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Abstract: In solving classification task of data mining, the traditional algorithm such as multi-layer 
perceptron takes longer time to optimize the weight vectors. At the same time, the complexity of the 
network increases as the number of layers increases. In this study, we have used Functional Link 
Artificial Neural Networks (FLANN) for the task of classification. In contrast to multiple layer 
networks, FLANN architecture uses a single layer feed-forward network. Using the functionally 
expanded features FLANN overcomes the non-linearity nature of problems, which is commonly 
encountered in single layer networks. The features like simplicity of designing the architecture and 
low-computational complexity of the networks encourages us to use it in data mining task. An 
extensive simulation study is presented to demonstrate the effectiveness of the classifier. 
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INTRODUCTION 

 
 For the past few years, there have been many 
studies[1] focused on the classification task in the 
emerging field of data mining. In classification, we are 
given a set of example records, called a training set, 
where each record consists of several fields or 
attributes. Attributes are either continuous, coming 
from an ordered domain or categorical coming from an 
unordered domain. One of the attributes called the 
classifying attribute indicates the class to which each 
example belongs. The objective of classification is to 
build a model of the classifying attribute based upon the 
other attributes.  
 Several classification models have been proposed 
over the years, e.g. statistical models like 
linear/quadratic discriminates[2], genetic models[3], 
decision trees[4,5] and neural networks[6]. Among these 
we found very rare literatures on neural networks 
specifically FLANN for classification task of data 
mining. Since it is sometimes difficult to search the 
optimal nonlinear boundary for a classification problem 
other than neural network models. Hence the nonlinear 
learning capabilities of Artificial Neural Networks 
(ANNs) have become a powerful tool for many 
complex applications including functional 
approximation, nonlinear system identification and 
control, unsupervised classification and optimization. 
The ANN's are capable of generating complex mapping 

between the input and the output space and thus these 
networks can form arbitrarily complex nonlinear 
decision boundaries. The traditional algorithms also 
takes longer time to optimize the weight vectors and 
their complexity increases as the number of layers 
increases. Hence, to resolve few of the issues, in this 
study we use functional link artificial neural network 
for solving the classification problem. 
 Pao et al.[7] was originally proposed the FLANN 
architecture. They have shown that, their proposed 
network may be conveniently used for function 
approximation and pattern classification with faster 
convergence rate and lesser computational load than an 
MLP structure. The FLANN is basically a flat net and 
the need of the hidden layer is removed and hence, the 
learning algorithm used in this network becomes very 
simple. The functional expansion effectively increases 
the dimensionality of the input vector and hence the 
hyper planes generated by the FLANN provide greater 
discrimination capability in the input pattern space. 
 
Introduction to artificial neural networks: Over the 
past decade, Artificial Neural Network (ANN) has 
become increasingly popular in many disciplines as a 
problem-solving tool. ANN has the ability to solve 
extremely complex problems with highly non-linear 
relationships. ANN’s flexible structure is capable of 
approximating almost any input output relationships. 
Particularly ANN has been extensively used as a tool in 
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many disciplines to solve different types of problems 
such as forecasting, identification and control, 
classification and optimization. Complex and 
heterogeneous systems are extremely difficult to model 
mathematically. However, it has been proved that 
ANN’s flexible structure can provide simple and 
reasonable solutions to various problems.  
 
A formal computational model of neural network: 
Let us first recall a general model of an artificial neural 
network that consists of s simple computational units or 
neurons, indexed as V = {1, . . . , s}, where s = |V| is 
called the network size. Some of these units may serve 
as external inputs or outputs and hence we assume that 
the network has n input and m output neurons, 
respectively. The remaining ones are called hidden 
neurons. The units are densely connected into an 
oriented graph representing the architecture of the 
network, in which each edge (i, j) leading from neuron i 
to j is labeled with a real (synaptic) 
weight ( ) jiw i, j w= ∈ℜ  The absence of a connection 
within the architecture corresponds to a zero weight 
between the respective neurons. 
 The computational dynamics of a neural network 
determines for each neuron j V∈  the evolution of its 

real state (output) (t)y j ∈ℜ as a function of time t 0≥ . 

This establishes the network 

state ( ) s(t) (t) (t)y y ,..., ys1= ∈ℜ at each time instant t 0≥ . 

At the beginning of a computation, the neural network 
is placed in an initial state y(0), which may also include 
an external input. Typically, a network state is updated 
by a selected subset of neurons collecting their inputs 
from the outputs of their incident neurons via the 
underlying weighted connections and transforming 
these input values into their current states. Finally, a 
global output from the network is read at the end of 
computation, or even in the course of it. 
 In general the models that we use to solve complex 
problems are multi-layer neural network. There are 
many algorithms to train the neural network models. 
However the models being complex in nature, one 
single algorithm cannot be claimed as best for training 
to suit different scenarios of the complexities of real life 
problems. Depending on the complexities of the 
problems, the number of layer and number of neuron in 
the hidden layer need to be changed. As the number of 
layers and the number of neurons in the hidden layer 
increases, training the model becomes further complex. 
Very often different algorithms fail to train the model 
for a given problem set. However we try to find an 

alternative algorithm, which will train the model to 
provide us with an output possibly not good enough to 
our expectation. In the process we develop one model 
containing many hidden layers and neurons, which is 
very complex to train and computation intensive.   
 
FLANN architecture: To overcome the complexities 
associated with multi-layer neural network, single layer 
neural network can be considered as an alternative 
approach. But the single layer neural network being 
linear in nature very often fails to map the complex 
nonlinear problems. The classification task in data 
mining is highly nonlinear in nature. So solving such 
problems in single layer feed forward artificial neural 
network is almost an impossible task. 
 To bridge the gap between the linearity in the 
single layer neural network and the highly complex and 
computation intensive multi layer neural network, the 
FLANN architecture is suggested[1]. The FLANN 
architecture uses a single layer feed forward neural 
network and to overcome the linear mapping, 
functionally expands the input vector.  
 Let each element of the input pattern before 
expansion be represented as ( )z i ,1 i d< <  where each 

element z(i) is functionally expanded as ( )nz i ,1 n N< < , 
where N = number of expanded points for each input 
element. Expansion of each input pattern is done as 
follows. 
 
 1 2 1 N Nx (i) z(i), x (i) f (z(i)),...., x (i) f (z(i))= = =

���������������������
 (1) 

 
where, ( )z i ,1 i d< < , d is the set of features in the 
dataset. 
 These expanded input pattern are then fed to the 
single layer neural network and the network is trained 
to obtain the desired output. The set of functions 
considered for function expansion may not be always 
suitable for mapping the nonlinearity of the complex 
task. In such cases few more functions may be 
incorporated to the set of functions considered for 
expansion of the input dataset. However dimensionality 
of many problems itself are very high and further 
increasing the dimensionality by to a very large extent 
may not be an appropriate choice. So, it is advisable to 
choose a small set of alternate functions, which can 
map the function to the desired extent. 
 
Classification: The digital revolution has made 
digitized information easy to capture and fairly 
inexpensive to store[8,9]. With the development of 
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computer hardware and software and the rapid 
computerization of business, huge amount of data have 
been collected and stored in databases. The rate at 
which such data stored is growing at a phenomenal rate. 
As a result, traditional ad-hoc mixtures of statistical 
techniques and data management tools are no longer 
adequate for analyzing this vast collection of data.  
 Raw data is rarely of direct benefit. Its true value is 
predicated on the ability to extract information useful 
for decision support or exploration and understanding 
the phenomenon governing the data source. In most 
domains, data analysis was traditionally a manual 
process. One or more analysts would become intimately 
familiar with the data and with the help of statistical 
techniques, provide summaries and generate reports. In 
effect, the analyst acted as a sophisticated query 
processor. However, such an approach rapidly breaks 
down as the size of data grows and the number of 
dimensions increases. When the scale of data 
manipulation, exploration and inferencing goes beyond 
human capacities, people look to computing 
technologies for automating the process.  
 All these have prompted the need for intelligent 
data analysis methodologies, which could discover 
useful knowledge from data. The term KDD refers to 
the overall process of knowledge discovery in 
databases. Data mining is a particular step in this 
process, involving the application of specific algorithms 
for extracting patterns (models) from data[10]. 
Supervised pattern classification is one of the important 
tasks of data mining. 
 Supervised pattern classification can be viewed as 
a problem of generating appropriate class boundaries, 
which can successfully distinguish the various classes 
in the feature space[11]. In real-life problems, the 
boundaries between different classes are usually 
nonlinear. It is known that using a number of 
hyperplanes can approximate any nonlinear surface. 
Hence, the problem of classification can be viewed as 
searching for a number of linear surfaces that can 
appropriately model the class boundaries while 
providing minimum number of misclassified data 
points. 
 The goal of pattern classification[12] is to assign 
input patterns to one of a finite number, M, of classes. 
In the following, it will be assumed that input patterns 
consist of static input vectors x containing N elements 
or continuous valued real numbers denoted x1, x2,..., xN. 
Elements represent measurements of features selected 
to be useful for distinguishing between classes. Input 
patterns can be viewed as points in the 
multidimensional space defined by the input feature 
measurements. The purpose of a pattern classifier is to 

partition this multidimensional, space into decision 
regions that indicate to which class any input belongs. 
Conventional Bayesian classifiers characterize classes 
by their probability density functions on the input 
features and use Bayes’ decision theory to form 
decision regions from these densities[13,14]. Adaptive 
non-parametric classifiers do not estimate probability 
density functions directly but use discriminant functions 
to form decision regions.  
 Application of a pattern classifier first requires 
selection of features that must be tailored separately for 
each problem domain. Features should contain 
information required to distinguish between classes, be 
insensitive to irrelevant variability in the input and also 
be limited in number to permit efficient computation of 
discriminant functions and to limit the amount of 
training data required. Good classification performance 
requires selection of effective features and also 
selection of a classifier that can make good use of those 
features with limited training data, memory and 
computing power. Following feature selection, 
classifier development requires collection of training 
and test data and separate training and test or use 
phases. During the training phase, a limited amount of 
training data and a priori knowledge concerning the 
problem domain is used to adjust parameters and/or 
learn the structure of the classifier. During the test 
phase, the classifier designed from the training phase is 
evaluated on new test data by providing a classification 
decision for each input pattern. Classifier parameters 
and/or structure may then be adapted to take advantage 
of new training data or to compensate for nonstationary 
inputs, variation in internal components, or internal 
faults. Further evaluations require new test data.  
 It is important to note that test data should never be 
used to estimate classifier parameters or to determine 
classifier structure. This will produce an overly 
optimistic estimate of the real error rate. Test data must 
be independent data that is only used to assess the 
generalization of a classifier, defined as the error rate 
on never-before-seen input patterns. One or more uses 
of test data, to select the best performing classifier or 
the appropriate structure of one type of classifier, 
invalidate the use of that data to measure 
generalization. In addition, input features must be 
extracted automatically without hand alignment, 
segmentation, or registration. Errors caused by these 
processes must be allowed to affect input parameters as 
they would in practical applications where extensive 
hand-tuning is normally impossible. Unfortunately, 
these simple guidelines, restricting use of test data and 
limiting hand-tuning and also other important common-
sense guidelines discussed in[15], are frequently broken 
by pattern recognition researchers.  
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 Supervised training, unsupervised training, or 
combined unsupervised/supervised training can be used 
to train neural net classification and clustering 
algorithms. Classifiers trained with supervision require 
data with side information or labels that specify the 
correct class during training. Clustering or vector 
quantization algorithms use unsupervised training and 
group unlabeled training data into internal clusters. 
Classifiers that use combined unsupervised/supervised 
training typically first use unsupervised training with 
unlabeled data to form internal clusters. Labels are then 
assigned to clusters and cluster centroid locations and 
sizes are often altered using a small amount of 
supervised training data. Although combined 
unsupervised/supervised training mimics some aspects 
of biological learning, it is of interest primarily because 
it can reduce the amount of labeled training data 
required. Much of the expense and effort required to 
develop classifiers results from the necessity of 
collecting and hand-labeling large amounts of training 
data. Combined unsupervised/supervised training can 
simplify data collection and reduce expensive hand 
labeling. 
 
Back-propagation classifier: Back-propagation 
classifiers form nonlinear discriminant functions using 
single- or multi-layer perceptrons with sigmoidal 
nonlinearities. They are trained with supervision, using 
gradient-descent training techniques, called back-
propagation. Which minimize the squared error 
between the actual outputs of the network and the 
desired outputs. Patterns are applied to input nodes that 
have linear transfer functions. Other nodes typically 
have sigmoid nonlinearities. The desired output from 
output nodes is low (0 or <0.1) unless that node 
corresponds to the current input class, in which case it 
is high (1.0 or >0.9). Each output node computes a 
nonlinear discriminant function that distinguishes 
between one class and all other classes. Good 
introductions to back-propagation classifiers are 
available in many studys. including[9,20]. Early interest 
in back-propagation training was caused by the 
presupposition that it might be used in biological neural 
nets.  
 Figure 1 shows how the multi-layer perceptron can 
form three nonlinear input/output functions using back-
propagation training. The multi-layer perceptron shown 
has n linear input node, p nodes with sigmoidal 
nonlinearities in the first hidden layer and one linear 
output node 
 One major characteristic of back-propagation 
classifiers is long training times. Training times are 
typically  longer  when  complex  decision  regions   are 
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Fig. 1: Multi layer feed forward artificial neural 

network 
 
required and when networks have more hidden layers. 
As with other classifiers, training time is reduced and 
performance improved if the size of the network is 
tailored to be large enough to solve a problem but not 
so large that too many parameters must be estimated 
with limited training data.  
 
FLANN classifier: In this study, a single layer model 
based on trigonometric expansion is presented. Let each 
element of the input pattern before expansion be 
represented as ( )z i ,1 i I< <  where each element z(i) is 

functionally    expanded   as   ( )nz i ,1 n N< < ,    where 
N = number of expanded points for each input element. 
In this study, N = 5 and I = total number of features in 
the dataset has been taken.  
 Expansion of each input pattern is done as follows: 
 

 1 2 3

4 5

x (i) z(i), x (i) sin (z(i)), x (i) sin 2 (z(i)),

x (i) cos (z(i)),x (i) cos 2 (z(i))

= = π = π
= π = π

���������������������

 (2) 

 
where, ( )z i ,1 i d< < , d is the set of features in the 

dataset. 
 These nonlinear outputs are multiplied by a set of 
random initialized weights from the range [-0.5, 0.5] 
and then summed to produce the estimated output. This 
output is compared with the corresponding desired 
output and the resultant error for the given pattern is 
used to compute the change in weight in each signal 
path P, given by 
 
   ( ) ( ) ( )j jW k xf k e k∆ = µ × ×  (3) 
 
where, jxf (k)  is the functionally expanded input at kth 

iteration. 
 If there are p patterns to be applied then average 
change in each weight is given by 
 

   ( ) ( )
P

i
j j

i 1

1
W k W k

p =
∆ = ∆�  (4) 
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 Then the equation, which is used for weight 
update, is given by  
 
   ( ) ( )j j jW (k 1) W k W k+ = + ∆  (5) 
 
where, Wj(k) is the jth weight at the kth iteration, µ is the 
convergence coefficient, its value lies between 0 to 1 
and 1<j<J, J = M×d. M is defined as the number of 
functional expansion unit for one element. 
 
   ( ) ( ) ( )ˆe k y k y k= −  (6) 
 
where, y(k) is the target output and ( )ŷ k  is the 

estimated output for the respective pattern and is 
defined as: 
 

( ) ( ) ( )
J

j j
j 1

y k xf k .w k
∧

=
= �  

 
where, xfj is the functionally expanded input at kth 

iteration and Wj(k) is the jth weight at the kth iteration 
and Wj(0) is initialized with some random value from 
the range [-0.5, 0.5] 
 Figure 2 and 3 shows the functional expansion unit 
for one element and FLANN architecture respectively.  
 
Experimental studies: The performance of the 
FLANN model is evaluated using the five benchmark 
classification databases. Out of these, the most 
frequently used in the area of neural networks and of 
neuro-fuzzy systems are IRIS, WINE, PIMA, BUPA 
Liver Disorders and HEART Disease datasets. All these 
databases are taken from the UCI machine repository[27] 
and its corresponding site is ftp: //ftp.ics.uci. 
edu/pub/machine-learning-databases/. In addition, we 
have compared the results of FLANN with other 
competing classification methods using the aforesaid 
datasets.  
 
Description of the datasets: Let us briefly discuss the 
datasets, which we have taken for our experimental 
setup.  
 
IRIS dataset: a classification data set based on 
characteristics of a plant species (length and thickness 
of its petal and sepal) divided into three distinct classes 
(Iris Setosa, Iris Versicolor and Iris Virginica). 
 
WINE dataset: data set resulting from chemical 
analyses performed on three types of wine produced in 
Italy from grapevines cultivated by different owners in 
one specific region. 

sin 2π Z(1) = x3(1)
Z(1)

Z(1) = x1(1)

sin π Z(1) = x2(1)

sin π Z(1) = x4(1)

sin 2π Z(1) = x5(1)
 

 
Fig. 2: Functional expansion of the first element 
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Fig. 3: Proposed nonlinear model for classification 
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Block form representation of Fig. 1 
 
PIMA Indians diabetes database: data set related to 
the diagnosis of diabetes (with or without the disease) 
in an Indian population that lives near the city of 
Phoenix, Arizona. 
 
BUPA liver disorders: data set related to the diagnosis 
of liver disorders and created by BUPA Medical 
Research, Ltd. 
 
Heart disease: data set related to diagnoses of people 
with heart problems. 
 Table 1 presents a summary of the main features of 
each database that has been used in this study. 
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Table 1: Description of the features of the databases employed 
    No. of patterns No. of patterns No. of patterns 
 No.of patterns No. of attributes No. of classes in class1 in class 2 in Class 3 
Iris dataset 150 4 3 50 50 50 
Wine dataset 178 13 3 71 59 48 
Pima indian diabetes dataset 768 8 2 500 268  
Bupa liver disorders 345 6 2 145 200  
Heart disease 270 13 2 150 120  

 
Table 2: Results obtained with the FLANN model for the 

classification of four databases: IRIS dataset, WINE data, 
PIMA Indians diabetes database and bupa liver disorders 

Data set used Hit % in the Hit in the 
for testing training set test set 
iris1.dat 97.333 97.333 
iris2.dat 100 100 
Average IRIS 98.665 98.665 
Wine1.dat 93.258 92.135 
wine2.dat 98.876 98.876 
Average WINE 96.058 95.506 
pima1.dat 77.604 76.826 
pima2.dat 79.948 79.427 
Average PIMA 78.776 78.127 
liver1.dat 73.837 75 
liver2.dat 78.613 77.457 
Average LIVER 76.225 76.229 

 
Classification performance: In the case of the IRIS 
Dataset, WINE Dataset, PIMA Indians Diabetes 
Database and BUPA Liver Disorders, in order to 
generate the training and test sets, the total set of 
patterns was randomly divided into two equal parts 
(database1.dat and database2.dat). Each of these two 
sets was alternately used either as a training set or as a 
test set. Table 2 summarizes the results obtained in the 
classification of these four data sets with the use of the 
FLANN model. 
 The average values (in bold type) of each 
application will be used for comparisons with other 
classification methods (Table 5).  
 As for the Heart Disease database (extracted from 
the StatLog project[16]), the tests were carried out with 
the use of the 9-Fold Cross Validation methodology[16], 
the same approach used by all algorithms that were 
analyzed by the StatLog project. This method consists 
of partitioning the database into nine subsets 
(heart1.dat, heart2.dat, heart3.dat, heart4.dat, heart5.dat, 
heart6.dat, heart7.dat, heart8.dat and heart9.dat), where 
eight subsets are used for training and the remaining 
subset is used for testing (validation). The process is 
repeated nine times in such a way that each time a 
different subset of data is used for testing. 
 Thus, the database was randomly segmented into 
nine subsets with 30 elements each. Each subset 
contains about 56% of Class1 records (without heart 
disease) and 44% of Class 2 records (with heart 
disease). 

Table 3: Cost matrix of the results 
 Model classification 
 ---------------------------------------------------- 
Real classification Class 1 (Absence) Class 2 (Presence) 
Class 1 (Absence) 0 1 
Class 2 (Presence) 5 0 

 
 The methodology also makes use of a cost matrix, 
which is described in Table 3. The purpose of such a 
matrix is to penalize wrongly classified records in 
different ways, depending on the class. The weight of 
the penalty for Class 2 records that are classified as 
Class 1 records is 5, while the weight of the penalty for 
Class 1 records that are classified as Class 2 records is 
1. 
 Therefore, the cost of wrongly classifying the 
patterns in the training and test data sets is given by (7) 
and (8), respectively, as follows: 
 

   P1*5 P2 *1
CTr PTr

+=  (7) 

 

   P1*5 P2 *1
CTe PTe

+=  (8) 

 
where: 
 
CTr = Cost in the training set 
CTr = Cost in the test set 
P1 = Number of patterns that were wrongly classified 

as belonging to Class 1 
P2 = Number of patterns that were wrongly classified 

as belonging o Class 2 
PTr = Total number of patterns in the training set 
PTe = Total number of patterns in the test set 
 
 Table 4 presents the errors and costs of the training 
and test sets for the FLANN model. Upon closer 
inspection of Table 4, it may be observed that the 
configuration of the heart8.dat database as a test subset 
obtained lower errors and consequently a lower cost for 
the FLANN model. 
 
Comparison with other models: The results obtained 
for  the  Iris Dataset, Wine Data, Pima Indians Diabetes
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Table 4: Results obtained by the FLANN model for the classification of the heart disease database 
 Error in the training set Error in the test set 
Dataset used ------------------------------------- ---------------------------------- Cost in the Cost in 
for testing Class 1 Class 2 Class 1 Class 2 training set the test set 
heart1.dat 13/133 14/107 1/17 1/13 0.34583 0.2 
heart2.dat 14/133 12/107 2/17 1/13 0.30833 0.23333 
heart3.dat 13/134 15/106 4/16 2/14 0.36667 0.46667 
heart4.dat 13/133 10/107 1/17 4/13 0.2625 0.7 
heart5.dat 13/133 16/107 3/17 2/13 0.3875 0.43333 
heart6.dat 13/134 14/106 6/16 0/14 0.34583 0.2 
heart7.dat 15/133 13/107 0/17 3/13 0.33333 0.5 
heart8.dat 18/133 17/107 1/17 0/13 0.42917 0.033333 
heart9.dat 20/134 9/106 2/16 1/14 0.27083 0.23333 
Average     0.338888 0.333333 
 
Table 5: Comparison of the average performance of several 

classification systems 
   Pima Indians 
 Iris Wine diabetes Bupa liver 
 dataset data database disorders 
NN  95.2% 65.1% 60.4% 
KNN  96.7% 69.7% 61.3% 
FSS  92.8% 73.6% 56.8% 
BSS  94.8 67.7 60.0 
MFS1  97.6 68.5 65.4 
MFS2  97.9 72.5 64.4 
CART   74.5 
C4.5 94.0  74.7 
FID3.1 96.4  75.9 
MLP   75.2 
NEF 96.0 
class 
HNFB 98.67 98.31 77.08 74.49 
HNFB 98.67 97.8 78.0 
fixed 
HNFB 98.67 97.8 78.6 
adaptive 
HNFQ 98.67 98.88 77.08 75.07 
HNFB-1 98.67 99.44 78.26 73.33 
FLANN 98.67 95.51 78.13 76.23 

 
Database and Bupa Liver Disorders data sets were 
compared with the results described in[17] where the 
performance of several models is presented: NN 
(nearest neighbor), kNN (k- nearest neighbor, FSS 
(nearest neighbor with forward sequential selection of 
feature) and BSS (nearest neighbor with backward 
sequential selection of feature). In addition, FLANN 
model has also been compared with other methods such 
as MFS (multiple feature subsets)[18], CART (CART 
decision tree)[19], C4.5 (C4.5 decision tree)[20], FID3.1 
(FID3.1 decision tree)[21], MLP (multilayer 
perceptron)[22] and NEFCLASS[23]. Finally, the 
performance of FLANN was compared with the 
hierarchical neurofuzzy BSP models (Table 6) HNFB, 
HNFB fixed (which is the HNFB model with the same 
variable for all cells in the same level), HNFB_adaptive 
(the HNFB model with different variables for cells in 
the same level) and the Hierarchical Neuro-Fuzzy 
Quadtree  (NFHQ)  model[24],  which  uses the Quadtree 

Table 6: Table comparing the average cost in the training and test set 
of several classification systems evaluated for the heart 
disease database 

Algorithm Cost in test Cost in training 
FLANN 0.339 0.333 
HNFB-1 0.366 0.594 
Bayes 0.374 0.351 
Dicrim 0.393 0.315 
LogDisc 0.396 0.271 
Alloc80 0.407 0.394 
QuaDisc 0.422 0.274 
Castle 0.441 0.374 
Cal5 0.444 0.330 
Cart 0.452 0.436 
Cascade 0.467 0.207 
KNN 0.478 0 
Smart 0.478 0.264 
Dipol92 0.507 0.429 
Itrule 0.515 - 
BayTree 0.526 0.111 
Default 0.560 0.560 
BackProp 0.574 0.381 
LVQ 0.600 0.140 
IndCart 0.630 0.261 
Kohonen 0.693 0.429 
Ac2 0.744 0 
Cn2 0.767 0.206 
Radial 0.781 0.303 
C4.5 0.781 0.439 

 
partition of the input space[25]. The results were also 
compared with Inverted Hierarchical Neuro-Fuzzy BSP 
System (HNFB−1)[26]. Table 5 presents a summary of 
the results obtained by the various different models. 
The best performance for each data set, measured in 
terms of each model’s hit percentage, is highlighted in 
bold type. 
 The classification results found for the Heart 
Disease data set were compared with the results found 
in the StatLog project[16]. According to the StatLog 
project methodology, comparison consists of 
calculating the average cost produced by the nine data 
subsets used for validation. Table 6 presents the 
average cost for the nine training and test subsets. The 
result of the FLANN model is highlighted in bold. 
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CONCLUSION 
 
 In this study, we have evaluated the Functional 
Link Artificial Neural Network (FLANN) model for the 
task of pattern classification in data mining. The 
FLANN model functionally expands the given set of 
inputs. These inputs are fed to the single layer feed 
forward artificial neural network. The network is 
trained like Back propagation training methods. The 
experimental studies demonstrated that the FLANN 
model performs the pattern classification task quite 
well. In most cases, the results obtained with the 
FLANN model proved to be as good as or better than 
the best results found by the other models and 
algorithms with which it has compared. The 
performance of the FLANN models is remarkable in 
terms of processing time, which is also treated as one of 
the crucial aspect in data mining community. For all the 
databases described in the experimental studies, the 
models converged in an order of magnitude of less than 
one min of processing time on a Pentium IV 500 MHz 
computer. 
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