
Journal of Computer Science 3 (1): 9-13, 2007
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: Haoliang Qi, Box 321, Harbin Institute of Technology, Harbin, P.R. China, 150001,
Tel: +86045186402448, Fax: +86045186402448

9

Packed Forest Chart Parser

Qi Haoliang, Li Sheng, Yang Muyun, Zhao Tiejun

Ministry of Education, Microsoft Key Laboratory of Natural Language Processing and Speech
Harbin Institute of Technology, China

Abstract: Packed forest chart parser, like the traditional chart parsing algorithm, uses charts to store all
the information produced while parsing to avoid redundant works. Its advantage over the traditional
chart parser was the packed forest representation. The algorithm not only shares the non-terminal
categories as what was done in the shared parse forest, but also shares the leftmost common elements.
The number of active edges in packed forest chart parser was decreased, so memory requirement was
reduced and parsing was speeded up. The effectiveness of our approach has been evaluated on Chinese
parsing. Results show that packed forest chart parser significantly outperforms packed chart parser,
with the former 10 times faster than the latter.

Key words: Parsing algorithm, packed forest chart parser, active edge

INTRODUCTION

 Context Free Grammar (CFG) parsing algorithms
might produce many parsing results, out of which one
wants to extract the most plausible parsing results for
the semantic processing. For many years probabilistic
CFG (PCFG), which is a CFG with probabilities added
to the rules, has been used to ranking parsing results
using scores based on statistical information. PCFG is
also called stochastic context free grammar (SCFG).
The parsing algorithms for PCFG stem from the parsing
algorithm for CFG. CYK algorithm[1], Earley
algorithm[2] and Generalized LR (GLR) algorithm
(Tomita algorithm)[3,4] have been adapted to PCFG.
Chart parser, a classical parsing algorithm, is evolved
into the packed chart parser[5].
 The number of possible parse trees may become
very large when the size of sentences increases: it may
grow exponentially with the size[6]. Since it is often
desirable to consider all possible parse trees (e.g. for
semantic processing), it is convenient to merge as much
as possible these parse trees into a single structure that
allows them to share common elements. This sharing
saves the needed space to represent the trees and also
on the later processing cost of these trees since it may
allow to share between two trees the processing of some
common elements. The shared representation of parse
trees is called the shared parse forest, or just the parse
forest[7]. The drawback of the shared parse forest is that
only nonterminal category is shared. Chart parser is a
type of shared parse forest algorithm. Shann also points
out that the deficiency of chart parser is its parsing tree
representation[8].
 Packed Forest Chart Parsing (PFCP) algorithm is
proposed for natural language parsing in this paper. The
algorithm not only shares the nonterminal categories as

what is done in the shared parse forest, but also shares
the leftmost common elements. The presentation of an
active edge is improved, which can present lots of
active edges in traditional definition. Because active
edges are the vast majority[9], our algorithm heavily
reduces the memory requirement and speeds up parsing.
 We take the running time as the metric to evaluate
the algorithm because it can provide the real
performance of the algorithm. Our approach is
evaluated on Chinese parsing. The results show that the
proposed algorithm is about 10 times faster than the
packed chart parsing algorithm. The proposed algorithm
also decreases the memory requirement because of its
packed forest representation.

PACKED FOREST CHART PARSING
ALGORITHM

 Chart parsing algorithm uses a data structure called
chart as a book-keeping storage for all the information
produced while parsing. The information in the chart is
used to avoid redundant works, which comes the
parsing efficiency.
 Allen put forward the packed chart parser for
PCFG[5]. A packed chart representation stores only one
constituent of any type for the same input. Packing
provides quite efficient representations of chart
presentations without information loss in PCFG.
 The key point here is to improve the parsing
efficiency without pruning, which will cause some
information loss. The speeds of chart parser and the
packed chart parser are very slow when processing
natural language without pruning. A great number of
parsing trees should be created due to the ambiguity of
natural language. Creating trees and computing their
probabilities lead to huge computation and memory
burden. PFCP presented in this paper packs the parsing
tree and speeds up parsing.

J. Computer Sci., 3 (1): 9-13, 2007

 10

 The following of this section describes PFCP
algorithm. Firstly, we introduce the basic concepts,
terms used in packed chart parser; secondly, PFCP
algorithm is described in details; finally, a parsing
example is illustrated to make the algorithm more
clearly.

Concepts and terms: We often use a parse tree to
describe the structure when parsing a sentence. Figure 1
shows the parse tree of the sentence “the old man the
boat”. Figure 2 shows the chart corresponding to this
sentence.
 The symbols used in the following are described in
this paragraph. Greek symbols �, � and � are a sequence
of terminal and/or nonterminal symbols and capital
letters A, B, C are nonterminal symbols. S is a special
symbol representing the parsing goal symbol, i.e. the
start symbol(root symbol). X is a nonterminal variable.
Lowercase wi is the ith terminal symbol. For a parsing
rule (production rule) P�Ch1 Ch2…Chn, P is called the
parent of the elements in the right part (i.e. Ch1
Ch2…Chn); and Ch1 Ch2…Chn are the children of P.
 The information kept in the chart is divided into a
set of active edges and a set of inactive (complete)
edges. An inactive edge represents a constituent that has
been completed. An active edge represents a constituent
with some elements called remainder children left to be
satisfied. To make elements in charts clear, we label the
terminal symbols with position numbers. Table 1 shows
the example of the sentence with position numbers. The
word “old” starts at position 1 and ends at position 2 in
the example sentence.
 An active edge has the format [X��,i,j,(applied
parsing rules),the number of first remainder child],
where
* “X” represents the parents which can be not

assigned at current. The parents can be assigned
only after all children are satisfied according to the
parsing rules. Note that, there are lots of rules
whose children or parts of children are the same;

* “�” is a sequence of terminal and/or nonterminal
symbols which are satisfied;

* “i” and “j” refer to position i and position j. The
words spanning position i and position j are
satisfied;

* “applied parsing rules” indicates the parsing rules
applied in the active edges;

* “the number of the first remainder child” is the
number of the first child to be stratified.

 It is easy to get the first remainder child by using
“applied parsing rules” and “the number of the first
remainder child”. For example, for an active
edge[X�NP,0,2,(VP�NP ADJP VP, S�NP VP,
S�NP VP PP,),2], NP is satisfied, which spans position
0 and position 2. For the sentence in the Fig. 1, NP
contains “the” and “old”; “applied parsing rules”
includes 3 parsing rules VP�NP ADJP VP, S�NP VP
and S�NP VP PP. The remainder children can be
gotten by applied parsing rules and the number of first

Fig. 1: Example of parsing tree

the

noun

boatthemanold

NP VP

NP

det noun verb det

S

VP

Fig. 2: The example of the chart in the parsing tree

Table 1: The example of the sentence with position numbers
 the old man the boat
0 1 2 3 4 5

remainder child. For the rule VP�NP ADJP VP, the
remainder children are ADJP VP, the first remainder
child is ADJP; For the rule S�NP VP, the first
remainder child is VP (the only one remainder child is
VP); For the rule S�NP VP PP, the remainder children
are VP PP, the first remainder child is VP. Note that the
definition of an active edge in this paper is different to
traditional one, which should identify all remainder
children.
 The rules, whose first child is B, can be represented
by X�B β. The rules with the same left most common
elements � can be represented by X�� β.
 The traditional active edge form is [A��·�,i,j]
where the dot “·” is used to separate the satisfied
children � and the remainder children �; the left to the
dot “·” are satisfied and the right are not satisfied. There
are three active edges if using traditional definition for
the active edge in the above example, which are
[VP�NP·ADJP VP,0,2], [S�NP·VP,0,2] and
[S�NP·VP PP,0,2]. Comparing our definition and
traditional one, we can see that our definition is more
flexible. In our definition, an active edge is a set, which
can include lots of edges of traditional definition.
 By the new definition of an active edge, we can
share the leftmost common elements. So the number of
active edges those should be created in parsing drops
down. The efficiency of parsing is improved.
 All the children in the inactive edge are satisfied.
An inactive edge has the format [A��·,i,j]. The dot “·”
means that the left elements to the dot “·” are stratified.

J. Computer Sci., 3 (1): 9-13, 2007

 11

The other symbols applied in the definition are same to
the definition of the active edge. For example, [NP�det
noun·,0,2] is an inactive edge, which uses the parsing
rule NP�det noun and spans position 0 and position 2.
For the sentence in Fig. 1, NP contains “the” and “old”.
All the charts in Fig. 2 are inactive edges.

Packed chart parsing algorithm: Assuming that there
are the parsing rules A1�B β1 , A2�B β2,… , An�B

βn, if phrase B is generated, then the traditional chart
parsing algorithm would create active edges [A1�B

·β1], [A2�B ·β2], … , [An�B ·βn]. We should create
one active edge for each parsing rule whose leftmost
child is B. There are lots of such rules in natural
language parsing, so lots of active edges are created.
The similar phenomena happen in others steps when
creating active edges. Until now, for these active edges,
the satisfied children are the same. If we only record the
satisfied children in the chart, muliti-edge can be
presented by a single active edge. The recording
method of an active edge has been illustrated in
previous texts. By this way, the number of active edges
is decreased and the parsing trees are packed. Packed
forest chart paring algorithm is named according to this
feature. The number of active edges in PFCP is
decreased, so memory requirement is reduced and
parsing is speeded up. The parsing efficiency is
improved. At the same time, the memory that the
algorithm used drops.
 Now we will give a left to right bottom-up PFCP
algorithm.
Input: the parsing rules which have been sorted by their
children
a sentence (w1,w2,…,wn)
output the parsing tree
(a)For each entry C � wk+1, span an inactive edge
[C�wk+1 ·,k,k+1] between positions k and k+1.
Then for each inactive edge [B� γ ·,j;k+1] between
positions j and k+1(j<k+1), do the following until no
new item can be created:
{
 (b) For each rule A�B, span an inactive edge
[A�B·, j,k+1].
 (c) For all rules X�B β , i.e. the first child is B,
span an active edge[X�B,j,k+1, (applied parsing
rules), 2]. “applied parsing rules” includes all rules
X�B β whose first child is B.
 For each active edge starting at position i, ending at
position j and having the first remainder child B, which
can be gotten by applied parsing rules and the number
of first remainder child, with the form [X��,i,j,(applied
parsing rules),m], do step d and e.
 (d) If the active edge [X��,i,j,(applied parsing
rules),m] has only one remainder child B, create
inactive edges [A�αB·,i,k+1] between positions i and
k+1, the parent A is assigned according to the rule’s

children. Note that more than one inactive edge might
be created in this step.
 (e) If the active edge [X��,i,j,(applied parsing
rules),m] has more than one remainder children having
the first remainder child B, create an active edge [X�α
B, i, k+1, (new applied parsing rule set),m+1] between
positions i and k+1. “new applied parsing rules” is all
rules of “applied parsing rules” whose the first
remainder child is B.
}
(f)If we find an edge of the form [S�α·,0,n], then
accept, else reject.
 In step d and e, the active edge [X��,i,j,(applied
parsing rules),m] having first remainder child B and
ending at position j is processed. The new charts are
created by combining the active edge [X��,i,j,(applied
parsing rules),m] and the inactive edge [B� γ ·,j;k+1].
If there is no remainder children, inactive edges are
created; otherwise, an active edge is created. For
example, for an active edge [X�NP,i,j,(S�NP VP,
S�NP VP PP, NP�NP VP),2] and the inactive edge
[VP� γ ,j,k+1], the inactive edges [S�NP VP, i, k+1]
and [NP�NP VP, i, k+1] are created by applying step d
and an active edge [X�NP VP,i,j,(S�NP VP PP),3] is
created by applying step e.
 Step c, d and e are different to the chart parsing
algorithm. For step c, if having the rules A1�B β1 ,
A2�B β2,…, An�B βn and the phrase B with matching
position, only one edges should be created in our
approach; The chart parsing algorithm should create n
edges. For step d, our algorithm may create more than
one inactive edge from single active edge because one
active edge in our algorithm presents multi-edges in
traditional one and the chart parsing algorithm only
creates one inactive edge for a single input inactive
edge. For step e, for an active edge [X��,i,j,(applied
parsing rules),m] and an inactive edge [B� γ ·,j;k+1],
only one edge should be created in our approach but
more edges should be created in traditional algorithm,
which is similar to step c.

Parsing example: To understand the algorithm more
clearly, let us consider parsing the input sentence “John
likes Mary” using the following grammar. The input
sentence is translated into the terminal sequence “n v
n”. The probability of the rules is omitted here.
[1] S � NP VP
[2] NP � n
[3] NP � v n
[4] VP � v n
[5] VP � v n PP
 PFCP will proceed as Fig. 3. Contents in column
“Charts (Chart ID)” are generated charts (i.e. active
edges or inactive edges) during the parsing and their
IDs. “Current input” is the input of this step. They are
identified by wi=POS and/or Chart ID. For example, for
the first step the input is w1=n and the output chart is
[NP � n·, 0,1], whose ID is “1”. The input ID of the
second step is “1” (i.e. inactive edge [NP � n·, 0,1])
and the output is the active edge[X� NP, 0,1,(Rule
1),2], whose ID is “2”.

J. Computer Sci., 3 (1): 9-13, 2007

 12

Step Charts (Chart ID) Current input Applied parsing rule Steps in algorithm
k=0
 [NP � n·, 0,1] (1) w1=n [2] (b)
 [X� NP, 0,1,(Rule 1),2] (2) (1) [1] (c)
k=1
 [X � v,1,2,(Rule 3,4,5),2] (3) w2=v [3][4][5] (c)
k=2

[NP � n , 2,3] (4-1)
[NP � v n·,1,3] (4-2)
[VP � v n·,1,3] (4-3)
[X� v n,1,3,(Rule 5),3] (4-4)

w3= n
w3= n, (3)
w3= n, (3)
w3= n, (3)

[2]
[3]
[4]
[5]

(b)
(d)
(d)
(e)

 [X � NP, 2,3,(Rule1),2] (5) (4-1) [1] (c)
 [S � NP VP·, 0,3] (6) (1),(4-3) [4] (d)(f)
 [X � NP, 1,3,(Rule1),2] (7) (4-2) [1] (c)

Fig. 3: The parsing example

Fig. 4: The third step in the example

 In the third step of this example, the algorithm only
creates one active edge [X � v,1,2,(Rule 3,4,5),2] (Fig.
4). Three active edges should be created in the
traditional chart paring algorithm, which are [NP � v·
n, 1,2] [VP � v· n, 1,2] and [VP � v ·n PP, 1,2]. These
3 active edges have the same leftmost child w2=v.
 Our approach has advantage when processing the
parsing rules, whose leftmost elements or the whole of
their children are the same. PFCP shares the same
leftmost partial text; it can decrease the number of
inactive edges, so it is very efficient.
 In the 4th step, two inactive edges [NP � v n·,1,3]
and [VP � v n·,1,3] are created for the input edge w3=
n and the edge [X � v,1,2,(Rule 3,4,5),2] (chart ID is
“3”). When creating the edge [NP � v n·,1,3], we apply
Rule 3; and when creating the edge [VP � v n·,1,3], we
apply Rule 4.

EXPERIMENTS AND RESULTS

 We take the running time as the metric to evaluate
the algorithm because it can provide the real
performance of the algorithm. Our approach is
evaluated on Chinese parsing. The corpus used in
experiments is HIT (Harbin Institute of Technology)
Chinese Treebank version 1.0, which include 8661
sentence. We randomly select 500 as test data and other
Table 2: Comparison two parsing algorithms
 # of Created Running Time Processing Speed
 Active Edges (seconds) (bytes/second)
Packed chart
Parser 12,835,628 938 16.60
PFCP 1,401,536 82 189.85

sentences are used as training data. 4083 PCFG rules
are acquired from training data. The test corpus
includes 15568 bytes, about 7784 Chinese characters.
 We do word segmentation and POS tagging before
parsing just as usual. Because there is no space to
separate words, word segmentation is often the first step
in Chinese text processing.
 We compare PFCP to packed chart parser[5]. In
packed chart parser, a packed chart representation
stores only one constituent of any type over the same
input and any others found are collapsed into the
existing one. No pruning is done for two algorithms.
The computer used in the experiments is HP Proliant
server Xeon 3G CPU, 1G MM, SCSI 134G . The
experimental results are shown in Table 2.
 The efficiency of the PFCP algorithm comes from
its packed presentation. Because active edges are the
vast majority of edges and the number of active edges in
packed forest chart parser is decreased, memory
requirement is decreased and parsing is speeded up. The
efficiency of the new algorithm is very high. The
experimental results show that our approach is very
efficient. The new algorithm is 10 times faster than
packed chart parser.
 We also test PCFG performance. The corpus used
for open test includes 1000 sentence in HIT Chinese
Treebank. PFCF algorithm and the packed chart parsing
algorithm achieve the same effectiveness. The precision
is 73.3%, recall is 72.3% and F�=1=(2*precision*recall)/
(precision + recall)=72.8%.

CONCLUSIONS AND THE FUTURE WORK

 The packed forest chart parser is proposed in this
paper. Its advantage over traditional chart parser is the
packed forest representation. The algorithm not only
shares the non-terminal categories as what is done in the
shared parse forest, but also shares the leftmost
common elements. The number of active edges in PFCP
is decreased, so memory requirement is reduced and
parsing is speeded up. The effectiveness of our
approach has been evaluated on Chinese parsing.

J. Computer Sci., 3 (1): 9-13, 2007

 13

Results show that the packed forest chart parser
significantly outperforms the packed chart parser, with
the former 10 times faster than the latter.
 The representation of an active edge can be
improved in the future. If an active edge shares any
common elements, the parsing efficiency can be
improved.

ACKNOWLEDGEMENT

 This study was supported by the High Technology
Research and Development Program of China (Grant
No. 2004AA117010-08), National Natural Science
Foundation of China (Grant No. 60373101), Pecan
Information System Inc (now it is Cannon Research
China) and Heilongjiang Outstanding Yong University
Teacher(Grant No. 1151G037). Our thank also goes to
Dr. Meng Yao in Fujitsu Research Center China and Dr.
Lv Yajuan in Microsoft Research Asia.

REFERENCES

1. Fujisaki, T., F. Jelinek and J. Cocke et al.,
1991. A probabilistic parsing method for
sentence disambiguation. Tomita Med. Current
Issues in Parsing Technology, International
Work shop on Parsing Technologies.
Pittsburgh, Boston, Kluwer Academic
Publishers, pp:139-152.

2. Stolcke, A., 1995. An efficient probabilistic
context free parsing algorithm that computes
prefix probabilities. Computational
Linguistics, 21: 165-201.

3. Wright, J.H., 1990. LR parsing of probabilistic
grammars with input uncertainty for speech
recognition. Computer Speech and Language, 4:
297-23.

4. Zhu S., M. Zhou, X. Liu and C. Huang, 1998. An
efficient stochastic context-free parsing algorithm.
J. Software, 9: 59-87 (in Chinese).

5. Allen, J., 1995. Natural Language Understanding.
The Benjamin/Cummings Publishing Company,
Inc. Sec. Edn.

6. Pereira, F.C.N. and D.H.D., 1983. Warren. parsing
as deduction. Proc. 21st Ann. Meeting of the
Association for Computational Linguistics.
Cambridge (Massachusetts), pp: 137-144.

7. Bernard, L., 1991. Towards a uniform formal
framework for parsing. Current Issues in Parsing
Technology. Ed. Tomita M., Kluwer Academic
Publisher, pp: 153-171.

8. Shann, P., 1991. Experiments with GLR and chart
parsing. Intl. Work shop on Parsing Technologies
(Tomita M. Ed.). Pittsburgh, Boston, Kluwer
Academic Publishers, pp: 17-34.

9. Klein, D. and C. Manning, 2001. Parsing with
treebank grammars: Empirical bounds, theoretical
models and the structure of the Penn treebank.
Proc. 39th Ann. Meeting of the ACL, Toulouse,
France, pp: 330-337.

