
Journal of Computer Science 4 (12): 1012-1019, 2008
ISSN 1549-3636
© 2008 Science Publications

1012

A Complete Automation of Unit Testing for JavaScript Programs

Mohammad Alshraideh

Department of Computer Science, University of Jordan, Amman 11942 Jordan

Abstract: Problem statement: Program testing is expensive and labor intensive, often consuming
more than half of the total development costs, and yet it is frequently not done well and the results are
not always satisfactory. The objective of this paper is to present an automatic test data generation tool
that aims to completely automate unit testing of JavaScript functions. The methodology: In order to
use the proposed tool, the tester annotates the files that contain the class to be tested. Moreover, the
tester must specify the test data coverage criterion to be used, either branch coverage or mutation
analysis. However, the tool is then integrated into the JavaScript compiler and test generation is
invoked by a command line option. Also, the code to be tested is parsed into an abstract syntax tree
from which the test tool generates a program dependency graph for the function under test. However,
if mutation analysis coverage is required, the abstract syntax tree for a meta-mutant program is also
generated. To provide guidance for the test data search, the function under test instrumented in
accordance with the coverage criterion. Branch predicate expressions are always instrumented, in the
case of mutation coverage, mutated statements are also instrumented. Compilation then continues from
the modified abstract syntax tree to generate instrumented executables that were loaded into the test
data search module. Results: The experiment done in our study by using the proposed tool for branch
coverage shows that the most effective result for string equality was obtained using the edit distance
fitness function, while no significant difference was found in the fitness function for string ordering.
Through exhaustive mulation coverage 8% are found to be equivalent. Conclusion: By having a
complete automation it reduces the cost of software testing dramatically and also facilitates continuous
testing. It is reported that at least 50% of the total software development costs is due to testing, and
10–15% of development time is wasted due to frequent stops for regression testing. Automation will
also help get rid of cognitive biases that have been found in human testers. Acknowledgment: The
researcher would like to express their gratitude to the anonymous referees for their valuable and
helpful comments and suggestions in improving the study.

Key words: Software testing, white box, black box, genetic algorithms, mutation testing.

INTRODUCTION

 Software testing is as old as the hills in the history
of digital computers. The testing of software is an
important means of assessing the software to determine
its quality. Since testing typically consumes 40-50% of
development efforts and consumes more effort for
systems that require higher levels of reliability, it is a
significant part of the software engineering. With the
development of Fourth Generation Languages (4GL),
which speeds up the implementation process, the
proportion of time devoted to testing increased. As the
amount of maintenance and upgrade of existing systems
grow, significant amount of testing will also be needed
to verify systems after changes are made[20]. Despite
advances in formal methods and verification
techniques, a system still needs to be tested before it is

used. Testing remains the truly effective means to
assure the quality of a software system of non-trivial
complexity, as well as one of the most intricate and
least understood areas in software engineering [21].
Testing, an important research area within computer
science is likely to become even more important in the
future.
 This retrospective on a fifty-year of software
testing technique research examines the maturation of
the software testing technique research by tracing the
major research results that have contributed to the
growth of this area. It also assesses the change of
research paradigms over time by tracing the types of
research questions and strategies used at various stages.
So, the sooner in the development process that a fault is
found, the less expensive it is to correct. Unit testing,
which occurs at the start of the testing phase has the
potential to be a very cost effective form of testing. In

J. Computer Sci., 4 (12): 1012-1019, 2008

1013

practice, however, unit test cases are invariably
constructed manually by a tester who may need to
spend significant time analyzing the program under test.
Consequently, there is much interest in the prospect of
generating unit test data automatically or with
assistance. The test data generation tool described in
this study attempts to generate test data for the unit
testing of JavaScript (also known as JScript or
EcmaScript). The code to be tested must reside in a file.
To use the tool, the tester must annotate the file to
specify the class and the function under test. For each
function, the tester must specify the input domain and
the test data coverage criterion to be used, only two are
available either branch coverage or mutation analysis,
DeMillo et al.[1] and Hamlet[2], which requires that test
data demonstrate the absence of a specified set of faults.
In practice, mutation analysis subsumes branch
coverage. In addition, some optional annotations may
specify the search strategy to be used and other search
parameters. The tool is integrated into the JavaScript
compiler and test generation is invoked by a command
line option.
 At the core of the test data generation tool is the
test data search module. This module uses a dynamic,
search-based approach to software test generation [3-8].
This approach requires that the program under test be
instrumented and executed to assess candidate test
cases. The program analysis module is responsible for
analyzing the program under test so that it may be
suitably instrumented.

Background and related works: There are several
types of tools in order to facilitate the software testing
process and they have different functionalities. Among
these functionalities we can find the following ones: to
automate the path achieved in source code by a test
case, to automate the execution of software tests[22] and
to automate the generation of test cases by means of the
instrumentation of the source code under test[18,22]. This
instrumentation can be in automatic way or by hand.
 The program-based approach, such as statement
testing, branch testing, condition testing and path
testing, generates test data by analyzing the source
program to be tested[19]. This approach is practical and
supported by several commercial tools; however, it
requires separate test oracle code to be written.

Automatic tool description: The several tool has
several modules:

• Parser: It generates the control flow graph of the

source code under test
• Instrumenter: It generates the instrumented source

code

• Test cases generator: It generates the test cases,
using the instrumented source code and the control
flow graph

 The scheme of our tool appears in Fig. 1.

 A parser has been developed that generates files
with the control flow graph, data flow graph, data
dependency graph and control dependency graph from
the source code of the program that is going to be
tested. Each graph node stores important information
that is used in the testing process. The instrumenter
then reads the source file and instruments the program
under test using the control flow graph.

Control flow
graph
Data flow graph
Data dependency graph
Control dependency graph

Source code
(Program under testing)

Parser Instrumenter Instrumented
source code

Dynamic test data
Generator

Results:
 - % coverage
- test cases

Fig. 1: Automatic tool scheme

Finally, the test case generator is executed from the
instrumented source code and its complexity graph: in
each iteration it generates test cases for the program
under test and executes it with them to store their
behaviour. The generator finishes when it obtains a
desired branch coverage percentage or reaches the
maximum number of attempts allowed.

Input domain specification: The following is an
example of an annotated class file. The tester is
responsible for writing the class initialiser and the
function ExecFUT. This function allows the tester to
specify how the Function Under Test, FUT, will be
called on an instance of CUT. The class CUT has an
instance variable array a that must first be initialised by
calling Init. This function stores multiples of 5 in
successive elements. Then any of the function members
Inc, Dec or Swap may be called before FUT is called
last. The function Inc increments a given element in the
array a, Dec decrements a given element and Swap
exchanges a given element with the first element. A
sequence of calls beginning with Init and ending with
FUT is a test case.
 The tester must write a function, ExecFUT that
implements a valid sequence of function calls. An

J. Computer Sci., 4 (12): 1012-1019, 2008

1014

object array is provided into which values of the in-
built types may be placed. These values are used to
select functions to call and to provide the arguments for
them. In the example below, each call within the test
case is coded as a segment of an integer array as
defined in the class initialiser. The first 18 elements
contain 6 segments of 3 elements. The first element of
any 3 determines which function will be called, as
implemented by the switch statement. The second
element is the argument to Inc or Dec; the third element
is the argument to Swap. A single value may encode the
argument to both Inc and Dec but in general a different
value is required for each function as is the case for the
argument to Swap:
public class CUT {
static CUT {
var domfun: Doma1inInt32 = new DomainInt32 ([1, 4,
2], [[0, 0], [1, 2], [3, 3]]);
var domincdec: DomainInt32 = new DomainInt32 ([1],
[[0, 5]]);
var domswap: DomainInt32 = new DomainInt32 ([1],
[[1, 5]]);
GA.Init ([domfun, domincdec, domswap,
domfun, domincdec, domswap,
//4 MORE ROWS AS ABOVE
domswap]);
 }
var a : int[] = new int[6];
function Init() {
 var i : int = 0;
 for (i = 0; i < 6; i++) {
 a[i] = i * 5;}
}
function Inc(n : int) {
 a[n] = a[n] + 1;
 }
function Dec(n : int) {
 a[n] = a[n] - 1;
}
function Swap(n : int) {
 var temp : int = a[n];
 a[n] = a[0];
 a[0] = temp;
 }
public function FUT(n : int) : int {
 if (a[0] == a[n]) {
 return 1}
 return 0;
}
function ExecFUT(gen : Genotype) {
 Init();
 var i : int;
 i = 0;

 while (i < 18) {
 switch (gen.chron[i]) {
 case 0:
 break;
 case 1:
 Inc(int(gen.chron[i + 1]));
 break;
 case 2:
 Dec(int(gen.chron[i + 1]));
 break;
 case 3:
 Swap(int(gen.chron[i + 2]));
 break;
 }
 i = i + 3;
 }
 Subject(int(gen.chron[18]));
 }
 }

 The tester also specifies the domains of the
arguments to each function by type and value
constraint. JavaScript is not strongly typed. In the
absence of type information, function arguments are
assumed to be of type object. The domain of the object
type is very large and too large, in practice, to search.
Value constraints on scalar types are specified in terms
of a set of intervals, to which the value must belong. In
the case of the integer argument to Inc or Dec, for
example, it must be a valid array index. ([1], [[0, 5]])
specifies a single interval. From within an interval,
values are selected randomly with a uniform
distribution. The integer that encodes the function must
belong to [0, 3] but the tester decides that a uniform
distribution is not suitable here, a no-op 0 should occur
less frequently than a function call. In the specification
([1, 4, 2], [[0, 0], [1, 2], [3, 3]]), the tester specifies that
a value is generated by selecting one of the three
intervals with probabilities in the ratio [1: 4: 2] and then
selecting from that interval. This mechanism can be
used to specify non-uniform distributions that simulate
the expected use profile or assist the search for test
data. Value constraints are enforced not only when the
random data is generated to seed the search but also
when candidate tests are generated during the search by
the search operators. This makes it easier to ensure that
all inputs conform to the test program pre-conditions.

Test program analysis: The input file is parsed and if
no syntax errors are found, an abstract syntax tree is
created. A program dependency graph[9] is created for
each function to be tested. JavaScript does not allow
any unstructured transfers of control and so the program

J. Computer Sci., 4 (12): 1012-1019, 2008

1015

dependency graph can be constructed by traversal of the
abstract syntax tree[10]. The program dependency graph
provides the control dependency conditions for each
branch in the function under test. For branch coverage,
these conditions form the basis of the test goal that the
search process seeks to satisfy.
 The data dependency graph is used to identify
variable definitions that should be instrumented for data
state instrumentation. Data state instrumentation is used
as part of data diversity search strategy and for
comparing the data states created in a mutant with that
created in the original program.
Mutation tables: The current state of the prototype
implements only behavioural mutations, i.e.,
substitution of operators and operands in statements.
Object-oriented specific mutations[11] are not
implemented. The abstract syntax tree nodes that
represent operators and operands have additional
attributes computed. Operators are associated with a
table of replacement operators; operands are associated
with a table of replacement operands. The replacement
operand table holds all the in scope variables and
literals from the program under test of compatible type.
These mutation tables are constructed during traversal
of the abstract syntax tree by collecting appropriate
literals, variables and expressions. By systematically
iterating through the mutation tables of each mutable
object in turn, it is possible to generate all the mutations
of the function under test.

Test program instrumentation: Depending on the
coverage criterion and the progress of the test data
search, various instrumented forms of the program
under test are created. Predicate expressions in
conditional statements are transformed as shown below
to instrument for branch coverage:

if (CostEqInt(a[0] == a[n], tr)) {
return 1

 CostEqInt is the cost function for comparing two
integers, the cost value is stored in a trace object tr and
a boolean is returned. Conditional statement trace
objects accumulate branch cost data over multiple
executions according to the scheme described in[12]. An
assignment statement in which a variable of a basic
type is defined may be associated with an assignment
trace object. Assignment trace objects accumulate a
frequency histogram of values assigned. This
information is used to pursue a data-state diversity
search strategy and also to compare data-states created
when a test case is executed on the original function
and on a mutant function.

Mutant generation: The abstract syntax tree together
with the mutation tables is used as a meta-mutant[13] to
generate mutant programs. The design of the meta-
mutant involves a trade off between the speed with
which successive mutants are generated and the speed
with which any specific mutant executes. To arrive at a
good compromise, it is important to consider that,
broadly speaking; mutants can be classified as one of
two kinds. One kind is easily killed, that is, killed by
almost any test generated at random, such mutants we
call soft mutants, the other kind is difficult to kill and
they are usually executed many times during the search
for a lethal test case, we call this kind hard. Fortunately,
the vast majority of mutants are soft and so rarely need
executing more than once. When the meta-mutant is
generating soft mutants it is more important for the
meta-mutant to generate them quickly than to generate
mutants that execute quickly. Fortunately, very little
instrumentation code need be inserted within a soft
mutant. It is necessary to compare only the output of
the subject program with that of the mutant. For speed
of generation, soft mutants are not generated explicitly
but emulated. Hard mutants, however, must execute
quickly in spite of the additional instrumentation code
that is inserted to guide the search for a lethal test case.
Since mutant execution time is dominant, hard mutants
are not emulated but generated explicitly as individual
program that are compiled to machine code.
 The hardness of a mutant, can of course, be
determined only by trying to kill it. Since the vast
majority of mutants are soft, initially all mutants are
emulated. Those that survive the first test case that
reaches the mutated statement are considered hard and
thus generated as individual mutant programs with
additional instrumentation to guide test data search.
In general, for mutation testing, the tool does the
following:

• Produce mutants
• Randomly generate test input
• Run all mutants that have not been killed with

some test input t, deciding which of these are killed
to t

• State which mutants have yet to be killed

Test data search framework: The problem of taking a
given program and constructing an input that produces
a given program behaviour, is well known to be
undecidable. Research effort has thus been directed
towards heuristic approaches and a number of heuristic
search methods have been investigated[3,5-8,20].
 A genetic algorithm of the so-called steady-state
variety such as Genitor[14] is the basic search technique

J. Computer Sci., 4 (12): 1012-1019, 2008

1016

that is used to search for test data. For the purpose of
the study presented here, a genetic algorithm may be
described crudely in terms of three components, a set of
candidate solutions, called a population, a cost function
(also known as a fitness function) and a set of search
(genetic) operators that can produce new candidate
solutions by copying and modifying existing candidate
solutions in the population.
 The cost function evaluates each test case in terms
of the search effort required to generate a solution from
that test case. The selection of existing candidates is
random but biased towards the most promising
candidates as estimated by the cost function. The size of
the population is usually fixed and so as new candidates
are produced, the least promising are discarded. This is
survival of the fittest. Over many iterations, the
population is said to evolve towards a solution.
 The guidance provided by the cost function is
crucial to the success of the search. In the context of
test data search, the candidate inputs are executed to
establish if they contribute to the test goal. Typically,
the candidate’s inputs will not satisfy any test goal and
so it is necessary to assess their utility in terms of
generating test cases that do. The cost function uses
information accumulated in the various trace objects of
the instrumented program.
 The test coverage criterion for the unit testing of a
given program typically consists of a set of goals that
must be satisfied. In the case of branch coverage, each
branch to be executed is a goal. In the case of mutation
analysis, the killing of a mutant is a goal. For each such
goal, the search module eventually creates a genetic
algorithm. Since the goal of executing a branch that is
nested within a block controlled by an enclosing branch
cannot be satisfied until the enclosing branch has been
executed, a genetic algorithm for a branch or mutant is
generated only when the predicate expression that
controls that branch has been reached by some test case.
At any stage in the search, a genetic algorithm search is
pursued concurrently for all such goals.
 All goals are pursued with equal resources and so
each genetic algorithm is evolved for one cycle in turn.
Whenever a genetic algorithm finds a test case to
satisfy its goal, the genetic algorithm is deleted but the
population of test cases is retained. Whenever a new
genetic algorithm is created, the initial population of
test cases it is seeded half randomly and half from all
the existing test cases. These tests are evaluated by the
cost function of the new genetic algorithm and the best
tests accepted until the genetic algorithm population is
full.
 A multi-population genetic algorithm[15] extends
the basic genetic algorithm by including a number of

populations. Any genetic algorithm may create a
number of populations as part of a search
diversification strategy. The different populations
within a genetic algorithm are intended to evolve
different species that aim to satisfy the genetic
algorithm goal but in different ways. In the context of
branch coverage, the most general condition for
execution of a branch is the control dependency
condition for that branch. Initially, this condition is the
basis of the cost function that evolves a single
population. if after some time, a population is no longer
evolving towards a solution, the control dependency
condition is refined in different ways by adding
additional branches (that do not conflict with the
control dependency condition) that must be executed.
These refined test goals are used to create cost
functions for additional populations. In general, the
population structure of a single genetic algorithm is a
tree. Details are in[16].
 In general, multi-population genetic algorithms
may allow individuals to “migrate” from one
population to another. Migration is normally limited in
order to maintain the differences between populations.
In the tool, the migration of test cases between
populations is unrestricted. There are two reasons for
this; firstly, each population has its own cost function
which is the overriding determinant of which test cases
remain in a population irrespective of the number of
migrants from other populations. For this reason,
unrestricted migration does not lead to the loss of
diversity that it might in other multi-population genetic
algorithms. Secondly, it is efficient to reuse executed
tests wherever possible since the time required to
execute the program under test is usually the most
important factor that determines the speed with which
test data is generated. Once a test case has been
executed and the instrumentation data has been
collected from the trace objects, an evaluation of the
instrumentation data against any specific cost function
can be produced relatively quickly.

RESULTS

 Branch-coverage results: This tool is used to find
test cases in order to satisfy different types of variables
in branch coverage such as number, string and Boolean
(flag problem).
 This tool is used by the author in[12] which we
focused on the test data generation to cover branches
with string predicates.
 We address in this study string equality, string
ordering and regular expression matching. We applied a
fitness function that depends on the string predicate.

J. Computer Sci., 4 (12): 1012-1019, 2008

1017

 Thus, for string equality we use the binary
Hamming distance, character distance, edit distance and
string ordinal distance, while for string ordering, the
ordinal value method and single character pair ordering
is applied.
 The search for adequate test data is done using a
GA. To improve the efficiency of the search, the input
domain is restricted to characters within an ordinal
range from 0 to 127. Further, the solution candidates
are biased towards string literals that appear within the
program under test. The experiment done in our study
shows that the most effective result for string equality
was obtained using the edit distance fitness function,
while no significant difference was found in the fitness
function for string ordering.

Mutation testing results: The most important
functionality of the program would of course be to
create mutants. Following explains how to do
that.
 The problem is reduced to mutate individual
program elements, since a mutant normally differs from
the program under test in one program element only.
 Consider this statement in the program under test:

...
z = x + y;
...

 How do we mutate this statement? One approach is
to create a mutant which is one program containing all
mutants. To declare which mutant is executing, an
environment variable is set.
 The mutant version of the above statement could
be something like:

...
z = plusIntInt(x, y, 230, 232);
...

 Each binary expression eligible for mutation is
replaced with a function similar to the one above. The
automatically generated plusIntInt function:

...
plusIntInt(int x, int y, int firstMut, int lastMut)
{
if (getCurrentMutation() >= firstmut &&
getCurrentMutation() <= lastmut)
{
if (getCurrentMutation() == firstmut)
return x - y;
if (getCurrentMutation() == firstmut + 1)
return x * y;

if (getCurrentMutation() == firstmut + 2)
return x / y;
return x + y;
}
else
return x + y;
}
...
checks whether, at this point in the program, it should
execute a mutated statement. In the example, mutation
number 230 mutates x+y into x-y, 231 into x*y and
232 into x/y. All other mutants executes the unmutated
x+y.

Testing the triangle program: The benchmark
program used to determine the type of a triangle; either
it is illegal (the sides do not connect properly) or it is
one of three valid cases scalene (no sides equal),
isosceles (two sides equal) or equilateral (all sides
equal).

Equivalent mutants: The problem with equivalent
mutants still stands out as a time-consuming, error-
prone and hence expensive task. To find all equivalent
mutants in this specific case, we exhaustively tested
every integer value in the domain:

D = (x, y, z)

where, x, y and z 2 [-20, 40]. Obviously, this method is
infeasible in the general case.
 Of the 117 mutants, these 9 (8 %) were found to be
equivalent: 47, 81, 83, 96, 97, 99, 109, 110, 112.
(Mutants 1 and 3 would be equivalent had the domain
been limited to three integers; test case 13 tests with
more and less parameters and kills those two mutants.)
The numbers have no meaning other than identifying
individual mutants.

Experiment: Mutation adequacy of a test set known
to be adequate: Myers[23] lists 13 test cases that
thoroughly test the triangle program in the appendix:

• A test case which represents a valid scalene

triangle
• A test case which represents a valid equilateral

triangle
• A test case which represents a valid isosceles

triangle
• At least three test cases which represent valid

isosceles Triangles such that you have tried all
three permutations of two equal sides

• A test case in which one side is zero
• A test case in which one side is negative
• A test case with three positive integers such that

the sum of two of them is equal to the third

J. Computer Sci., 4 (12): 1012-1019, 2008

1018

• At least three test cases in category 7 such that you
have tried all three permutations where the length
of one side is equal to the sum of the lengths of the
other two sides

• A test case with the sum of two of the numbers less
than the third

�

0%
10%
20%
30%
40%
50%
60%
70%

1 2 3 4 5 6 7 8 9 10 11 13
Test cases

T
he

 p
er

ce
nt

ag
e

of
 n

o
n-

eq
ui

va
le

nt

m
ut

an
ts

 k
ill

ed
 b

y
ea

ch
 t

es
t c

as
e Mutation score Statement coverage

Fig. 2: The percentage of non-equivalent mutants killed

by each test case. The total is the mutation score
of the entire test set. The “statement coverage”
column shows the percentage of executed
statements of the program under test

• At least three cases in category 9 such that you

have tried all three permutations
• A test case with all side lengths equal to zero
• At least one test case specifying non-integer values
• At least one test case specifying the wrong number

of values (two or four)

 Figure 2 shows the results of the test run. We can
not draw any statistically valid conclusions based on
this test run due to the limited number of mutants and
the low complexity of our program under test. Yet, it is
instructive to consider two things: that our test set
indeed seem to be mutation adequate, although it could
be better still and the correlation between statement
coverage and mutation score.
 To kill a mutant, it must be reached. If it is
reached, the statement of that mutant is covered.
Therefore, statement coverage must necessarily be a
worse measure of test set adequacy.

DISCUSSION

 The tool has been implemented by modifying the
JScript compiler (written in C#) that is part of the
SSCLI[17] distribution which implements the .NET
framework. An abstract syntax tree walker was written
in order to implement a number of abstract syntax tree
operations which include, program dependency graph
construction, various transformations for program
instrumentation, collection of various lexical elements,

literals, variables, to construct mutation tables. The
.NET framework provides reflection from which it is
possible to extract information about the program under
test. Given access to the abstract syntax tree, no use is
made of reflection to analyse the program under test.
 The test tool does not generate test data entirely
automatically. Many script programs execute in a
complex context which contains large complex objects.
For example, the context of a script program may
include the browser in which it is executing, the
window, various user interface forms, a word document
and so on. The tester is still responsible for creating a
significant part of this context. The test tool provides
the tester with a tool to search for parameter values and
statement selection and sequencing.
 The tool is a prototype and currently, a number of
the JavaScript language constructs cannot be handled.
Programs that contain these constructs cannot be tested.
 In general, this testing tool is generally laboratory
prototypes. I am not aware of any fully featured
commercial tools for testing.

CONCLUSION

 The test data generation tool is able to generate test
data for JavaScript functions. The tool may be directed
to generate branch coverage data or mutation coverage
data. The tester is responsible for ensuring that the
function under test executes in an appropriate context
,but the tool will search for parameter values and
statement selection and sequencing. Requiring the
tester to providing an appropriate context means that
although test generation is not entirely automatic, it is a
practical tool.
This is significant because complete automation will
reduce the cost of software testing dramatically and also
facilitate continuous testing. It is reported that at least
50% of the total software development costs is due to
testing, and 10–15% of development time is wasted due
to frequent stops for regression testing. Automation will
also help get rid of cognitive biases that have been
found in human testers.

 A graphical user interface is to be added to allow
the tester to add test cases manually, execute the test
cases and to obtain path and data state information. The
tester will be able to modify and re-execute the test.

ACKNOWLEDGMENT

 The researcher would like to express their gratitude
to the anonymous referees for their valuable and helpful
comments and suggestions in improving the study.

J. Computer Sci., 4 (12): 1012-1019, 2008

1019

REFERENCES

1. DeMillo, R., 1978. A probabilistic remark on

algebraic program testing. Process. Lett., 7: 193-195.
2. Hamlet, R., 1977. Testing programs with the aid of

a compiler. IEEE Trans. Software Eng., 3: 279-290.
DOI: 10.1109/TSE.1977.231145

3. Jones, B., R.H. Sthame and D. Eyres, 1996.
Automatic structural testing using genetic
algorithms. Software Eng. J., 11: 299-306.

4. Korel, B., 1990. Dynamic method for software test
data generation. Software Test. Verificat. Reliabil.,
2: 193-213.

5. Tracey, N., J. Clark and K. Mander, 1998.
Automated program flaw finding using simulated
annealing. Software Eng. Notes, 23: 73-81.

6. Tracey, N., J. Clark, K. Mander and J. McDermid,
1900. Automated test data generation for exception
conditions. Software Pract. Exp., 30: 61-79.

 DOI:10.1002/(SICI)1097024X(200001)30:1<61::A
ID-SPE292>3.0.CO;2-9 .

7. Baresel, A., J. Wegener and H. Sthamer, 2001.
Evolutionary test environment for automatic
structural testing. Inform. Software Technol., 43:
841-854.

8. Baresel, A., H. Sthamer and M. Schmidt, 2002.
Fitness Function Design to Improve Evolutionary
Structural Testing. Proceedings of the Conference
on Genetic and Evolutionary Computation, Morgan
Kaufmann, New York, USA, July 9-13, pp: 1329-
1336.

9. Ferrante, J., K. Ottenstein and J. Warren, 1987.
The program dependency graph and its use in
optimization. ACM Trans. Programm. Languages
Syst., 9: 319-349.

 DOI: http://doi.acm.org/10.1145/24039.24041
10. Byers, D., M. Kamkar and T. Palsson, 2001.

Syntax-directed construction of value dependence
graphs. Proceeding of the IEEE International
Conference on Software Maintenance, Florence, Italy,
Nov. 7-9, pp: 692-703.

 DOI: 10.1109/ICSM.2001.972788.
11. Buy, U., A. Orso and M. Pezz´e, 2000. Automated

testing of classes. Proceedings of the ACM
SIGSOFT International Symposium on Software
Testing and Analysis, Aug. 22-25, ACM Press,
Portland, OR., USA., pp: 39-48.

 DOI: http://doi.acm.org/10.1145/347636.348870.
12. Alshraideh, M and L. Botacci, 2006. Automatic

software test data generation for string data using
heuristic search with domain specific search
operators. Software Test. Verificat. Reliabil.,
16: 175-203.

 DOI: 10.1002/stvr.354.

13. Untch, R., 1993. Mutation analysis using mutant
schemata. Proceeding of the International
Symposium on Software Testing and Analysis,
June 28-30, ACM Press, Cambridge MA., New
York, USA., pp: 139-147.

 DOI: http://doi.acm.org/10.1145/174146.154265.
14. Whitley, D., 1989. The Genitor Algorithm and

Selective Pressure: Why rank-based allocation of
reproductive trials is best. Proceedings of the 3rd
International Conference on Genetic Algorithms,

 J. David Schaffer, George Mason University,
Fairfax, Virginia, USA, June 4-7, pp: 116-121.

 http://www.cs.colostate.edu/~genitor/1989/ranking
89.ps.gz

15. Cantu-Paz, E., 1988. A survey of parallel genetic
algorithms. Calculat. Parall. Reseaux ET Syst.
Rep., 10: 141-171.

16. Bottaci, L., 2005. Use of branch cost functions to
diversify the search for test data. Proceedings of
the Workshop on UK Software Testing, Sep. 5-6,
University of Sheffield, UK. pp: 151-163.

 www.dcs.hull.ac.uk/people/csslb/doc/published/ukt
est05/branchdiversity.pdf.

17. Stutz, D., T. Neward and G. Shilling, 2003. Shared
Source CLI Essentials. 1st Edn., O'Reilly and
Associates, Inc., Sebastopol, CA., USA.

 ISBN: 059600351X.
18. Meudec, C., 2001. ATGen: Automatic test data

generation using constraint logic programming and
symbolic execution. J. Software Test. Verificat.
Reliabil., 11: 81-96.

 DOI: 10.1002/stvr.225.
19. Gupta, N., A. Mathur and M.L. Sofia, 2000.

Generating test data for branch coverage.
Proceedings of 15th IEEE International Conference
on Automated Software Engineering, September,
Grenoble, France, pp: 219-228.

 DOI: 10.1109/ASE.2000.873666.
20. Marciniak, J.J., 2002. Encyclopaedia of Software

Engineering. 2nd Edn., Wiley, New York, USA.,
pp: 1327-1358.
ISBN: 978-0-471-37737-5.

21. Whittaker, J.A., 2000. What is software testing?
And why is it so hard? IEEE Software,� vol. 17,
no.1,pp.70-79.

 DOI:10.1109/52.819971
22. Chang, K., J. Cross, W. Carlisle and S. Liao, 1996.

A performance evaluation of heuristics_based test
case generation methods for software branch
coverage. Int. J. Software Eng. Knowl. Eng.,
6: 585-608.

23. Myers, G.J., 2004. The Art of Software Testing.
2nd Edition, Wiley-Interscience, New York, ISBN:
978-0-471-46912-4, pp. 156.

