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Abstract: Finding fast algorithms to detect outliers (as unusual objects) by their distance to 
neighboring objects is a big desire. Two algorithms were proposed to detect outliers quickly. The first 
was based on the Partial Distance (PD) algorithm and the second was an improved version of the PD 
algorithm. It was found that the proposed algorithms reduced the number of distance calculations 
compared to the nested-loop method. 
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INTRODUCTION 

 
 Outlier detection has many practical applications in 
different domains. In many data mining applications, 
identifying exceptions or rare events can often lead to 
the discovery of unexpected knowledge in areas such as 
fraud detection[1], identifying computer network 
intrusions and bottlenecks[2] and criminal activities in 
E-commerce and detection of suspicious activities[3]. 
 Outliers are data points (vectors) with values much 
different from those of the remaining set of data[4]. 
Outliers may represent errors in the data or could be 
correct data values that are simply much different from 
the remaining data. Outliers can be described as 
follows[5]. Given a set of N data points or objects and an 
expected number of outliers, n, find the top n objects 
that are considerably dissimilar, exceptional, or 
inconsistent with respect to the remaining data. 
 One of the most popular approaches for detecting 
outliers is the distance-based approach[6-9]. In this 
approach, the distance of a point from its k nearest 
points (or neighbors) is calculated. If the neighboring 
points are relatively close, then the point is considered 
normal; however, if the neighboring points are far 
away, then the point is considered outlier. The 
advantages of this approach are that no explicit 
distribution needs to be defined to detect outliers and 
can be applied to any feature space for which a distance 
measure can be defined[6-8]. 
 Given a distance measure on a feature space, there 
are many different definitions for the distance-based 
outliers. Knor and Ng[4] present the following 
definition. A point p in a data set is an outlier with 

respect to the parameters k and d, if at least k points in 
the dataset lie greater than distance d from p. 
 Ramaswami et al.[10], proposes a new formulation 
for distance-based outliers, based on the distance of a 
point, p, to its kth nearest neighbor, denoted with Dk(p). 
Given a k and n, a point p is an outlier if no more than 
n-1 other points in the data set have a higher value for 
Dk than p. This means that the top n points, having the 
maximum Dk values, are considered outliers. 
 Most recently, Angiulli and Pizzuti[8]) propose a 
new definition of outliers. In this definition, for each 
point, p, the sum of the distances from its k nearest 
neighbors is considered. This sum is called the weight 
of p, wk(p) and is used to rank the points of the data set. 
Outliers are those points having the largest values of 
wk. Thus, given n, the expected number of outliers in 
the data set and an application dependent parameter k, 
specifying the size of the neighborhood of interest, the 
outlier detection problem consists of finding the n 
points of the data set scoring the maximum wk values. 
The problem with the distance-based approach is its 
high computational complexity. 
 Distance-based approaches are simple to 
implement. However, they suffer exponential 
computational growth as they are founded on the 
calculation of the distances between all objects in the 
dataset. The computational complexity is directly 
proportional to both the dimensionality of the data and 
the number of objects. Hence, techniques for efficiently 
calculating distance with a lower runtime are 
required[7,11]. 
 Researchers have tried a variety of methods to find 
these outliers efficiently. In[6], the authors propose the 
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nested-loop algorithm for finding distance-based 
outliers. In this method, one compares each data point 
in the data set with every other point to determine its k 
nearest neighbors. Given the neighbors for each data 
point in the data set, simply select the top n candidates 
according to the outlier definition. This method has 
quadratic complexity as we must make all pairwise 
distance computations between the data points. 
 Another method for finding outliers efficiently is to 
use a spatial indexing structure such as a KD-tree, R-
tree, or X-tree to find the nearest neighbors of each 
candidate point[6]. One queries the index structure for 
the closest k points to each data point and as before, one 
simply selects the top candidates according to the 
outlier definition. For low-dimensional data sets, this 
approach can work very well and potentially scales as 
N logN if the index tree can find a point's nearest 
neighbors in logN time. However, index structures can 
lead to poor performance as the dimensionality 
increases[7,10]. 
 Bay and Schwabacher[7] present an algorithm 
which is based on the nested-loop algorithm, using 
randomization and pruning rule, with near linear time 
performance. However, the algorithm depends on the 
data ordering which can lead to poor performance, as 
the authors reported. In addition, the algorithm may 
perform poorly if the data does not contain outliers. 
 In this study, we propose two algorithms to detect 
outliers quickly. The first is the Partial Distance (PD) 
algorithm and the second is a proposed (improved) 
version of the PD algorithm. 
 

PARTIAL DISTANCE 
 
 The Partial Distance (PD) algorithm[12,13,14] has 
been proposed to reduce computation complexity of the 
LBG algorithm of[15] within the area of Vector 
Quantization (VQ). 
 The PD logic first calculates the distance (squared) 
between a query point, p and an arbitrary data point and 
takes this distance as the current initial minimum 
distance. Then it continuously compares the 
accumulative partial distance between the query point 
and each candidate data point with the current 
minimum distance. If the accumulative partial distance 
exceeds the current minimum distance, the candidate 
data point is eliminated (rejected) before completing the 
total distance calculation. If a total distance is obtained, 
then the current minimum distance is updated by 
choosing the minimum of the current minimum 
distance and the calculated distance. 
 Let X = {xi, i = 1,…,N} be a set of data points 
(vectors) of size N, where (xij, j = 1,…,K) is a K 

dimensional   data   point.   For   a  given   query   point 
P = (pj, j = 1,…,K), it is required to find the data point 
with the minimum distance from the set X under the 
squared-error distance measure defined as: 
 

K
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 The basic structure of the partial distance (PD) 
search algorithm[12,13] is as follows: 
 
 mind = ∞  
Loop A: For i = 1 to N 
  d = 0 
Loop B: For j = 1 to K 
  d = d + (pj - xij)

2 

  if d > dmin Next i (exit condition) 
 Next j 
 dmin = d 
 min = i 
Next i 
 
 It can be observed that the PD search algorithm 
gains computation saving over the full search algorithm 
because of the provision for a premature exit from Loop 
B, on satisfying the condition d > dmin (called the exit 
condition) before the completion of the distance 
computation, d(P, xi). 
 

IMPROVED PARTIAL DISTANCE 
 
 The performance of the PD algorithm is sensitive 
to the choice of the initial minimum distance, dmin

[16]. 
This might degrade the performance of the PD 
algorithm.  
 Instead of choosing an arbitrary data point, which 
is the case in the PD algorithm, one might think of 
choosing the mean value of the data set. However, 
choosing the mean value might lead to wrong results in 
cases where the mean value is the closest nearest 
neighbor to a given query point. This is because the 
mean value might not be one of the points in the data 
set. 
 Our approach is based on finding the data point 
nearest to the mean value (termed Nmean) and then 
computing the distance dNmean between each data point 
and the Nmean. The resulting distances are used as 
initial minimum distances. In this case, we achieve an 
improved performance over the PD algorithm. The 
Improved Partial Distance (IPD) algorithm is as 
follows: 
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Table 1: Computations based on the percentage CPU time of the 
nested-loop method with a different number of points (No. 
points) and different dimensions, D, for the random data set 

 2D  4D  8D 
 ---------------------------------------------------------------- 
No. of points PD IPD PD IPD PD IPD 
10000 75 63 60 48 75 66 
20000 69 56 60 48 80 64 
30000 64 54 55 45 89 73 
40000 63 38 57 50 68 63 
50000 61 52 53 47 63 54 

 
  dmin = dNmean 
Loop A: For i = 1 to N 
    d = 0 
Loop B: For j = 1 to K 
   d = d + (pj - xij)

2 

   if d > dmin Next i (exit condition) 
  Next j 
  dmin = d 
  min = i 
 Next i 
 
 The results of applying the IPD algorithm show 
some improvement over the PD algorithm, as discussed 
next. 
 

RESULTS AND DISCUSSION 
 
 We will investigate the efficiency of the two 
proposed algorithms (PD and IPD) when applied to 
detect outliers. The proposed algorithms described in 
this study generate identical outputs and so are not 
assessed on the basis of accuracy. The performance of 
the algorithms is primarily determined by the number of 
distance calculations carried out. 
 In order to test the efficiency of the proposed 
algorithms, two data sets have been tested. The first set 
represents random data with the dimensions (2D, 4D 
and 8D). The second set represents data extracted from 
1 min of speech with three different dimensions (2D, 
4D and 8D). The performance of the proposed method 
is reported in terms of percent of the nested-loop 
method. 
 Table 1 shows a summary of the results. The Table 
1 shows the performance of the proposed algorithms is 
better than those obtained from the nested-loop in all 
cases. The Table 1 also shows that the IPD algorithm 
performs the best.  
 Table 2 is a summary of the results for the speech 
data set. The Table 2 shows that the performance of the 
proposed algorithms is better than the performance of 
the nested-loop in all cases. The Table 2 also shows that 
the IPD algorithm has some improvements over the PD 
algorithm. 

Table 2: Computations based on the percentage CPU time of the 
nested-loop method for the speech data with a different 
number of points (No. points) and different dimensions, D 

 2D  4D  8D 
 ---------------------------------------------------------------- 
No. of points PD IPD PD IPD PD IPD 
10000 73 60 60 48 55 49 
20000 80 66 60 54 53 45 
30000 59 50 55 45 52 46 
40000 66 50 57 50 45 42 
50000 58 50 52 45 55 47 
60000 66 59 55 48 54 48 

 
 The two tables show that the results obtained from 
the IPD algorithm are the best in all cases. The tables 
also show that a better performance is obtained for 
higher dimensions, particularly on the real data. 
 
 

CONCLUSION 
 
 In this study, we have proposed two algorithms to 
detect outliers quickly. The first algorithm is the Partial 
Distance (PD) algorithm and the second algorithm is an 
improved version of the PD algorithm proposed in this 
study. The results offer a significant increase in 
efficiency over the nested-loop method when applied to 
both random and real data sets, particularly with the 
increase of the number of data points and dimensions. It 
is also noticed that the proposed algorithms gave better 
performance when a real data set was applied. 
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