
Journal of Computer Science 3 (12): 944-947, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Moh'd Belal Al- Zoubi, Computer Information Systems Dept., University of Jordan,
Amman 11942, Jordan, Tel: +962-5355000, Fax: +962-5354070

944

A Fast Distance-Based Algorithm to Detect Outliers

Moh’d Belal Al- Zoubi and Nadim Obeid

Computer Information Systems Department, University of Jordan, Amman 11942, Jordan

Abstract: A fast distance-based algorithm for outlier detection will be proposed. It was found that
the proposed algorithm reduced the number of distance calculations compared to the nested-
loop algorithm. Test results were performed on different well-known data sets. The results showed
that the proposed algorithm gave a reasonable amount of CPU time saving.

Keywords: Distance-based outliers, outlier detection, data mining

INTRODUCTION

 There is a need for pre-processing of the raw data
in many fields, such as data mining, information
retrieval, machine learning and pattern recognition.
Zhang et. al [1] argue for the importance of data pre-
processing and present the following reasons: (1) real
world data is impure; (2) high performance data mining
systems require high quality data and (3) quality data
yields high quality patterns. Therefore, developing
efficient data-preprocessing techniques is a critical task
that requires considerable research efforts.
 Data pre-processing involves many tasks including
detecting outliers, recovering incomplete data and
correcting errors. These tasks often present themselves
as less glamorous. However, they are more critical than
further steps in many application areas [1].
 Outlier detection is an important pre-processing
task. It has many practical applications in several areas,
such as fraud detection[2], identifying computer network
intrusions and bottlenecks [3], criminal activities in E-
commerce and detection of suspicious activities [4].
Knorr and NG [5] defined outliers as those data points
(vectors) with values different from those of the
remaining set of data. Different approaches have been
proposed to detect outliers, and a good review can be
found in [6].
 One of the most popular approaches for detecting
outliers is the distance-based approach [7-12]. In this
approach, the distance of a point from its k nearest
points (or neighbors) is calculated. If the neighboring
points are relatively close, then the point is considered
normal. However, if the neighboring points are far

away, then the point is considered an outlier. One of the
advantages of this approach is that no explicit
distribution needs to be defined to detect outliers.
Moreover, this approach can be applied to any feature
space for which a distance measure can be defined [7-9].
Commonly, the Euclidean distance is used as the
distance function. A detailed discussion on the
usefulness, the meaning, and the knowledge of
distance-based outliers with a description of the real-
life application domains for which this notion of outlier
is relevant, can be found in [7, 13, 14].
 Given a distance measure on a feature space, the
distance-based approach for outlier detection is defined
as follows[5]. A point q in a data set is an outlier with
respect to the parameters M and d, if there are less than
M points within the distance d from q, where the values
of M and d, are decided by the user. The problem with
this approach is that it suffers from exponential
computational growth as it is founded on the principle
that for each point q, there may be a need to calculate
the distances between q and all data points (objects) in
the dataset. The computational complexity is directly
proportional to both the dimensionality of the data and
the number of objects.
 Hence, it is beneficial to look for techniques that
can manage to produce outputs identical to the existing
ones, but can efficiently decide, at least, on the
distances between points without calculation (i.e., with
lower runtime) [2, 7] and/or with fewer distance
calculations (i.e., distance calculations are performed
between fewer points). In this paper, we propose an
algorithm to detect outliers in a shorter time than most
of the existing outliers-detecting algorithms. Given a

J. Computer Sci., 3 (12): 944-947, 2007

 945

query point q, the proposed algorithm satisfies (a) as it
can decide on the status of a large number of points,
with respect to q, without the need to perform
arithmetic operations. It also satisfies (b) because it
only needs to perform an actual distance calculation on
points that have been determined to fall within a
particular area around q.
 In the rest of this paper, we briefly present some of
the existing approaches proposed to find outliers, then
we present our algorithm and show how it may save
calculations. After that, we present a section where we
investigate the efficiency of the proposed algorithm and
Nested Loop (NL) algorithm by running both
algorithms on different data sets to detect outliers

RELATED WORK

 Many algorithms have been proposed to find
outliers efficiently. Knorr, Ng and Tucakov, in [7],
propose the Nested-Loop (NL) algorithm to find
outliers. In NL, each data point in the data set is
compared to each point in the data set to determine its
M nearest neighbors. NL has quadratic complexity as
we must make all pairwise distance computations
between the data points. Knorr et al. also suggested the
use of spatial indexing structures such as R-trees and
X-trees to find the nearest neighbors of each candidate
point. This suggestion may work well for low-
dimensional data sets. However, index structures can
lead to poor performance as the dimensionality
increases [8, 12].
 In [8], Ramaswamy et al. modified the definition of
outliers introduced in [7] and consider as outliers the top
n points whose distances to their kth nearest neighbors
are the greatest. To detect outliers, a partition-based
algorithm is presented that partitions the input points
using a clustering algorithm and, then, prunes those
partitions that cannot contain outliers. One shortcoming
of this definition is that it only considers the distance to
the kth neighbor and ignores information about closer
points [14].
 Bay and Schwabacher [12] present an algorithm,
which is based on NL and uses randomization and
pruning rule with near linear time performance.
However, the algorithm depends on the data ordering,
which, as the authors in the paper state, can lead to a
poor performance. In addition, the algorithm can
perform poorly when the data does not contain outliers.
In this paper, we propose a new algorithm to speed up
NL. The proposed algorithm is presented in the next
section.

PROPOSED ALGORITHM

 Given a query point, q, if a circle (in two
dimensional space), centered at q, is drawn with radius
d, as shown in Fig. 1, then we count the number of data
points inside the circle. If the count is less than M, then
the point is considered an outlier, otherwise, the point is
normal (not outlier). This can be done by checking
whether each data point is inside (intersect) or outside
the circle.
 However, finding the points that are inside a circle
may require a large amount of distance calculations.
Instead, for each query point q, we first test the points
inside the square that touches the interior of the circle,
as shown in Fig. 2 (shaded area) and count the number
of points (countSmall) inside the square. If countSmall
is greater than M, then q is not an outlier, and there is
no need to test the rest of the points in the dataset.
Otherwise, we count the number of points (countLarge)
inside the shaded area of the larger square touching the
outer side of the circle, as shown in Fig.3 and store
these points (e.g., their coordinates) in an array for later
processing. If the value of countSmall, plus the value of
countLarge is less than M, then q is an outlier.
Otherwise, we perform distance calculations for the
points that are stored in the array only.

Fig. 1: A circle with radius d, centered at the query

point q

Fig. 2: A square (shaded) that touches the interior of

the circle

J. Computer Sci., 3 (12): 944-947, 2007

 946

Fig. 3: A larger square touching the outer side of the

circle

The proposed algorithms is as follows:
Given a set X of N number of data points, let
countSmall be the number of points inside the small
(shaded) square (shown in Fig. 2). Let countLarge be
the number of points inside the large square but not
inside the small square (shaded area in Fig. 3). Let
NewArray be an empty array of type X.

For each query point, q, do
Begin

countSmall = 0
countLarge = 0
// The i-Loop
For i = 1, …, N //for each point, xi

If x is inside the small square
then

countSmall = countSmall + 1
If countSmall > M

then
Exit from i loop (q is not an outlier,

go to Next i)
Else

If x is inside the large square
then

countLarge = countLarge + 1
store x in NewArray

Next i
If countLarge + countSmall < M

then
go to End (q is an outlier)

Else
// Perform distance calculations for the
// points in the NewArray.
For each point in NewArray, do
 If dist(q, x) <= d

then
add 1 to countSmall

If countSmall < M then go to End (q is an
outlier)

End
 It can be easily observed that the proposed
algorithm has some advantages over the NL in avoiding
distance calculation and gaining computational savings
because:
1. There is a provision for an early exit, from the i-

Loop, on satisfying the condition “countSmall >
M”. It is possible that some points may not be
tested.

2. There is a provision for another early exit on the
condition “countLarge + countSmall < M”
without the need to perform any distance
calculations.

3. Distance calculation, in the worst case, is needed to
be performed for those points that are stored in the
“NewArray” only. This makes the proposed
algorithm better than the NL algorithm.

RESULTS AND DISCUSSION

 In this section, we will investigate the efficiency of
the new proposed algorithm, compared with NL, when
applied on different data sets to detect outliers. The
proposed algorithm generates outputs that are identical
to the outputs of NL. The choice of M and d is based on
the heuristics discussed in [7]. The performance of the
proposed algorithm is reported in terms of CPU time
and percentage of savings compared to NL.
 In our tests, five data sets which are obtained from
the UCI Repository of Machine Learning Databases [15]
have been tested. These are Breast, Letter, Pima,
Segmentation and Wine data sets. The description of
these data sets is shown in Table 1. N is the number of
points, and D represents the dimensionality of data.

Table 1. Description of datasets

DataSet N D
Breast 699 10
Letter 20000 16
Pima 768 8
Segmentation 2310 19
Wine 178 13

For each data set, the value of M is the same for both
the proposed algorithm and NL. The same applies for
the values of d.
 Table 2 shows the CPU run time for the Proposed
algorithm and NL. It shows that the performance of the
proposed algorithm has a significant speed
improvement over NL in all cases.

J. Computer Sci., 3 (12): 944-947, 2007

 947

Table 2: The CPU run time (in seconds) of the proposed
algorithm and NL.
Data Set NL New
Breast 3.6 2.7
Letter 4147 2913
Pima 3.7 2.3
Segmentation 67 41
Wine 0.45 0.31

Table 3 shows the percentage CPU time savings
obtained from the proposed algorithm compared to NL.
It shows that good CPU time savings is achieved and,
on average, up to 32.5% of the CPU time can be saved.

Table 3: percentage savings of the proposed algorithm
compared to NL.

Data Set %Savings
Breast 25
Letter 30
Pima 38
Segmentation 39
Wine 31

 It is clear from the two tables above that the
proposed algorithm gains significant CPU time savings
over NL.

CONCLUSION

 Distance-based outlier detection methods
distinguish an object as an outlier on the basis of the
distance between it and its nearest neighbors. Despite
the fact that they are simple to implement, they suffer
exponential computational growth as most of them are
founded on the principle that for each point (object) q,
there may be a need to calculate the distances between
q and all data points (objects) in the dataset. The
computational complexity is directly proportional to
both the dimensionality of the data and the number of
objects. In this paper, we have proposed an algorithm
that produces the same output as NL with fewer
distance calculations. It is important to note that the
proposed algorithm performs more comparison
operations than NL. However, tests have shown that
these operations are trivial tasks for most compilers,
and thus, they are less computationally demanding than
arithmetic operations. The test results present a
significant increase in efficiency over NL when applied
to five bench-marked data sets.

REFERENCES

1. Zhang, S., C. Zhang and Q. Yang, 2003. Data

Preparation for Data Mining. Applied Artificial
Intelligence, 17(5-6): 375-381.

2. Bolton, R. and D. J. Hand, 2002. Statistical Fraud
Detection: A Review, Statistical Science, 17(3):
235-255.

3. Lane, T. and C. E. Brodley. 1999. Temporal
Sequence Learning and Data Reduction for
Anomaly Detection, ACM Transactions on
Information and System Security, 2(3): 295-331.

4. Chiu, A. and A. Fu, 2003. Enhancement on Local
Outlier Detection. 7th International Database
Engineering and Application Symposium
(IDEAS03), pp. 298-307.

5. Knorr, E. and R. Ng, 1998. Algorithms for Mining
Distance-based Outliers in Large Data Sets, Proc.
the 24th International Conference on Very Large
Databases (VLDB), pp. 392-403.

6. Hodge, V. and J. Austin, 2004. A Survey of Outlier
Detection Methodologies, Artificial Intelligence
Review, 22: 85–126.

7. Knorr, E., R. Ng, and V. Tucakov, 2000. Distance-
based Outliers: Algorithms and Applications.
VLDB Journal, 8(3-4): 237-253.

8. Ramaswami, S., R. Rastogi and K. Shim, 2000.
Efficient Algorithm for Mining Outliers from
Large Data Sets. Proc. ACM SIGMOD, pp. 427-
438.

9. Angiulli, F. and C. Pizzuti, Outlier Mining in Large
High-Dimensional Data Sets, 2005. IEEE
Transactions on Knowledge and Data Engineering,
17(2): 203-215.

10. Acuna E. and C. Rodriguez, 2004. A Meta
Analysis Study of Outlier Detection Methods in
Classification, Technical paper, Department of
Mathematics, University of Puerto Rico at
Mayaguez, available at
academic.uprm.edu/~eacuna/paperout.pdf. In
proceedings IPSI 2004, Venice.

11. Shrestha, M., H. Hamilton and Y. Yao, 2006. The
PDD Framework for Detecting Categories of
Peculiar Data. Proc. 6th International Conf. on
Data Mining (ICDM06), pp. 562-571.

12. Bay, S. and M. Schwabacher, 2003. Mining
Distance-based Outliers in Near Linear Time with
Randomization and a Simple Pruning Rule, Proc.
9th ACM SIGKDD Int. Conf. Knowledge
Discovey and Data Mining, ACM Press, pp. 29-38.

13. Eskin, E., A. Arnold, M. Prerau, L. Portnoy, and S.
Stolfo, 2002. A Geometric Framework for
Unsupervised Anomaly Detection: Detecting
Intrusions in Unlabeled Data,” Applications of
Data Mining in Computer Security, Kluwer.

14. Angiulli, F., S Basta, and Pizzuti, 2006. Distance-
Based Detection and Prediction of Outliers,. IEEE
Transactions on Knowledge and Data Engineering,
18(2): 203-215..

15. Blake, C. L. & C. J. Merz, 1998. UCI Repository
of Machine Learning Databases,
http://www.ics.uci.edu/mlearn/MLRepository.html,
University of California, Irvine, Department of
Information and Computer Sciences.

