
Journal of Computer Science 4 (2): 103-110, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: Mohammed Radi, Faculty of Computer Science and Information Technology,
 Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

103

Access Weight Replica Consistency Protocol for Large Scale Data Grid

1Mohammed Radi, 1Ali Mamat, 2M. Mat Deris,
1Hamidah Ibrahim and 1Subramaniam Shamala

1Faculty of Computer Science and Information Technology,
Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

2Faculty of Information Technology and Multimedia,
University of Tun Hussein Onn, 86400 Parit Raja, Batu Pahat, Johor, Malaysia

Abstract: Replication is a well known technique to improve reliability and performance for a Data
Grid. Keeping consistent content at all distributed replica is an important subject in Data Grid. Replica
consistency protocol using classical propagation method called the radial method suffers from high
overhead at the master replica site, while line method suffers from high delay time. In Data Grid not all
replicas can be dealt with in the same way, since some will be in greater demand than others. Updating
first replica having most demand, a greater number of clients would access the updated content in a
shorter period of time. In this study, based on asynchronous aggressive update propagation technique,
a scalable replica consistency protocol is developed to maintain replica consistency in data grid which
aimed to reaching delay reduction and load balancing, such that the high access weight replicas
updated faster than the others. The simulation results shows that the proposed protocol is capable of
sending the updates to high access replicas in a short period while reducing the total update
propagation repose time and reached load balancing.

Key words: Data grid, replication, update propagation, access weight, aggressive copy

INTRODUCTION

 Large-scale scientific applications such as high
energy physics, data mining, molecular modeling, earth
sciences and large scale simulation produce large
amount of datasets[1,2]. Data Grid is one of the
applications in Grid computing which is developed to
manage the large scale Data applications. Data Grid has
been using replication to reduce access latency,
improve data locality, increase robustness, scalability
and performance for distributed applications. Several
data replication techniques[3,4] have been developed to
support high-performance data access, improving data
availability and load balancing to remotely produce
scientific data. Most of those techniques do not provide
the replica consistency in case of updates. Grid data
management middleware usually assumes that (1)
whole files are the replication unit and (2) replicated
files are read only. However there are requirements for
mechanisms that maintain consistency for a modifiable
data. Shared data sets are updated by a master site and
other sites might read old replicas that are not the latest
version. Some applications do not require such dirty
read to all replicas. For these applications, in order to

keep the consistency among replicas, data updates
occurring on a master site should be immediately
propagated to other site holding its replicas. In general,
the data consistency problem deals with keeping two or
more data items consistent, but in data grid consistency
is keeping replicas up to date[5]. In distributed database
as well as in distributed file systems, content
distribution networks web applications, several solution
of replica synchronization already exist by using
optimistic consistency protocols[6]. The current
algorithm for replica synchronization can be classified
into two categories, synchronous and asynchronous
replication. Synchronous replication is expensive and
not scalable on the network, which are suitable for a
small system. Asynchronous replication algorithms are
less expensive and more scalable. In asynchrony
replication the update can be either pull based or push
based or hybrid. In a pull based the secondary replica
site ask the master replica site for some new updates,
while in a push based the master replica site push the
updates to all secondary replica sites. Push based
update propagation is more suitable for the application
that need the updates to immediately reach the
secondary replica site.

J. Computer Sci., 4 (2): 103-110, 2008

 104

 Many researchers studied replica consistency in
data grid environment. Those researchers make effort in
consistency maintenance. Early work propose a grid
consistency service was in[5] it gives five models for
different levels of consistency provided to grid user and
also discusses how they can include into replica
consistency service for Data Grid. In[7] stated the basic
service interface and isolate the functionalities of the
process of replica update synchronization. The basic
components required by the consistency service were
also defined. A few studies have been done to maintain
replica consistency in Data Grid and propose a
consistency models.
 The literature discusses several replication and data
consistency solutions. Including lazy replication[8,9],
aggressive replication[8-11] and hybrid replica
consistency services[12-16]. They make effort in
performance, availability and consistency, but not study
the efficiency, scalability of the protocol itself. Since
they use classical update propagation technique in
which the updates take a long time to reach all replica
sites and high loads at the master site.
 In most data grid applications, some replicas tend
to have more access demands than the other replicas
due to the geographical distributions, the number of
clients and the number of request arising from more
instance work among clients. Replica access weight
must be taken into account when designing algorithm
for maintaining replica consistency in Data Grid.
Access weight has been utilized in[12,16] and gives better
performance. But none of literature gives propriety to
the high accesses weight replica. A replica consistency
protocol giving priority to the delivery of updates to
replica with higher access weight will be able to satisfy
requests from more clients with up-to-date content in
less time.
 In this study a replication protocol is proposed, in
which the updates reach other replicas using a
propagation technique based on nodes organized into a
logical structure network that enables the technique to
scale well for thousands of replicas while minimizing
update response time and reach load balance. On the
other hand, it also gives priority propagating the
updates to the high access weight replica. Moreover the
efficiency of the replica consistency protocol, emphasis
is also given on considering the high access weight
replica first. The updates information is expected to be
sent to the high access weight replica faster than other
replicas, without affecting the performance of the
consistency.

SYSTEM MODEL

 In the model a data sharing model is considered in
a federated organization in which replica consistency
catalog has information about the sites that replicate the
same data. Furthermore it is assumed that a large
number N of grid sites communicates through message
passing, a full replication environment is assumed. No
assumptions are given to control the network
environment and topology. As shown in Fig. 1, the grid
environment concerned consists of N grid sites
connected through the internet and there is a
communication system that allows any node to
communicate with each other. The data grid sites
communicate by exchanging messages through internet,
there is no global shared memory and an active grid site
is able to communicate with any other online site. The
underlying communication network may lose or
duplicate messages and may not guarantee any order of
delivery.
 The Data Grid clients make request which can be a
job request or an update request to its local site. When
the client invokes an update request to the server, this
update must be propagating to all replicas by sending
an update message, the update message carries the
update information. In this the access weight of the
replica site is measured as the number of service
requests by their client per time unit for a given replica.
The access weight will be different from site to site.
Fig. 2 shows the access weight for a group of replica

Fig. 1: The network model

0

Random access weight

10
20
30
40
50
60
70
80
90

100

Site no

A
cc

es
s

w
ei

gh
t

1 2 3 4 5 6 7 8 9 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

Fig. 2: The sites access weight for Fi data set

J. Computer Sci., 4 (2): 103-110, 2008

 105

sites for a given replica. There is a group of replicas in
which the Y axis corresponds to their access weight as
the y value tends to decrease to zero, the access weight
increase. As such the replicas with greatest y value is
the replicas with smaller access weight.

MATERIALS AND METHODS

 In our model each data file has Logical File Name
(LFN) to denote a unique logical identifier for desired
data content and each physical copy is specified by a
unique Physical File Name (PHN), that specifies its
location on a storage system. Therefore each data file
has only one LFN and many PFNs.
 In the consistency service it is important to
distinguish between the following types of replica since
they have different semantics and access permissions
for the clients:

Master replica: The replica that can be updated by the
clients of the Data Grid master replica is always up-to-
date. Usually it is located at the data owner site.

Secondary replica: The replica that the clients have a
read only access to it and to be updated by the replica
consistency service.
 The basic idea of a single master replication is that
for each data item or file there exist one master copy
and all other replicas are secondary replicas. The user
updates only pass to the master replica, which executes
the updates and then propagates the changes in the form
of update information to all secondary replicas. The
secondary sites receive the update information and
apply the modification to its home replica.

Replica consistency architecture: In order to provide
the required functionalities of the single master
replication, Replica Consistency Service (RCS)
architecture is proposed. Local Replica Consistency
Service (LRCS) and Replica Consistency Catalogue
(RCC) are the main components of the architecture:

• Local Replica Consistency Service (LRCS): Two

types of LRCS are proposed, the first one is master
replica which is the main entry of the update
requests from users. The second one is the
secondary replica and it is responsible for updating
its local replica and relay the update propagation
process if necessary

• Replica Consistency Catalogue (RCC) is used to
store the metadata, this metadata will used by the
RCS, moreover the RCC will manage the DUPG.
The Data Grid sites and the replica catalogue
server are connected through the network

• Resources Monitoring Service (RMS): This service
is responsible for monitoring resource availability
at a given grid node as well as collecting statistics
about the resource usage and data access request

 The interactions between the above components
are shown in Fig. 3, this interaction can be explained
through a simple case user wishing to update a master
file Fi. In a basic scenario, a user passes the update
request and the target LFN to the master replica site
LRCS. The LRCS updates the local replica and reflect a
consistent view to its user and then start the propagation
process. In the propagation process master replica site
LRCS inquires the RCC about the PFNs of those
replicas. RCC gets information from RMS and sends
back all information to LRCS. After that LRCS starts
the update propagation technique. When the secondary
replica site receives the updated information, it runs the
update propagation algorithm and applies the updates
locally, then reflects the updates to its users.

Replica consistency technique: All replica sites are
logically organized in the form of two-dimensional grid
structure. For example as shown in Fig. 4A is UPG
consisting of 16 replica sites. The sites are organized in
the form of 4X4 grids. Each site has one master replica
and the other sites are secondary replicas. We calls each
site as UPG (I, J), where I refers to the rows and J refer
to the columns.

Update propagation process: When the master site
client initiates an update to master copy, the update
propagation process started, the update propagation
process is shown in Fig. 4. As shown in Fig. 4A the
round 0 of the update propagation in which the master
replica site sends the update information to the first site
in each column. The first site in each column

Local sever

Local sever Local sever Local sever

Fig. 3: Replica consistency architecture

J. Computer Sci., 4 (2): 103-110, 2008

 106

(C)

(A) (B)

Fig. 4: The push phase of the update propagation

process, (A): Round 0 of the push phase, (B):
Other Round of the push phase, (C): Detail of
the other rounds of the push phase for the
column i

propagates the update information in parallel with other
first sites, as shown in Fig. 4B where the first site at
each column send the update information to k sites and
instruct one of this sites to relay the update information
and so on, this phase is completed when the update
information reach all replica sites at each column as
shown in Fig. 4C. While UPG give better performance
than the radial method the update message reach the
replica sites in random order. In our algorithm the
updates reach the replica sites with heist access weight
faster by selecting the k sites orderly by the access
weight instead of random order.

Update propagation algorithm: The proposed
algorithm for update propagation is called Access
weight Update Propagation Grid (AUPG) and it is
described in this section, first the explanation of the
new data structure of the two dimensional Grid site.
Each node in the grid has the following data structure:

Site id PFN Timestamp Access _ weight

Where:
Site id = Id of the site in the Grid
PFN = The physical file name of the

updated file
Timestamp = Counter starting with 0 and

increases by one for each update
Access_weight = The access weight of the replica at a

given time

 AccessUpdateUPG

Input: site S(I, J) update file Fi, inconsistent replicas state

Output: a faire update propagation to all replica sites.

AccessUpdateUPGMaster(M, Fi)

1 FiTimestamp ← FiTimestamp +1.
2 Sort the sites at each column in a increasing order

by the access weight
3 For each column J
4 Prepare the Update_Information_Message

<S[1,j],S[master], Fi ,M,
5 Timestamp(Fi),Rlay_list(j)>
6 Send the prepared update information message to

all columns.
7 Set a timeout to retransmit the message if the

acknowledgments are not received.

UpdateUPGSecondary(Update_Information_Message)

8 Counter = 0
9 While relay_list<> nil&& Q ≤ k
10 Enqueue(S(Q+1,J) Relay_list(j))
11 Prepare an update information message
12 Send the message to S[Q,J]
13 Set a timeout to retransmit the message if the

acknowledgments are not received.
14 Apply the updates M to the local replica
15 FiTimestamp ← FiTimestamp +1.
16 Send a message to RCC to change the site case state

to consistent,
17 Send acknowledgement message to the sender site.

Fig. 5: Update UPG algorithm

 When the master site client initiates an update
operation and after the master site processes the updates
locally, the update propagation process is started.
UpdateUPG algorithm propagates the update
information from a single source (master site) to all
replica sites in a UPG (I, J). Suppose that the owner S
(master) updates the master replica of a file Fi. At this
time it sends an invalidation message to RCC and gets
the Fi UPG information from RCC, then initiate the
UpdateUPG algorithm shown in Fig. 5. UpdateUPG
algorithm has two parts, the first part is
UpdateUPGMaster at the master site and the second
part is UpdateUPGSecondary at the secondary replica
site.
 The UpdateUPG algorithm works as follows, Line
1 in UpdateUPGMaster performs the increment of the
timestamp for the file Fi. Line 2 is to sort the site at
each column in ascending order according to access
weight. The algorithm maintains each column of the
FiUPG at line 4-6, line 4 to prepare the update message
containing the receiver site, the sender site, the file, the
update information, the relay list which contains the

J. Computer Sci., 4 (2): 103-110, 2008

 107

entire replica site in the column j. Line 5 is to send the
update information message to the target site. Line 6 is
to set an acknowledgement timeout for retransmit of the
message if not received by the target site.
 The lines 7-16 are start at site S(I, J) when the site
S(I, J) receive the update message. Line 7 is to initialize
the counter value. The while loop in lines 9-12 iterates
as long as the Relay_list not empty or the counter not
reaching k. The algorithm maintains the first k sites
from the relay list at line 9-12, line 9 is to enqueue the
site from the Relay_list, line 10 is to prepare the update
message containing the receiver site, the sender site, the
file, the update information and the relay list.

Validation: The goal of the proposed protocol is to
reduce the update propagation response time and reach
load balance. It also gives priority to deliver the updates
to the replica with higher demand which will satisfy
requests from more clients with up-to-date data in less
time. Analysis the delay time of the update information
to each site will then be done. The delay is defined as
the total hop count from the master copy to each site
that receives the update information. And the average
load balance is defined as the average number of sites
to which each site propagates the update information.

Analytical model: An analytical model is developed in
this section, started from a completely consistent state
and analyses a single update request. Delay time
required to reach a consistent state is then evaluated.
For the purpose of analysis it is assumed that the replica
sites in UPG will form a two dimensional Grid. Table 1
shows some parameters and measurement matrices used
in the analysis.
 In the AUPG the delay time in a virtual network is
of concern, so it is considered that the time of
communication between two grid sites equal to one
time unit as a constant model T = 1. The delay time of
an update information to a given grid site can be
defined as the number of hop count from the master
replica to that grid site. To analyze the UPG method for
N nodes it will be assumed that the nodes formulate a
rectangular grid UPG (I, J), where N = I×J. In the first
round the master site send the update information to
I nodes. The delay time for the I nodes is 1.

Table 1: Analytical model parameters
Notation Description
N Number of replica sites
I Number of columns
J Number of sites in each column (number of rows)
K Number of relay nodes
Round (I,I) The round in which the site (I,J) will receive the
 update information
Delay (I,J) The update propagation delay (in hop)

 When any sites receive the update information in
second round the delay is equal to 2 and the site
receiving the updates in the third round the delay time
will be 3. In general, if the sites receive the update
information in the mth round the delay time will be m.
The equation that give the number of rounds in which
the site (I, J) will receive the update information is
defined as:
 Round (I,I) = ((I-1) div k)+1 (1)

 This implies that the site UPG(I,J) will receive the
update information with delay time equal to:

 Delay (I,J) = Round (I,I) (2)

 The second step is to compute the average delay
time for each replica that is in the same access weight
range. The replica site is divided according to access
weight into 10 groups. The first group contains the
replicas with access weight between 0 and 10, the
second group contains replicas with access weight
between 11 and 20 and the tenth groups contain the
replicas with access weight between 91 and 100. The
average delay time for each group is then computed:

n \ j

i 0

Avgdelay(min..max)

G(I,J).delay G(I, J),G(I, J).access weight [min max]

number of sitein thegroup
=

∀ ∈ −
= �

 (3)

Simulation model: A discrete event simulator has been
developed in a C++ language based on the analytical
model in section 6.1. The goal of the simulation is to
study the effectiveness of the proposed protocol.
 In the assumed simulation model, the number of
replica sites in the enter system is n, where n = 100×h
(h = 1, 2…10). The n sites construct UPG where the
number of columns is set to be 5 columns. And the
number of relay sites K is chosen to be 5 in the first
experiment and then changed in experiment 2 from
1...10. Table 1 summarized the parameters and their
value used in the simulation experiments. Each
experiment was repeated 10,000 times.

RESULTS AND DISSECTION

 Two experimental studies has been conducted, the
first experiment provides a general update propagation
response time balance analysis comparing the proposed
protocol to the radial and line methods. The second
experiment evaluates the effectiveness of using the
access weight approach.

J. Computer Sci., 4 (2): 103-110, 2008

 108

Number of replica sites

T
he

 a
ve

ra
ge

 d
el

ay
 ti

m
e

UPG
Radial
Line

Fig. 6: Update propagation response time and the

number of replica sites

Number of replica sites

A
ve

ra
ge

 lo
ad

 b
al

an
ce

UPG

Radial

Line

Fig. 7: Average load balance and the number of replica

sites

Experiment 1: The experiments provide first, update
propagation response time and average load balance in
order to give a feeling of the effect of the proposed
protocol. Furthermore the experiments compare the
proposed protocol with the radial and the line methods.
The experiments were run many times and varying the
number of N, where N = 100×h (h = 1, 2…10).
 Figure 6 shows the update propagation response
time and Fig. 7 the average load balance for the number
of replica sites. The horizontal axis in Fig. 6 and 7
shows the number of sites in the networks. The vertical
axis indicates the update propagation response time in
Fig. 6 and average load balance in Fig. 7.
 For the proposed protocol and the line technique
the update propagation response time increased with the
number of replica site. On the other hand the update
propagation response time maintained constant and
equal to one in the redial technique because the master
site sends the updates to all replica sites since the

Table 2 simulation parameters
Parameter Value

N 100×h (h = 1, 2…10)
I 5
J N/J
K 5

Fig. 8: Average delay time with 500 sites

number of hubs is equal to one. These results are
obvious considering the characteristics of the two
methods
 The average load balance for the line propagation
technique is always 1 because each site propagates the
update information to another one replica site. The
average load of the radial propagation is always equal
to the number of replica sites. The results considered
the characteristics of the two methods. On the other
hand the average load balance of UPG method is at
most 5, because in UPG method each site propagates
the update information to not less than 2 sites.
 Comparing the average load balance in the three
techniques, the line technique can distribute the loads
into all sites and reach the load balance. On the other
hand the proposed protocol keeps the average load
balance less than 5.

Experiment 2: Now focus on the effectiveness of using
the access weight approach. The protocol without
considering the access weight called UPG and after
considering the access weight as AUPG. The number of
replica sites in the enter system is n where n is 500 and
1000 sites constructing a two-dimensional grid where
the number of column is set to be 5 columns. And the
number of replay sites K is chosen to be 5 Table 2
summarized the parameters and their value used in the
simulation experiments. The parameters are basically
fixed to constant value, but n changed from 500 to
1000. Simulations were carried out with 500, 1000 grid
sites and experiments were repeated 10,000 times. The
results can bee shown in Fig. 8 and 9.

J. Computer Sci., 4 (2): 103-110, 2008

 109

A
ve

ra
ge

 d
el

ay

Access weight range

UPG

AUPG

Fig. 9: Average delay time with 1000 site s

 In both Fig. 8 and 9 the horizontal axis indicates
the access weight range and the vertical axis indicates
average delay time. In both case with 500 and
1000 replicas, it was observed that the updates arrive
quickly to the grid sites with most demand, causing
these replicas to reach the state of consistency faster.
The time it takes for the update message to reach grid
site is the propagation delay associated to that site, the
comparison in Fig. 8 and 9 is expressed in average
number of hubs needed for the updates to reach a grid
site with a given range of access weight.
 Comparing the group average delay time in the
access weight based technique and the original
technique, the access weight based technique sends the
updates to the high access demand sites faster than the
original technique because it gives a high priority to the
high access weight sites. However the updates will
reach the low access demand sites slower.
 It can be concluded that the enhanced protocol
(AUPG) caused the high access weight site to reach the
state of consistency on average of 2, in the case of 500
replica sites and also on average 2 in the case of 1000
replica site and still give better average delay time for
the sites with high access weight until 41-50.
 The idea of showing the result of the proposed
algorithm with different number of replica sites is to
analyze the scalability of the proposed algorithm. As
can be seen in the Fig. 8 and 9 the algorithm scaled well
even by increasing the number of replica sites to 1000
sites.
 The experiments have provided performance
analysis of the replication protocol. To summarize the
results, it can be clearly seen that the protocol reduces
the average load compared with the radial propagation
method and reduced the update propagation response
time compared to the line propagation method. Besides

it was able to send the updates to the high access replica
faster. Thus it can be confirmed that the UPG achieved
both load balance and delay reduction for update
propagation in Data Grid network and gave priority to
the high access weight replicas.

CONCLUSION

 In this study we proposed an access weight based
replica consistency protocol for a large scale Data Grid,
in which the updates reach the replicas with high access
weight (greatest demand) at a short time. The other
replicas will also be updated but at a normal time. The
protocol requires managing access weight for reaching
replica sites by the RMS. The research has provided a
quantitative performance analysis of the proposed
replication protocol. The results showed that the
proposed update propagation technique can reach both
the load balancing and minimize the update propagation
response time compared with the radial and line
technique, while it is scalable for high number of
replica sites. Moreover it is also capable of sending the
updates to the high access demand replica sites faster.

REFERENCES

1. Chervenak, I. Foster, C. Kesselman, C. Salisbury

and S. Tuecke, 2001.The data grid: Towards
architecture for the distributed management and
analysis of large scientific datasets. J. Network
Comput. Appli., 23:187-200.

2. Allcock, J. Bester, J. Bresnahan, A.L. Chervenak,
I. Foster, C. Kesselman, S. Meder, V. Nefedova,
D. Quesnal and S. Tuecke, 2002. Data management
and transfer in high performance computational
grid environments. Parallel Comput. J.,
28: 749-771,

3. Lamehamedi, H. and B. Szymanski, 2007.
Decentralized data management framework for
data grids. Future Generat. Comput. Syst.,
23: 109-115.

4. M.Mat Deris, J.H. Abawajy, Ali Mamat.2008, An
Efficient Replicated Data Access Approach for
Large-Scale Distributed Systems. Journal of FGCS,
Elsevier, vol. 24, no. 1, pp 1-9.
doi:10.1016/j.future.2007.04.010.

5. Dullmann, W. Hoschek, J. Jaen-Martinez,
B. Segal, H. Stockinger, K. Stockinger and
A. Samar, 2001. Models for replica
synchronisation and consistency in a data grid. In:
10th IEEE International Symposium on High
Performance Distributed Computing (HPDC-10

J. Computer Sci., 4 (2): 103-110, 2008

 110

'01), August 7-9, IEEE Computer Society Press,
San Francisco, CA, USA, pp: 0067.

6. Saito, Y. and M. Shapiro, 2005. Optimistic
Replication. ACM Computing Surveys
(CSUR), pp: 42-81.

7. Domenici, A. et al., 2004. Replica Cpnsistency in
Data Grid. Nyclear Istruments and Methods in
Physics Reserch Sechtion, pp: 24-28.

8. Sun, Y. and Z. Xu, 2004. Grid replication coherent
protocol. In: 18th International Parallel and
Distributed Procssing Symposium (IPDPS'04),
IEEE, Beijing, pp: 232-239.

9. Jaechun, No, Chang, Park and Sung-Soon, Park.
2006. Data Replication Techniques for Intensive
Applications. International Conference on
Computational Science Reading, UK, May 28-31,
2006 . Springer Berlin / Heidelberg, pp.1063-170.
doi:���������������	
����

10. R. Wang, S. Wu, R. Chang. , 2007 A Novel Data
Grid Coherence Protocol Using Pipeline-Based
Aggressive Copy Method.. Second International
Conference, GPC 2007. Paris, France, May 2-4,
2007: Springer Berlin / Heidelberg. pp. 484-495.
10.1007/978-3-540-72360-8_41

 11. Domenic, A. et al., 2006. Relaxed data consistency
with CONStanza. In: Sixth IEEE International
Symposium on Cluster Computing and the Grid
(CCGRID'06), IEEE Computer Society, New
York, USA, pp: 425-429.

12. Chang, R. and J. Chang, 2006. Adaptable replica
consistency service for data grids. In: Proceedings
of the 3rd International Conference on Information
Technology: New Generations (ITNG'06).

13. Hu, J. et al., 2005. An asynchronous replica
consistency model in data grid. In: Workshop 7th
International Workshop on Service Grid
Computing and Applications (SGCA 2005),
Springer Berlin/Heidelberg, pp: 475-484.

14. Belalemi, G. and Y. Slimani. 2007.Consistency
management for data grid in optorsim simulator.
Int. J. Multimedia Ubiquitous Eng., pp: 103-118.

15. Huang, C., F. Xu and X. Hu. 2006. Massive data
oriented replication algorithms for consistency
maintenance in data grids. In: 6th International
Conference Computational Science-ICCS 2006,
Springer Berlin/Heidelberg, UK, pp: 838-841.

16. Yang, C.T. et al., 2007. A one-way file replica
consistency model in data grids. In: IEEE Asia
Pacific Services Computing Conference, Tsukuba
Science City, IEEE Computer Society, Japan,
pp: 364, 373.

