our research work is described. The
following section gives an architectural view of our
RAD toolkit as well as a detailed description of each of
its components and rapid application development
process. Subsequent design and implementation of the
toolkit is then given. The next section provides a
comparative evaluation of our toolkit in relation to
existing research prototypes. Finally, a concluding
remark is given in the last section.

MOTIVATION

 Nowadays, most enterprise applications need
access to a relational database[12]. The Java standard for
accessing relational databases is the JDBC APIs that
utilize SQL as a data manipulation language. This
approach of directly accessing a relational database
from an object-oriented Java application was shown to
be inefficient and introduces a problem called object-
relational impedance mismatch, or simply impedance
mismatch for short, which refers to the differences
between object-oriented technology and relational
technology. An approach for solving the impedance
mismatch problem is to introduce an abstract layer,
called a persistence layer/framework, between the
relational database and the object model of the
application. This layer fully encapsulates the database
access from the business objects[13].
 Some known existing persistence frameworks
(both Open Source/Academia and Commercial) are
such as Hibernate, JDO, Castor[10] and PersistF[14].

Most of the persistence frameworks require users
(developers) to configure the framework’s behaviour by
providing enough information about the target
application and the way in which its persistence aspects
are to be handled in the context of a given framework.
This affects the overall productivity of developers and
complicates the development process by forcing the
developer to learn the lingo of the target framework.
 Tedious, error-prone configuration tasks and
coding works may lead to costly, time consuming
process, that increase time-to-market for the target
application. PersistF, a persistence framework
prototype which was developed within our research
programme, has been chosen as a basis for exploration,
design and development of our proposed RAD toolkit
due to easy configuration of its framework behaviour.
This research intends to develop a RAD toolkit that will
leverage on a persistence framework to subsequently
provide an easy-to-use and customizable front-end web
application development environment for developers to
perform rapid web application development.

ARCHITECTURE OF PROPOSED RAD
TOOLKIT

 In the context of this research work, software
developers are programmers who want to develop web
applications. They will be involved in two development
phases using the proposed RAD toolkit – pre-
development through RADEWeb and post-development
through Java IDE. Pre-development involves using
RADEWeb which is a front-end web application
specification environment of the toolkit installed in a
server to enable web application specification, rapid
prototyping through the web and generation of PersistF-
based web application skeleton source code. Post-
development involves using Java integrated
development environment (Java IDE) that provides
comprehensive facilities such as Eclipse and NetBeans
to perform further application development on the
generated PersistF-based source code such as code
customisation, specific methods addition and code
fine-tuning. Fig. 1 together with Fig. 2 shows the
overview of the proposed RAD toolkit’s concept and
architecture which aim to perform rapid web
application development in synergy with PersistF.

Pre-development through RADEWeb: In the pre-
development phase (Fig. 1), software developers can
access to RADEWeb through their web browsers. They
can either create a new web application workspace or
access to the existing workspaces in order to proceed
with the web application development. A Web
Application Workspace and a RP Runtime Database (

J. Computer Sci., 4 (4): 290-297, 2008

 292

Fig. 1: Overview of the proposed RAD toolkit for web

application development through RADEWeb

temporary database for the purpose of rapid
prototyping) will be allocated for each web application
to be developed.
 In this context, the web application design
information which will be entered by the software
developer is referred to as Metadata. It may include, but
not limited to, class information (names of classes and
their parent classes related through inheritance) for the
web application, field names for each class, data type
and input type for each field (for web interface

customisation). These metadata will be stored in
RADEWeb Design Database and will also be used to
synchronise with RP Runtime Database. Software
developers can also access to the targeted web
application prototypes through the workspace. They can
test and feel the freshly minted prototypes before
generating and downloading the web application project
archive which contains the skeleton source code
bundled with PersistF.
 Basically, the functions of metadata manipulation
(add, edit, view and delete), rapid prototyping, web
application code generation and project archive
downloading which are available in the workspace
supported by four main components in RADEWeb.
They are Schema Synchroniser, Dynamic Web Page
Generator, Code Generator and File Archiver.

Schema synchroniser: Schema synchroniser plays an
important role in synchronising the schema of a RP
Runtime Databases based on the design information
that has been captured in the metadata. This component
enables the latest database to be ready for rapid
prototyping immediately after any metadata
manipulation performed by the software developer.

Once a new web application workspace has been
added by the software developer, this synchroniser will
create a new RP Runtime Database schema. Likewise,
the database schema will be dropped by the
synchroniser if the workspace is deleted by the software
developer. The schema synchroniser will also take care
of database tables and their columns. Once a class has
been added, it will create a new table in the
corresponding RP Runtime Database based on the class
name. The table name will be synchronised if the class
name is renamed and also the table will be dropped
once the corresponding class is deleted. This is the
same for the class fields, which will be synchronised to
the table columns. The following pseudo code shows
some of the rules of schema synchronisation.

• Create a new database schema:

 IF new web application workspace was created

successfully THEN

CREATE new database schema with the
prefix name “radeweb_db” and ending
with web application increment id

 ELSE
 DISPLAY error message
 END IF

RADEWeb

RP
Runtime

Databases

Code
Templates

Web Browser

Web Application Workspace

RADEWeb
Design

Database

Dynamic
Web Page
Generator

Code
Generator

Generated
Project
Archive

Metadata
Prototypes

(Rapid
Prototyping)

Software
developer

PersistF
Configuration

Wizard

File
Archiver

Generated
Files

Schema
Synchro-

niser

Downloaded
Project
Archive

J. Computer Sci., 4 (4): 290-297, 2008

 293

• Create a new table:

 IF new class was created successfully THEN
CREATE new table with the same name of

the created class into the corresponding
RP Runtime Database

 ELSE
 DISPLAY error message
 END IF

• Add a new column:

 IF new field has been added successfully THEN

ALTER the corresponding table with
command of Add Column to add a new
column with the same name of the created
field

 ELSE
 DISPLAY error message
 END IF

 Since the schema synchroniser will take care of all
the synchronisations automatically, software developers
can browse the prototypes from time to time without
the need to worry about database schema compatibility.

Dynamic web page generator: For the purpose of rapid
prototyping, Dynamic Web Page Generator generates
the requested web page prototypes based on the design
information of the web application stored in RADEWeb
Design Database. The dynamically generated web page
will be provided with sufficient parameters to be passed
to the generic data manipulation Servlets (web pages
backend code) to implement data storing and data
retrieving. The following pseudo code shows some of
the rules on how the dynamically generated web page
can be ready with the basic input validation in
javascript function and parameters for each field
assigned to the web form:

• Input Validation:

 FOR each field of the class which is to be filled in
 Prepare checking for the corresponding field
 END FOR

• Web form preparation:

 FOR each field of the class which is to be filled in

Prepare the label name which is derived from
corresponding field

Prepare the input field which has been
assigned with the corresponding attribute
name

 END FOR

 With this approach, the web forms to add and edit
the record and the web pages to list down the records
can be generated dynamically and this allows software
developers to implement manipulations of data such as
add, edit, view and delete to and from the
corresponding RP Runtime Database just after any
metadata manipulation.
 Since there is no time consuming deployment
process involved during the rapid prototyping, software
developers can change the design information
immediately if they are not satisfied and check again
with the prototypes within a very short timeframe.

Code generator: Code Generator generates the Tomcat-
based web application’s skeleton source code files,
which are built upon PersistF, by referring to the design
information described in the metadata stored in the
RADEWeb Design Database. These generated source
code files include domain classes, Servlets, dynamic
web pages, javascript, cascading style sheets, web
configuration and deployment descriptor and PersistF
framework related files.
 For the generation of each domain class source
code, the code generator will first retrieve the package
containing any available class, its parent classes linked
through inheritance (if available), fields and data type
for each field from the RADEWeb Design Database. It
will then start to generate each domain class into a
package name (if available). Next, it will look into the
body of the class which starts with the class name and
its inheritance information (if available) will be filled
up with fields and basic methods (constructor, getters
and setters). These fields will be generated based on the
defined field names and data types, with private as their
default access modifier. For the generation of the basic
methods, constructors will be generated based on the
given class while getter and setter methods will be
generated based on the names derived from the defined
field names. In order to follow the Java naming
conventions, these getter and setter methods are
generated by combining get or set with the field name
in which the first letter is converted to upper case.
 For code generation of Servlets, dynamic web
pages, javascript and cascading style sheets which may
refer to domain classes involving class inheritance,
information of parent/super class such as package
name, class names, field names and data types are
necessary for the proper code to be generated. If the
class extends from another class (parent class), then the
code generator will analyse its parent class recursively
until the base class is found. The following pseudo code

J. Computer Sci., 4 (4): 290-297, 2008

 294

shows the algorithm on how the base class can be
traversed from the child class recursively:

 traverseToBaseClass(class)
 IF the class exists THEN
 CALL traverseToBaseClass(class’s parent)

 Statement to be performed for every class
which will be implemented with the
sequence from base class to the lowest
child class

 END IF

 Based on the generic design of the web application
to be generated from this RAD toolkit, the web
configuration and deployment descriptor (web.xml) can
be generated by providing the code generator the
package name and name of class of the web application
main controller. All these automatic coding functions
provided by the code generator avoid a lot of manual
coding errors and at the same time reduce the
development timeframe.

File archiver: File Archiver combines the generated
files with PersistF configuration wizard of the web
application into a project archive file (in .zip format) for
easier transportation from RADEWeb to the
developer’s workstation. This approach saves software
developers from wasting a lot of time on downloading
source code files one by one from the web pages.

Post-development through Java IDE: In the post-
development phase through Java IDE (Fig. 2), further
web application development will be carried out in the
developer’s workstation. By using facilities in Java IDE
such as Eclipse or NetBeans, he/she can import the
project archive into a new web application project –
Tomcat project, to proceed with further development as
needed.
 During the development of a web application, the
developer can configure PersistF’s behaviour by using
the PersistF configuration wizard (which has previously
been archived as a jar file) along with the web
application’s source code in the project folder.
Configuration through the wizard avoids tedious and
error-prone manual coding task which may lead to
costly and time consuming process.
 PersistF plays an important role in taking care of
all the persistence-related work on behalf of the
developer during the web application development[14].
This means that the management of unique identifiers,
relationship between the classes and materialisation /de-

Fig. 2: Overview of the proposed RAD toolkit for

development through Java IDE in synergy with
PersistF

materialisation of objects from/to the specific data store
are done automatically. This saves a lot of time from
writing hand-coding SQL and the supporting code to
turn it into Java objects.
 The resulting web application’s skeleton source
code and the encapsulated database access layer of
PersistF contribute to providing RAD features in
subsequent web application development.

DESIGN AND IMPLEMENTATION

 The aim of this section is to present the design and
implementation of a rapid application development
toolkit. One of the ways to increase productivity is to
reduce complexity[19]. With the simple development
process as shown in Fig. 3, together with the code
generation facility and configuration wizard, it will help
to reduce coding errors during development and
deployment of web applications. In addition, it will also
aid developers in building web applications with a set
of services without writing basic code.

Java IDE

Downloaded
Project
Archive

Database

New web application project
(Tomcat project)

Web Application
Skeleton Source Code

PersistF

PersistF
Configuration

Wizard

Software
developer

Legend

Extract Import Configure

J. Computer Sci., 4 (4): 290-297, 2008

 295

Fig. 3: Process of the web application development

with the proposed RAD toolkit

RADEWeb: RADEWeb, a front-end, web application
specification, rapid prototyping and skeleton source
code generation development environment, allows the
software developer to create a workspace for the web
application to be developed, input metadata for the web
application, browse web application prototypes,
generate the web application’s source code based on the
captured metadata and reusable design infrastructure of
PersistF, as well as download the generated web
application .zip archive. RADEWeb enables multiple
users to access and develop web applications from
anywhere and at anytime without having to spend much
time with tedious development environment
configurations.

Web application workspace: The software developer is
allowed to create more than one web application
workspace. When a new web application workspace is
to be created, the name of the web application needs to
be entered. Every successfully created web application
workspace will have its own runtime database schema
for the purpose of rapid prototyping.

Metadata: The metadata for the web application may
include, but not limited to, class names for the Web
application, field names for each class, data type and

Fig. 4: Overview of Code Generation

input type for each field (for web interface customisati-
on). All of these metadata will be stored in the
RADEWeb design database.

Rapid prototyping: From the metadata of the web
application, the software developer can browse the web
application prototypes which were generated
dynamically based on the captured metadata. He/She
can test and feel the freshly minted web application
instantly and edit the metadata as needed.

Code generation: Once the software developer is
satisfied with the prototypes, he/she can generate
skeleton code of the web application based on the
captured metadata in synergy with PersistF. This saves
developers from spending time on repetitive and error-
prone manual coding work which may lead to costly,
time consuming process and increase time-to-market of
the target web application. The generated skeleton code
has an architecture that indirectly reuses PersistF
defined design patterns and thus, reducing the risk of
coding manually. Fig. 4 showed an overview of code
generation. There are two inputs for the code generator
- metadata which is stored in the RADEWeb design
database; and code templates. Only metadata and code
templates which are related to the specific web
application will be retrieved and analysed for the
purpose of code generation.

Downloadable project .zip archive: Generated source
code of a web application will be compressed as a .zip
archive so that the developer can download it easily
from RADEWeb. This compressed archive contains the
web application’s skeleton source code which can be
extracted and added as a new project in Java IDE such
as Eclipse or NetBean for further development as
needed.

Code
Templates

- .jsp files
- .java files
- .js files
- .css files
- web.xml file
- PersistF
framework
related files

Metadata
(in RADEWeb

Design
Database)

Code

Generator
Output File
(Project .zip

Archive)

PersistF
Configuration

Wizard

Create web application workspace

Input metadata for the web application

Browse prototypes

Generate code

Download the generated project archive

Extract and add as a new web application
project in Java IDE

Configure PersistF with the wizard

Proceed with further web application
development as needed

J. Computer Sci., 4 (4): 290-297, 2008

 296

PersistF configuration wizard: PersistF configuration
wizard forms part of the proposed RAD toolkit. It is
used to configure the settings of PersistF for the web
application to be generated. By using this wizard,
developers only have to follow the instructions; choose
an appropriate setting and edit it as needed from the
GUI interface instead of having to edit code manually
such as using a traditional text editor to configure the
framework’s runtime engine with sufficient information
about the domain application. This makes error-prone
configuration tasks much easier with the wizard. It also
prevents developers from spending time on fixing
setting errors that frequently occurs during
configuration.

COMPARATIVE EVALUATION

 Compared to previous work (INTRAD) done by
Hyo et al.,[9] in terms of features, this proposed RAD
Toolkit not only can better improve productivity due to
framework reuse but also generate web pages
dynamically based on the given analysis and design
information for the purpose of rapid prototyping. In
relation to Vidyadharan[4] in terms of generation of
classes, both code generators allow Model classes to be
generated automatically. However, the View classes
have to manually code in Vidyadharan’s work while
this proposed RAD Toolkit allows software developers
to enter the needed View class information through the
easy-to-use front end interface so that View classes can
be generated automatically by the code generator.
 The problem faced by Bolwidt and Partington[15]
was the speed at which they could build the user
interface. The proposed RAD Toolkit overcomes this
problem by providing a code generator that enables
basic user interface to be generated automatically based
on the corresponding design information stored in
RADEWeb Design Database.
 Basically, previous works by Hyo et al.,[9],
Vidyadharan[4] and Bolwidt and Partington[15] did not
provide any rapid prototyping tool for web application
development. This proposed RAD toolkit allows
software developers to implement rapid prototyping
without much effort once design information exists in
the RADEWeb Design Database.
 The rapid prototyping tools of Autoweb, JWeb[16]

and WARP[17,18] for web application development, as
well as the RAD tool of INTRAD by Hyo et al.,[9] do
not address data storage solution such as a persistence
framework which can be used to encapsulate the data
access and increase the maintainability of the software.
Even though the work by Bolwidt and Partington[15]
makes use of a persistence framework, they do not

provide any code generator and easy-to-use persistence
framework configuration wizard to increase the
productivity.
 This proposed RAD toolkit can rapidly generate
web applications that are built upon PersistF which will
take care of all the persistence-related work on behalf
of the software developer. The PersistF configuration
wizard will be provided together with the generated
web application source code files in the generated
project archive. Furthermore, the web page prototypes
for the purpose of rapid prototyping and all the skeleton
source code of the target web application to be
developed can be generated dynamically and
automatically respectively through this RAD toolkit.
The combination of these features to speed up the web
application development process is rarely provided by
any existing RAD tools.

CONCLUSION

 This research proposed a RAD toolkit for rapidly
developing web applications, applying a persistence
framework that fully encapsulates the database access
from the business objects. The RAD toolkit aids
software developers in building web applications with
an easy-to-use and customizable front-end web
application development environment supported by
rapid prototyping and code generation facilities on top
of a persistence framework without writing any basic
code. It avoids having to perform error-prone manual
coding tasks during web application development.
 In addition, the combination of the features of rapid
prototyping, code generation and configuration wizard
provided by the proposed RAD toolkit has drastically
helped to speed up the web application development
process. The simple and organised development process
defined has provided a guide to developers in
performing rapid web application development with the
toolkit.
 This research work attempted to provide several
features contributing to productivity improvement that
so far have not been tackled by existing research works.
Future works could be on enhancing this toolkit to
support development of complex web applications.

ACKNOWLEDGEMENTS

 This research is conducted as part of the
framework within the research programme sponsored
by Ministry of Science, Technology and Innovation,
Malaysia.

J. Computer Sci., 4 (4): 290-297, 2008

 297

REFERENCES

1. Howard, A., 2002. Rapid Application

Development: Rough and dirty or value-for-money
engineering? Commun. ACM, 45: 27-29.
doi:10.1145/570907.570925

2. Brockwood T., 1997. Rapid Application
Development. Retrieved July 26, 2007, from
http://www.webdevelopersjournal.com/articles/rad.
htm

3. Agarwal, R., J. Prasad, M. Tanniru and J. Lynch,
2000. Risks of rapid application development,
communications of the ACM. Assoc. Comput.
Mach., 43: 177-188. doi:10.1145/352515.352516

4. Vidyadharan, R., 2006. Rapid application
development with data binding and object
persistence. Retrieved July 20, 2007, from
http://www.sptci.com/products/articles/rad.pdf

5. Berry, V. and A. Naumann, 2007. What is rapid
application development-a definition from
Whatis_com. Retrieved July 27, 2007, from:
http://searchsoftwarequality.techtarget.com/sDefini
tion/ 0, ,sid92_gci214246,00.html

6. Wikipedia, 2007. Persistence (computer science).
Retrieved July 25, 2007, from
http://en.wikipedia.org/wiki/Persistence_%28comp
uter_science%29

7. Corcho O., A. López-Cima and A. Gómez-Pérez,
2006. The ODESeW 2.0 Semantic Web application
framework. Proceedings of the 15th International
Conference on World Wide Web, Association
for Computing Machinery, Edinburgh, Scotland,
pp: 1049-1050. doi:10.1145/1135777.1136009

8. Wikipedia, 2007. Software framework. Retrieved
July 26, 2007, from http://en.wikipedia.org/wiki/
Software_framework

9. Hyo T.J., K.K. Dong, J.Y. Young and J.Y. Lee,
2000. A Design And Implementation Of Object-
Oriented Framework-Based RAD Tool (INTRAD),
Systems, Man and Cybernetics, 2000 IEEE Int.
Conference. Nashville, TN. 3: 2057-2061.
doi:10.1109/ICSMC.2000.886418

10. RoseIndia, 2007. What is Persistence Framework?
Retrieved July 25, 2007, from
http://www.roseindia.net/enterprise/persistencefra
mework.shtml

11. Mertner, M., 2005. What is a Persistence
Framework, Retrieved July 25, 2007, from
http://www.mertner.com/confluence/display/Gentle
/1+-+What+is+a+Persistence+Framework

12. EL-Manzalawy, Y., 2007. Accessing Data
Through Persistence Frameworks. Retrieved July
27, 2007, from http://www.developer.com/java/
data/article.php/3355151

13. Ambler, S.W., 2006. Encapsulating Database
Access: An Agile Best Practice. Retrieved July 25,
2007, from: http://www.agiledata.org/essays/
implementationStrategies.html

14. Jusic, S. and S.P. Lee, 2007. Persist F: A
transparent persistence framework with
architecture applying design patterns. Inform. Sci.
Inform. Technol., Inform, Sci., 4: 767-779.
http://proceedings.informingscience.org/InSITE20
07/IISITv4p767-779Jusi281.pdf

15. Bolwidt, E. and V. Partington, 2006. Java with
Spring just as productive as a 4GL RAD tool.
Retrieved July 20, 2007, from http://www.xebia.
com/file_db/File/artikel%20Erwin%20Bolwidt%20
en%20Vincent%20Partington.pdf.

16. Bochicchio, M., R. Paiano and P. Paolini, 1999.
JWeb: An HDM environment for fast development
of web applications, multimedia computing and
systems, 1999. IEEE International Conference.
Florence, 2: 809-813. doi:10.1109/MMCS.1999.
778590

17. Bochicchio M., and N. Fiore, 2004. WARP: Web
Application Rapid Prototyping, Proceedings of the
2004 ACM symposium on Applied computing.
Association for Computing Machinery, Nicosia,
Cyprus, pp: 1670-1676. doi:10.1145/967900.
968232

18. Bochicchio M., and N. Fiore, 2005. WARP for Re-
Engineering of Web Applications, Proceedings of
the sixteenth ACM conference on Hypertext and
hypermedia. Association for Computing
Machinery, Salzburg, Austria, pp. 295-297.
doi:10.1145/1083356.1083428

 19. Arthur J. and S. Azadegan, 2005. Spring
Framework for rapid open source J2EE Web
Application Development-A case study,
Proceedings of the Sixth International Conference
on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing
and First ACIS International Workshop on Self-
Assembling Wireless Networks. IEEE Computer
Society, pp. 90-95. doi:10.1109/SNPD-
SAWN.2005.74

