
Journal of Computer Science 3 (12): 948-955, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: B.B. Misra, Department of Computer Science, College of Engineering Bhubaneswar, Orissa, India
948

Functional Link Artificial Neural Network for Classification Task in Data Mining

1B.B. Misra and 2S. Dehuri

1Department of Computer Science,
College of Engineering Bhubaneswar, Orissa, India

2Department of Information and Communication Technology,
Fakir Mohan University, Vyasa Vihar-756019, India

Abstract: In solving classification task of data mining, the traditional algorithm such as multi-layer
perceptron takes longer time to optimize the weight vectors. At the same time, the complexity of the
network increases as the number of layers increases. In this study, we have used Functional Link
Artificial Neural Networks (FLANN) for the task of classification. In contrast to multiple layer
networks, FLANN architecture uses a single layer feed-forward network. Using the functionally
expanded features FLANN overcomes the non-linearity nature of problems, which is commonly
encountered in single layer networks. The features like simplicity of designing the architecture and
low-computational complexity of the networks encourages us to use it in data mining task. An
extensive simulation study is presented to demonstrate the effectiveness of the classifier.

Key words: Data mining, classification, functional link artificial neural networks

INTRODUCTION

 For the past few years, there have been many
studies[1] focused on the classification task in the
emerging field of data mining. In classification, we are
given a set of example records, called a training set,
where each record consists of several fields or
attributes. Attributes are either continuous, coming
from an ordered domain or categorical coming from an
unordered domain. One of the attributes called the
classifying attribute indicates the class to which each
example belongs. The objective of classification is to
build a model of the classifying attribute based upon the
other attributes.
 Several classification models have been proposed
over the years, e.g. statistical models like
linear/quadratic discriminates[2], genetic models[3],
decision trees[4,5] and neural networks[6]. Among these
we found very rare literatures on neural networks
specifically FLANN for classification task of data
mining. Since it is sometimes difficult to search the
optimal nonlinear boundary for a classification problem
other than neural network models. Hence the nonlinear
learning capabilities of Artificial Neural Networks
(ANNs) have become a powerful tool for many
complex applications including functional
approximation, nonlinear system identification and
control, unsupervised classification and optimization.
The ANN's are capable of generating complex mapping

between the input and the output space and thus these
networks can form arbitrarily complex nonlinear
decision boundaries. The traditional algorithms also
takes longer time to optimize the weight vectors and
their complexity increases as the number of layers
increases. Hence, to resolve few of the issues, in this
study we use functional link artificial neural network
for solving the classification problem.
 Pao et al.[7] was originally proposed the FLANN
architecture. They have shown that, their proposed
network may be conveniently used for function
approximation and pattern classification with faster
convergence rate and lesser computational load than an
MLP structure. The FLANN is basically a flat net and
the need of the hidden layer is removed and hence, the
learning algorithm used in this network becomes very
simple. The functional expansion effectively increases
the dimensionality of the input vector and hence the
hyper planes generated by the FLANN provide greater
discrimination capability in the input pattern space.

Introduction to artificial neural networks: Over the
past decade, Artificial Neural Network (ANN) has
become increasingly popular in many disciplines as a
problem-solving tool. ANN has the ability to solve
extremely complex problems with highly non-linear
relationships. ANN’s flexible structure is capable of
approximating almost any input output relationships.
Particularly ANN has been extensively used as a tool in

J. Computer Sci., 3 (12): 948-955, 2007

 949

many disciplines to solve different types of problems
such as forecasting, identification and control,
classification and optimization. Complex and
heterogeneous systems are extremely difficult to model
mathematically. However, it has been proved that
ANN’s flexible structure can provide simple and
reasonable solutions to various problems.

A formal computational model of neural network:
Let us first recall a general model of an artificial neural
network that consists of s simple computational units or
neurons, indexed as V = {1, . . . , s}, where s = |V| is
called the network size. Some of these units may serve
as external inputs or outputs and hence we assume that
the network has n input and m output neurons,
respectively. The remaining ones are called hidden
neurons. The units are densely connected into an
oriented graph representing the architecture of the
network, in which each edge (i, j) leading from neuron i
to j is labeled with a real (synaptic)
weight () jiw i, j w= ∈ℜ The absence of a connection
within the architecture corresponds to a zero weight
between the respective neurons.
 The computational dynamics of a neural network
determines for each neuron j V∈ the evolution of its

real state (output) (t)y j ∈ℜ as a function of time t 0≥ .

This establishes the network

state () s(t) (t) (t)y y ,..., ys1= ∈ℜ at each time instant t 0≥ .

At the beginning of a computation, the neural network
is placed in an initial state y(0), which may also include
an external input. Typically, a network state is updated
by a selected subset of neurons collecting their inputs
from the outputs of their incident neurons via the
underlying weighted connections and transforming
these input values into their current states. Finally, a
global output from the network is read at the end of
computation, or even in the course of it.
 In general the models that we use to solve complex
problems are multi-layer neural network. There are
many algorithms to train the neural network models.
However the models being complex in nature, one
single algorithm cannot be claimed as best for training
to suit different scenarios of the complexities of real life
problems. Depending on the complexities of the
problems, the number of layer and number of neuron in
the hidden layer need to be changed. As the number of
layers and the number of neurons in the hidden layer
increases, training the model becomes further complex.
Very often different algorithms fail to train the model
for a given problem set. However we try to find an

alternative algorithm, which will train the model to
provide us with an output possibly not good enough to
our expectation. In the process we develop one model
containing many hidden layers and neurons, which is
very complex to train and computation intensive.

FLANN architecture: To overcome the complexities
associated with multi-layer neural network, single layer
neural network can be considered as an alternative
approach. But the single layer neural network being
linear in nature very often fails to map the complex
nonlinear problems. The classification task in data
mining is highly nonlinear in nature. So solving such
problems in single layer feed forward artificial neural
network is almost an impossible task.
 To bridge the gap between the linearity in the
single layer neural network and the highly complex and
computation intensive multi layer neural network, the
FLANN architecture is suggested[1]. The FLANN
architecture uses a single layer feed forward neural
network and to overcome the linear mapping,
functionally expands the input vector.
 Let each element of the input pattern before
expansion be represented as ()z i ,1 i d< < where each

element z(i) is functionally expanded as ()nz i ,1 n N< < ,
where N = number of expanded points for each input
element. Expansion of each input pattern is done as
follows.

 1 2 1 N Nx (i) z(i), x (i) f (z(i)),...., x (i) f (z(i))= = =

���������������������
 (1)

where, ()z i ,1 i d< < , d is the set of features in the
dataset.
 These expanded input pattern are then fed to the
single layer neural network and the network is trained
to obtain the desired output. The set of functions
considered for function expansion may not be always
suitable for mapping the nonlinearity of the complex
task. In such cases few more functions may be
incorporated to the set of functions considered for
expansion of the input dataset. However dimensionality
of many problems itself are very high and further
increasing the dimensionality by to a very large extent
may not be an appropriate choice. So, it is advisable to
choose a small set of alternate functions, which can
map the function to the desired extent.

Classification: The digital revolution has made
digitized information easy to capture and fairly
inexpensive to store[8,9]. With the development of

J. Computer Sci., 3 (12): 948-955, 2007

 950

computer hardware and software and the rapid
computerization of business, huge amount of data have
been collected and stored in databases. The rate at
which such data stored is growing at a phenomenal rate.
As a result, traditional ad-hoc mixtures of statistical
techniques and data management tools are no longer
adequate for analyzing this vast collection of data.
 Raw data is rarely of direct benefit. Its true value is
predicated on the ability to extract information useful
for decision support or exploration and understanding
the phenomenon governing the data source. In most
domains, data analysis was traditionally a manual
process. One or more analysts would become intimately
familiar with the data and with the help of statistical
techniques, provide summaries and generate reports. In
effect, the analyst acted as a sophisticated query
processor. However, such an approach rapidly breaks
down as the size of data grows and the number of
dimensions increases. When the scale of data
manipulation, exploration and inferencing goes beyond
human capacities, people look to computing
technologies for automating the process.
 All these have prompted the need for intelligent
data analysis methodologies, which could discover
useful knowledge from data. The term KDD refers to
the overall process of knowledge discovery in
databases. Data mining is a particular step in this
process, involving the application of specific algorithms
for extracting patterns (models) from data[10].
Supervised pattern classification is one of the important
tasks of data mining.
 Supervised pattern classification can be viewed as
a problem of generating appropriate class boundaries,
which can successfully distinguish the various classes
in the feature space[11]. In real-life problems, the
boundaries between different classes are usually
nonlinear. It is known that using a number of
hyperplanes can approximate any nonlinear surface.
Hence, the problem of classification can be viewed as
searching for a number of linear surfaces that can
appropriately model the class boundaries while
providing minimum number of misclassified data
points.
 The goal of pattern classification[12] is to assign
input patterns to one of a finite number, M, of classes.
In the following, it will be assumed that input patterns
consist of static input vectors x containing N elements
or continuous valued real numbers denoted x1, x2,..., xN.
Elements represent measurements of features selected
to be useful for distinguishing between classes. Input
patterns can be viewed as points in the
multidimensional space defined by the input feature
measurements. The purpose of a pattern classifier is to

partition this multidimensional, space into decision
regions that indicate to which class any input belongs.
Conventional Bayesian classifiers characterize classes
by their probability density functions on the input
features and use Bayes’ decision theory to form
decision regions from these densities[13,14]. Adaptive
non-parametric classifiers do not estimate probability
density functions directly but use discriminant functions
to form decision regions.
 Application of a pattern classifier first requires
selection of features that must be tailored separately for
each problem domain. Features should contain
information required to distinguish between classes, be
insensitive to irrelevant variability in the input and also
be limited in number to permit efficient computation of
discriminant functions and to limit the amount of
training data required. Good classification performance
requires selection of effective features and also
selection of a classifier that can make good use of those
features with limited training data, memory and
computing power. Following feature selection,
classifier development requires collection of training
and test data and separate training and test or use
phases. During the training phase, a limited amount of
training data and a priori knowledge concerning the
problem domain is used to adjust parameters and/or
learn the structure of the classifier. During the test
phase, the classifier designed from the training phase is
evaluated on new test data by providing a classification
decision for each input pattern. Classifier parameters
and/or structure may then be adapted to take advantage
of new training data or to compensate for nonstationary
inputs, variation in internal components, or internal
faults. Further evaluations require new test data.
 It is important to note that test data should never be
used to estimate classifier parameters or to determine
classifier structure. This will produce an overly
optimistic estimate of the real error rate. Test data must
be independent data that is only used to assess the
generalization of a classifier, defined as the error rate
on never-before-seen input patterns. One or more uses
of test data, to select the best performing classifier or
the appropriate structure of one type of classifier,
invalidate the use of that data to measure
generalization. In addition, input features must be
extracted automatically without hand alignment,
segmentation, or registration. Errors caused by these
processes must be allowed to affect input parameters as
they would in practical applications where extensive
hand-tuning is normally impossible. Unfortunately,
these simple guidelines, restricting use of test data and
limiting hand-tuning and also other important common-
sense guidelines discussed in[15], are frequently broken
by pattern recognition researchers.

J. Computer Sci., 3 (12): 948-955, 2007

 951

 Supervised training, unsupervised training, or
combined unsupervised/supervised training can be used
to train neural net classification and clustering
algorithms. Classifiers trained with supervision require
data with side information or labels that specify the
correct class during training. Clustering or vector
quantization algorithms use unsupervised training and
group unlabeled training data into internal clusters.
Classifiers that use combined unsupervised/supervised
training typically first use unsupervised training with
unlabeled data to form internal clusters. Labels are then
assigned to clusters and cluster centroid locations and
sizes are often altered using a small amount of
supervised training data. Although combined
unsupervised/supervised training mimics some aspects
of biological learning, it is of interest primarily because
it can reduce the amount of labeled training data
required. Much of the expense and effort required to
develop classifiers results from the necessity of
collecting and hand-labeling large amounts of training
data. Combined unsupervised/supervised training can
simplify data collection and reduce expensive hand
labeling.

Back-propagation classifier: Back-propagation
classifiers form nonlinear discriminant functions using
single- or multi-layer perceptrons with sigmoidal
nonlinearities. They are trained with supervision, using
gradient-descent training techniques, called back-
propagation. Which minimize the squared error
between the actual outputs of the network and the
desired outputs. Patterns are applied to input nodes that
have linear transfer functions. Other nodes typically
have sigmoid nonlinearities. The desired output from
output nodes is low (0 or <0.1) unless that node
corresponds to the current input class, in which case it
is high (1.0 or >0.9). Each output node computes a
nonlinear discriminant function that distinguishes
between one class and all other classes. Good
introductions to back-propagation classifiers are
available in many studys. including[9,20]. Early interest
in back-propagation training was caused by the
presupposition that it might be used in biological neural
nets.
 Figure 1 shows how the multi-layer perceptron can
form three nonlinear input/output functions using back-
propagation training. The multi-layer perceptron shown
has n linear input node, p nodes with sigmoidal
nonlinearities in the first hidden layer and one linear
output node
 One major characteristic of back-propagation
classifiers is long training times. Training times are
typically longer when complex decision regions are

Yk

zp

Z1
x1

xn

w1k

w2k

v11

vnp

v1p

vn1

Non-linear
units

Fig. 1: Multi layer feed forward artificial neural

network

required and when networks have more hidden layers.
As with other classifiers, training time is reduced and
performance improved if the size of the network is
tailored to be large enough to solve a problem but not
so large that too many parameters must be estimated
with limited training data.

FLANN classifier: In this study, a single layer model
based on trigonometric expansion is presented. Let each
element of the input pattern before expansion be
represented as ()z i ,1 i I< < where each element z(i) is

functionally expanded as ()nz i ,1 n N< < , where
N = number of expanded points for each input element.
In this study, N = 5 and I = total number of features in
the dataset has been taken.
 Expansion of each input pattern is done as follows:

 1 2 3

4 5

x (i) z(i), x (i) sin (z(i)), x (i) sin 2 (z(i)),

x (i) cos (z(i)),x (i) cos 2 (z(i))

= = π = π
= π = π

���������������������

 (2)

where, ()z i ,1 i d< < , d is the set of features in the

dataset.
 These nonlinear outputs are multiplied by a set of
random initialized weights from the range [-0.5, 0.5]
and then summed to produce the estimated output. This
output is compared with the corresponding desired
output and the resultant error for the given pattern is
used to compute the change in weight in each signal
path P, given by

 () () ()j jW k xf k e k∆ = µ × × (3)

where, jxf (k) is the functionally expanded input at kth

iteration.
 If there are p patterns to be applied then average
change in each weight is given by

 () ()
P

i
j j

i 1

1
W k W k

p =
∆ = ∆� (4)

J. Computer Sci., 3 (12): 948-955, 2007

 952

 Then the equation, which is used for weight
update, is given by

 () ()j j jW (k 1) W k W k+ = + ∆ (5)

where, Wj(k) is the jth weight at the kth iteration, µ is the
convergence coefficient, its value lies between 0 to 1
and 1<j<J, J = M×d. M is defined as the number of
functional expansion unit for one element.

 () () ()ˆe k y k y k= − (6)

where, y(k) is the target output and ()ŷ k is the

estimated output for the respective pattern and is
defined as:

() () ()
J

j j
j 1

y k xf k .w k
∧

=
= �

where, xfj is the functionally expanded input at kth

iteration and Wj(k) is the jth weight at the kth iteration
and Wj(0) is initialized with some random value from
the range [-0.5, 0.5]
 Figure 2 and 3 shows the functional expansion unit
for one element and FLANN architecture respectively.

Experimental studies: The performance of the
FLANN model is evaluated using the five benchmark
classification databases. Out of these, the most
frequently used in the area of neural networks and of
neuro-fuzzy systems are IRIS, WINE, PIMA, BUPA
Liver Disorders and HEART Disease datasets. All these
databases are taken from the UCI machine repository[27]
and its corresponding site is ftp: //ftp.ics.uci.
edu/pub/machine-learning-databases/. In addition, we
have compared the results of FLANN with other
competing classification methods using the aforesaid
datasets.

Description of the datasets: Let us briefly discuss the
datasets, which we have taken for our experimental
setup.

IRIS dataset: a classification data set based on
characteristics of a plant species (length and thickness
of its petal and sepal) divided into three distinct classes
(Iris Setosa, Iris Versicolor and Iris Virginica).

WINE dataset: data set resulting from chemical
analyses performed on three types of wine produced in
Italy from grapevines cultivated by different owners in
one specific region.

sin 2π Z(1) = x3(1)
Z(1)

Z(1) = x1(1)

sin π Z(1) = x2(1)

sin π Z(1) = x4(1)

sin 2π Z(1) = x5(1)

Fig. 2: Functional expansion of the first element

FE1

FE2

X(1)

X(2)

X(I)
FEI

�

Learning algorithm

 x1 (1) = xf 1

x5 (1) = xf5

x1 (2) = xf 6

x5 (2) = xf 10

x1 (I) = xf 5(I - 1)+1

x5 (I) = xf5(I-1)+5

W1 (k)

W5 (k)

W6 (k)

W10 (k)

W5(I-1)+1 (k)

W5(I-1)+5 (k)

()ky
∧

()ky

�

Fig. 3: Proposed nonlinear model for classification

FE1

Block form representation of Fig. 1

PIMA Indians diabetes database: data set related to
the diagnosis of diabetes (with or without the disease)
in an Indian population that lives near the city of
Phoenix, Arizona.

BUPA liver disorders: data set related to the diagnosis
of liver disorders and created by BUPA Medical
Research, Ltd.

Heart disease: data set related to diagnoses of people
with heart problems.
 Table 1 presents a summary of the main features of
each database that has been used in this study.

J. Computer Sci., 3 (12): 948-955, 2007

 953

Table 1: Description of the features of the databases employed
 No. of patterns No. of patterns No. of patterns
 No.of patterns No. of attributes No. of classes in class1 in class 2 in Class 3
Iris dataset 150 4 3 50 50 50
Wine dataset 178 13 3 71 59 48
Pima indian diabetes dataset 768 8 2 500 268
Bupa liver disorders 345 6 2 145 200
Heart disease 270 13 2 150 120

Table 2: Results obtained with the FLANN model for the

classification of four databases: IRIS dataset, WINE data,
PIMA Indians diabetes database and bupa liver disorders

Data set used Hit % in the Hit in the
for testing training set test set
iris1.dat 97.333 97.333
iris2.dat 100 100
Average IRIS 98.665 98.665
Wine1.dat 93.258 92.135
wine2.dat 98.876 98.876
Average WINE 96.058 95.506
pima1.dat 77.604 76.826
pima2.dat 79.948 79.427
Average PIMA 78.776 78.127
liver1.dat 73.837 75
liver2.dat 78.613 77.457
Average LIVER 76.225 76.229

Classification performance: In the case of the IRIS
Dataset, WINE Dataset, PIMA Indians Diabetes
Database and BUPA Liver Disorders, in order to
generate the training and test sets, the total set of
patterns was randomly divided into two equal parts
(database1.dat and database2.dat). Each of these two
sets was alternately used either as a training set or as a
test set. Table 2 summarizes the results obtained in the
classification of these four data sets with the use of the
FLANN model.
 The average values (in bold type) of each
application will be used for comparisons with other
classification methods (Table 5).
 As for the Heart Disease database (extracted from
the StatLog project[16]), the tests were carried out with
the use of the 9-Fold Cross Validation methodology[16],
the same approach used by all algorithms that were
analyzed by the StatLog project. This method consists
of partitioning the database into nine subsets
(heart1.dat, heart2.dat, heart3.dat, heart4.dat, heart5.dat,
heart6.dat, heart7.dat, heart8.dat and heart9.dat), where
eight subsets are used for training and the remaining
subset is used for testing (validation). The process is
repeated nine times in such a way that each time a
different subset of data is used for testing.
 Thus, the database was randomly segmented into
nine subsets with 30 elements each. Each subset
contains about 56% of Class1 records (without heart
disease) and 44% of Class 2 records (with heart
disease).

Table 3: Cost matrix of the results
 Model classification
 --
Real classification Class 1 (Absence) Class 2 (Presence)
Class 1 (Absence) 0 1
Class 2 (Presence) 5 0

 The methodology also makes use of a cost matrix,
which is described in Table 3. The purpose of such a
matrix is to penalize wrongly classified records in
different ways, depending on the class. The weight of
the penalty for Class 2 records that are classified as
Class 1 records is 5, while the weight of the penalty for
Class 1 records that are classified as Class 2 records is
1.
 Therefore, the cost of wrongly classifying the
patterns in the training and test data sets is given by (7)
and (8), respectively, as follows:

 P1*5 P2 *1
CTr PTr

+= (7)

 P1*5 P2 *1
CTe PTe

+= (8)

where:

CTr = Cost in the training set
CTr = Cost in the test set
P1 = Number of patterns that were wrongly classified

as belonging to Class 1
P2 = Number of patterns that were wrongly classified

as belonging o Class 2
PTr = Total number of patterns in the training set
PTe = Total number of patterns in the test set

 Table 4 presents the errors and costs of the training
and test sets for the FLANN model. Upon closer
inspection of Table 4, it may be observed that the
configuration of the heart8.dat database as a test subset
obtained lower errors and consequently a lower cost for
the FLANN model.

Comparison with other models: The results obtained
for the Iris Dataset, Wine Data, Pima Indians Diabetes

J. Computer Sci., 3 (12): 948-955, 2007

 954

Table 4: Results obtained by the FLANN model for the classification of the heart disease database
 Error in the training set Error in the test set
Dataset used ------------------------------------- ---------------------------------- Cost in the Cost in
for testing Class 1 Class 2 Class 1 Class 2 training set the test set
heart1.dat 13/133 14/107 1/17 1/13 0.34583 0.2
heart2.dat 14/133 12/107 2/17 1/13 0.30833 0.23333
heart3.dat 13/134 15/106 4/16 2/14 0.36667 0.46667
heart4.dat 13/133 10/107 1/17 4/13 0.2625 0.7
heart5.dat 13/133 16/107 3/17 2/13 0.3875 0.43333
heart6.dat 13/134 14/106 6/16 0/14 0.34583 0.2
heart7.dat 15/133 13/107 0/17 3/13 0.33333 0.5
heart8.dat 18/133 17/107 1/17 0/13 0.42917 0.033333
heart9.dat 20/134 9/106 2/16 1/14 0.27083 0.23333
Average 0.338888 0.333333

Table 5: Comparison of the average performance of several

classification systems
 Pima Indians
 Iris Wine diabetes Bupa liver
 dataset data database disorders
NN 95.2% 65.1% 60.4%
KNN 96.7% 69.7% 61.3%
FSS 92.8% 73.6% 56.8%
BSS 94.8 67.7 60.0
MFS1 97.6 68.5 65.4
MFS2 97.9 72.5 64.4
CART 74.5
C4.5 94.0 74.7
FID3.1 96.4 75.9
MLP 75.2
NEF 96.0
class
HNFB 98.67 98.31 77.08 74.49
HNFB 98.67 97.8 78.0
fixed
HNFB 98.67 97.8 78.6
adaptive
HNFQ 98.67 98.88 77.08 75.07
HNFB-1 98.67 99.44 78.26 73.33
FLANN 98.67 95.51 78.13 76.23

Database and Bupa Liver Disorders data sets were
compared with the results described in[17] where the
performance of several models is presented: NN
(nearest neighbor), kNN (k- nearest neighbor, FSS
(nearest neighbor with forward sequential selection of
feature) and BSS (nearest neighbor with backward
sequential selection of feature). In addition, FLANN
model has also been compared with other methods such
as MFS (multiple feature subsets)[18], CART (CART
decision tree)[19], C4.5 (C4.5 decision tree)[20], FID3.1
(FID3.1 decision tree)[21], MLP (multilayer
perceptron)[22] and NEFCLASS[23]. Finally, the
performance of FLANN was compared with the
hierarchical neurofuzzy BSP models (Table 6) HNFB,
HNFB fixed (which is the HNFB model with the same
variable for all cells in the same level), HNFB_adaptive
(the HNFB model with different variables for cells in
the same level) and the Hierarchical Neuro-Fuzzy
Quadtree (NFHQ) model[24], which uses the Quadtree

Table 6: Table comparing the average cost in the training and test set
of several classification systems evaluated for the heart
disease database

Algorithm Cost in test Cost in training
FLANN 0.339 0.333
HNFB-1 0.366 0.594
Bayes 0.374 0.351
Dicrim 0.393 0.315
LogDisc 0.396 0.271
Alloc80 0.407 0.394
QuaDisc 0.422 0.274
Castle 0.441 0.374
Cal5 0.444 0.330
Cart 0.452 0.436
Cascade 0.467 0.207
KNN 0.478 0
Smart 0.478 0.264
Dipol92 0.507 0.429
Itrule 0.515 -
BayTree 0.526 0.111
Default 0.560 0.560
BackProp 0.574 0.381
LVQ 0.600 0.140
IndCart 0.630 0.261
Kohonen 0.693 0.429
Ac2 0.744 0
Cn2 0.767 0.206
Radial 0.781 0.303
C4.5 0.781 0.439

partition of the input space[25]. The results were also
compared with Inverted Hierarchical Neuro-Fuzzy BSP
System (HNFB−1)[26]. Table 5 presents a summary of
the results obtained by the various different models.
The best performance for each data set, measured in
terms of each model’s hit percentage, is highlighted in
bold type.
 The classification results found for the Heart
Disease data set were compared with the results found
in the StatLog project[16]. According to the StatLog
project methodology, comparison consists of
calculating the average cost produced by the nine data
subsets used for validation. Table 6 presents the
average cost for the nine training and test subsets. The
result of the FLANN model is highlighted in bold.

J. Computer Sci., 3 (12): 948-955, 2007

 955

CONCLUSION

 In this study, we have evaluated the Functional
Link Artificial Neural Network (FLANN) model for the
task of pattern classification in data mining. The
FLANN model functionally expands the given set of
inputs. These inputs are fed to the single layer feed
forward artificial neural network. The network is
trained like Back propagation training methods. The
experimental studies demonstrated that the FLANN
model performs the pattern classification task quite
well. In most cases, the results obtained with the
FLANN model proved to be as good as or better than
the best results found by the other models and
algorithms with which it has compared. The
performance of the FLANN models is remarkable in
terms of processing time, which is also treated as one of
the crucial aspect in data mining community. For all the
databases described in the experimental studies, the
models converged in an order of magnitude of less than
one min of processing time on a Pentium IV 500 MHz
computer.

REFERENCES

1. Agrawal, R., T. Imielinski and A. Swami, 1993.

Database mining: A performance perspective.
IEEE Trans. Knowledge Data Eng., 5: 914-925.

2. James, M., 1985. Classification Algorithms. Wiley.
3. Goldberg, D.E., 1989. Genetic algorithms in

search, optimization and machine learning. Morgan
Kaufmann.

4. Breiman, L., J.H. Friedman, R.A. Olshen and
C.J. Stone, 1984. Classification and Regression
Trees. Wodsworth, Belmont.

5. Quinlan, J.R., 1993. C4.5: Programs for Machine
Learning. Morgan Kaufman.

6. Lippmann, R., 1987. An introduction to computing
with neural networks. IEEE ASSP Mag., 4: 22.

7. Pao, Y.-H., S.M. Phillips and D.J. Sobajic, 1992.
Neural-net computing and intelligent control
systems. Int. J. Contr., 56: 263-289.

8. Fayyad, U. and R. Uthurusamy, 1996. Data mining
and knowledge discovery in databases. Commun.
ACM, 39: 24-27.

9. Inmon, W.H., 1996. The data warehouse and data
mining. Commun. ACM, 39: 49-50.

10. Mitra, S., S.K. Pal and P. Mitra, 2002. Data mining
in soft computing framework: A survey. IEEE
Trans. Neural Networks, 13: 1.

11. Bandyopadhyay, S., S.K. Pal and B. Aruna, 2004.
Multiobjective GAs, quantitative, indices and
pattern classification. IEEE Trans. Syst. Man
Cybernetics, Part-B, 34: 5.

12. Lippmann, R.P., 1989. Pattern classification using
neural networks. IEEE Commun. Mag., pp: 47-64.

13. Duda, R.O. and P.E. Hart, 1973. Pattern
Classification and Scene Analysis. NY: John Wiley
and Sons.

14. Fukunaga, K., 1972. Introduction to Statistical
Panern Recognition. NY: Academic Press.

15. Nagy, G., 1983. Candide's practical principles of
experimental pattern recognition. IEEE Trans.
Panern Anal. Mach. Intel., PAMI-5: 199-200.

16. Heart Disease Dataset. http:// www.ncc. up.pt
/liacc /ML/ statlog/datasets/heart/heart.doc.html

17. Aha, D.W. and R.L. Bankert, 1994. Feature
selection for case-based classification of cloud
types: An empirical comparison. Proc. Am. Assn.
for Artificial Intelligence (AAAI-94)-Workshop
Case-Based Reasonings, pp: 106-112.

18. Bay, S.D., 1999. Nearest neighbor classification
from multiple feature subsets. Intell. Data Anal.,
3: 191-209.

19. Pattern Recognition and Neural Networks.
http://129.186.1.21/~dicook/stat501/97/lectures/4.1
7.html

20. Quinlan, J.R., 1996. Improved use of continuous
attributes in C4.5. J. Artif. Intell. Res., 4: 77-90.

21. Janikow, C.Z. and M. Faifer, 1999. Fuzzy
partitioning with FID3.1. Proc. IEEE 18th Int.
Conf. North Am. Fuzzy Inform. Processing Soc.,
pp: 467-471.

22. Haykin, S., 1999. Neural Networks-A
Comprehensive Foundation. Englewood Cliffs, NJ:
Prentice-Hall.

23. Klawonn, F., D. Nauck and R. Kruse, 1995.
Generating rules from data by fuzzy and neuro-
fuzzy methods. Proc. Fuzzy-Neuro-Syst.,
pp: 223-230.

24. de Souza, F.J., M.M.B.R. Vellasco and
M.A.C. Pacheco, 2002. Hierarchical neuro-fuzzy
quad tree models. Fuzzy Sets Syst., 130/2,
pp: 189-205.

25. Finkel, R.A. and J.L. Bentley, 1974. Quad trees, a
data structure for retrieval on composite keys. Acta
Informatica, 4: 1-9.

26. Goncalves, L.B., M.M.B.R. Vellasco,
F.J. de Souza, M.A.C. Pacheco, 2006. Inverted
hierarchical neuro-fuzzy BSP system: A novel
neuro-fuzzy model for pattern classification and
rule extraction in databases. IEEE Trans. Syst. Man
Cybernetics-Part C: Appl. Rev., 36: 2.

27. Blake, C.L. and C.J. Merz, UCI Repository of
Machine Learning Databases. http://www.ics.
uci.edu/~mlearn/MLRepository.html

