
Journal of Computer Science 3 (8): 624-632, 2007
ISSN 1549-3636
© 2007 Science Publications

���

Teaching Computer Organization and Architecture Using Simulation and FPGA

Applications

Dr. Kasim M. Al-Aubidy
Computer Engineering Department, Philadelphia University, P O Box 1, Jordan, 19392

Abstract: This paper presents the design concepts and realization of incorporating micro-operation
simulation and FPGA implementation into a teaching tool for computer organization and architecture.
This teaching tool helps computer engineering and computer science students to be familiarized
practically with computer organization and architecture through the development of their own
instruction set, computer programming and interfacing experiments. A two-pass assembler has been
designed and implemented to write assembly programs in this teaching tool. In addition to the micro-
operation simulation, the complete configuration can be run on Xilinx Spartan-3 FPGA board. Such
implementation offers good code density, easy customization, easily developed software, small area,
and high performance at low cost.

Key Words: Teaching tool, Computer organization and architecture, Processor design,

Microprogramming, Assembler design, FPGA implementation.

INTRODUCTION

Computer organization and architecture is a
common course that is offered at universities
throughout the world [1]. Traditionally, teaching such a
course to computer engineering and computer science
students can be insufficient if the teaching focus is
solely on textbook materials [2,3]. Students often have to
rely on their imaginations to understand the underlying
hardware-related concepts. In most universities,
students learn computer design concepts by software
implementing individual pieces of a computer. This
approach has several limitations, while students can
simulate their design using software, they don’t have
the chance to realize or run their design in hardware [4].
Also, it is not feasible to build a laboratory that can
provide various computer architectures for teaching
computer organization and architecture. Hence, keeping
computer education up-to-date requires keeping in
touch with the rapid evolution of the computer
technology and industry. Searching for an efficient way
of teaching computer organization and architecture is
an ongoing task [2]. An active tool will be considered in
this paper for teaching computer organization and
architecture by taking advantage of simulation and
Field Programmable Gate Array (FPGA) technology
[5,6].

FPGA technology offers the potential of designing
high performance systems at low cost. FPGAs have
been used for many computational tasks [6], and this
paper presents the micro-operation simulation of a basic
computer and its implementation on an FPGA. Field

programmable gate arrays consist of programmable
logic blocks, which can each implement a small amount
of digital logic, and programmable routing which
allows the logic block inputs and outputs to be
connected to form larger circuits [7,8,9].

FPGAs have become a popular technology for
creating digital systems since they can lead to a shorter
time-to-market for designs than application-specific
circuits (ASICs) and allow design modifications to be
made after system creation [10]. The primary method
used for validating a design with most FPGA design
flows is simulation.

This paper presents the micro-operation simulation
and FPGA realization of a single cycle computer, which
can be used for educational purposes. This simulation is
a set of micro-operations that represent the register
transfer statements of all operations that can be
implemented. Also, it covers the design of an
assembler for the designed computer, which can be
used for educational purposes. The student can obtain a
better understanding of the internal operation of a
computer by simulating each element, and this will help
students to study the design and performance issues.

Fig. 1: Teaching Tool Layout

Xilinx Spartan-3
Board

 FPGA

Flash
Memory

Display
Board

Via

USB2.0

J. Computer Sci., 3 (8): 624-632, 2007
��

��625

COMPUTER ORGANIZATION TEACHING
TOOL

The design of the computer's instruction set is an

important architectural issue. The processor structure
and the functionality of the instructions define the
computer's behavior. The objective of this work is to
design a simple computer that will introduce the single-
cycle computer features to the students. The internal
organization of a digital system is defined by sequence
of micro-operations that perform on data stored in its
registers. The computer is capable of executing various
micro-operations and can be instructed to perform a
sequence of operations.

I1 I0 Op-Code Address/Data
15 �� ���������������� ��

Fig. 2: Instruction Format

Each component in the proposed computer was

designed using Verilog HDL. Some components (e.g.
Main Memory, Registers, …etc) have several modules
in order to enable the user to choose his own
architecture. To realize this choice a special GUI
software was developed with multiple values selection
for each component. These components include:
• Main Memory Size, which specifies the size of the

address field in the instruction format; and then the
size of address related internal registers.

• Total number of instructions.
• Type of instructions; memory-reference (MRI),

register reference (RRI) and input/output reference
(IOI) instructions, which results in determining
number of cycles automatically.

• Computer Instructions; specify the required
instructions and their type to determine the size of
the operation code in the instruction format and
size of the op-code register automatically.

• Addressing Modes; which leads to determine the
number of required bits in the instruction format.

• Status Flags; specify the required flags such as
carry flag, zero flag and interrupt flag.

Once a student selects the design parameters, their

values are written into a file used by the main module
in the Verilog HDL code in order to build the required
architecture. Then this architecture is downloaded into
the FPGA using Project Navigator Package via USB
port, see Fig.1.

DESIGN EXAMPLE

Instruction codes together with data are stored in

memory. The computer reads each instruction from
memory and places it in a control register. The control
unit then interprets the binary code of the instruction
and proceeds to execute it by issuing a sequence of
micro-operations.

An instruction code is a group of bits that instruct
the computer to perform a specific operation. It is made
up of 16 bits, and divided into three parts, as shown in
Fig.2. Two bits (I1,I0) to specify the addressing mode,
four bits binary code to specify the operation, and ten
bits address field. Table 1 illustrates the addressing
mode of the proposed computer, which is used to:
• Reduce the number of bits in the address field of

the instruction, and
• Give user flexibility in dealing with counters,

pointers …etc
A computer needs registers for manipulating data

and a register for holding a memory address. Nine
registers are required for the proposed computer, as
shown in Table 2.

Table 1: Addressing Modes.

Table 2: Basic Computer Registers.

Register Bits
No. Function

Memory Buffer Reg. (MBR) 16 Holds memory word
Memory Address Reg.

(MAR)
10 Holds address for memory

Address Reg. (AR) 10 Holds operand/instruction add.
Accumulator (AC) 8 Processor register
Counter Reg. (CR) 8 Holds count for loops
Program Counter (PC) 10 Holds address of instruction
Operation Reg. (OPR) 4 Holds code of operation
Input Reg. (INP) 8 Holds input character
Output Reg. (OUTR) 8 Holds output character

Some registers (such as AC, MAR, and MBR) may

receive data from several multiplexed sources. A basic
computer has eight registers, a memory unit, and a
control unit. Paths must be provided to transfer
information from one register to another and between
memory to registers. A more efficient scheme for
transferring information in a system with many
registers is to use a common bus. A multiplexer can be
used to design the common bus. The connection of the
registers to the common bus system is shown in Fig. 3.

Computer Instructions: A basic computer has three
basic instruction code formats. A memory-reference
instruction uses ten bits to specify either an address or
an operand and two bits to specify the addressing mode
(I0,I1). For immediate addressing it is 00, 01 for direct
addressing, and 11 for indirect address. The register-
reference instructions are recognized by the operation
code 1111 and a 00 in the left most bits of the
instruction. A register-reference instruction specifies an

I1 I0 Addressing mode
0 0 Immediate addressing ($ address)
0 1 Direct addressing
1 1 Indirect addressing (# address)

J. Computer Sci., 3 (8): 624-632, 2007
��

��626

operation on the AC register. An operand from memory
is not needed; therefore, the other 10 bits are used to
specify the operation to be executed.

8-to-1 M
U

X

M B R

LD

O PR

LD

IN PR

LD

O U TR

LD

b2 b1 b0 ��

A R

LD

PC
LD

A C A L U

LD

16-bit com m on bus

C LK
C R

LD

Fig. 3: Basic Computer Registers Connected to a Common

Bus.

=1
Register

=1
Execute Cycle

Fetch Cycle

T1

Start

T0

T1

T2

I1

=1
Register
or I/O

=0 (Indirect
or direct)

I1
 (Direct) =0 =1 (Indirect)

T0 T0

T1

T2

Execute input-
output instruction

Execute register-
reference instruction

Execute memory-
reference

instruction

=1
(Interrupt Cycle) INF

q1

I0

=0 (Immediate addressing)

=0 (I/O)

=0 (Fetch Cycle)

ARAddressM BR
 OPR,OP_CodeM BR

)I,(II,IM BR 1010

>→<
>→<

>→<

MARPC →

MBRM(MAR) →

MARAR → MARAR →

M BRM (M AR) →

ARAddressM BR >→<

INF0 ,DataM BRPC →><→

M AR0 PC,0 →→

PC1PC M (M AR),DataM BR →+>→<

T0

T1

T2

PC1PC M BR,M (M AR) →+→

Fig. 4: Flowchart of Instruction Cycle ��

Table 3: Basic Computer Instructions.
Type Symbol Description

NOP No operation
ADD Add memory word to AC
SUB Subtract memory word from AC
AND AND memory word to AC
OR OR memory word to AC
XOR XOR memory word to AC
LDA Load memory word to AC
STA Store content to AC in memory
BUN Branch unconditionally

BSA Branch and save return address
DSZ Decrement and skip if zero
LDC Load CR
RET Return
BZ Branch if zero

M
em

or
y

R
ef

er
en

ce
 I

ns
tru

ct
io

ns

BC Branch if carry
CLA Clear AC
CLS Clear all status flags
CMA Complement AC
SRA Shift right AC
SLA Shift left AC
INC Increment AC R

eg
. R

ef
er

en
ce

In

st
ru

ct
io

ns

HALT Terminate program
INP Input character to AC
OUT Output character from AC
SKI Skip on input flag
SKO Skip on output flag
ION Interrupt on
IOF Interrupt off
SFI Set input flag I/

O
 R

ef
er

en
ce

In

st
ru

ct
io

ns

SFO Set output flag

Similarly, an input-output instruction does not need a
reference to memory and is recognized by the operation
code 1111 and 11 in the left most bits of the instruction.
The remaining 10 bits are used to specify the type of
the input-output operation. This technique allows
having up to 35 different operations, as given in Table 3.

Timing and Control: The timing for all registers in the
basic computer is controlled by a master clock
generator. The control signals are generated by the
control unit and provide control inputs for the
multiplexer in the common bus, control inputs in
processor registers, and micro-operations for the
accumulator. The control unit, Fig. 3, consists of three
decoders, a sequence counter, and a number of control
logic gates. The control unit gets the operation code
from the OPR through a 4x16 decoder. Bits 14 & 15 of
the instruction code are transferred to two flip-flops
designated by the symbols I0 & I1. Bits 0 through 9 are
applied to the control logic gated directly from the
MBR through the common bus. The outputs of the
counter are decoded into 4 timing signals T0 through T3.
The sequence counter (SC) can be incremented or
cleared. Most of the time, the counter is incremented to
provide the sequence of timing signals out of the 2x4
decoder. Once, the counter is cleared, causing the next

J. Computer Sci., 3 (8): 624-632, 2007
��

��627

active timing signal to T0. The decoder is used to
determine the cycle to be performed.

INSTRUCTION CYCLES

A program residing in the memory unit of the
computer consists of a sequence of instructions. Each
instruction cycle is subdivided into a sequence of sub-
cycles. The value of three flip-flops is entered into a
decoder to determine the cycle to be served, as
illustrated in Table 4. As illustrated in Fig. 4, each
instruction cycle is divided into the following five sub-
cycles:
Fetch and Decode Cycle: Initially, the program
counter is loaded with the address of the first
instruction in the program. The sequence counter is
cleared to 0, providing a decoded timing signal T0.
After each clock pulse, sequence counter is incremented
by one, so that the timing signals go through a sequence
T0, T1, T2 and T3. The micro-operations for the fetch
and decode cycle can be specified by the following
statements:

Cycle)(Indirect G 0 F,0 R,1:TCII

Cycle)(Direct G 0 F,1 R,O:TCII

Cycle) (ExecuteG 0 F,1 R,1 :TCI

ARAddressMBR
 OPR,OP_CodeMBR

),I,(II,IMBR:TC

PC1PC MBR,M(MAR):TC

MARPC:TC

3001

300I

300

101020

10

00

→→→
→→→

→→→

>→<
>→<

>→<
→+→

→

Table 4:. Cycles Combination.

Flip-flops
G F R Cycle
0 0 0 Fetch & Decode
0 0 1 Indirect
0 1 0 Direct
0 1 1 Execution
1 0 0 Interrupt

Indirect Cycle: At this cycle, the effective address of
the operand is to be read from the memory. The register
AR holds the address of memory word which contains
the effective address of the operand:

Cycle)(Direct G 0 F,1 R,0:TC

ARAddressMBR:TC

MBRM(MAR):TC

MARAR:TC

31

21

11

01

→→→
>→<

→
→

Direct Cycle: The effective address of the operand may
be read during two time pulses. Therefore, to disable
the delay of waiting for T3, the sequence counter may
be cleared at time T2. Thus, the next time pulse will be
T0 of the execution cycle and not T3 of the indirect
cycle:

Cycle) (Execution CC0

G,0 F,1 R,1:TC

MBR,M(MAR):TC

MARAR:TC

22

12

02

→
→→→

→
→

Execute Cycle: At this cycle, the fetched instruction
(register-reference, memory reference, or input-output-
reference) is executed. The type of the instruction is
decided according to:

- If 0q15 = , then RRI.

- If 1 IIq 0115 = , then RRI.

- If 1 IIq 0115 = , then IOI.

m

PC
10-bit

2-to-1
MUX

AR
10-bit

MAR
10-bit

RAM
1K*16

MBR
16-bit

16 Bits

OPR
4-bit

4-to-16
Decoder

C
O
N
T
R
O
L

U
N
I
T

I1 I0

Operations	 −

Status Flags
(ZF & CF)

W

LD
INC

LD

LD LD

LD

LD
INC

16
-b

it

10-bit 10-bit

10-bit

10-bit

10-bit

10-bit

4-bit

4-bit

16-bit (q0-q15)

S

Setting & resetting
depend on ALU result

INP OUT

8-bit

LD LD

Clr

ALU

4-bit

b2 b1 b0

8-bit
8-bit a1 a0

LD
Inc
Clr
SR
SL

4-to-1 M
U

X

AC
8-Bit

Inverter
8-bit

8-bit

MBR (0-7)

3-to- 8
Decoder

5-bit
(C0-C4)

R

F

G

Set
Rese

Set
Rese

Set
Rese

INF

4-bit
(T0-T3)

2-to-1
M

U
X

 16
-b

it

16
-b

it

Set FGI (switch)
Reset FGO (ACK)

ZF

LD
INC
Clr

CR

LD

Set
Reset

CLK
2-bit

Sequence
Counter

2-to-4
Decoder

CC

Fig .5: Basic Computer Block Diagram

J. Computer Sci., 3 (8): 624-632, 2007
��

��628

Table 5: Control functions and micro-operations for
selected instructions

Symbol Miro-operations

ADD AC DataMBRAC :TCq 030 →><+

OR AC DataMBRAC :TCq 033 →><�

STA
M(MAR) DataMBR :TCq

DataMBRAC MAR, AR :TCq

136

036

→><
><→→

BSA

PCAR :TCq
AR1AR

M(MAR), AddressMBR :TCq

MAR AR ,AddressMBRPC :TCq

238

138

038

→
→+

→><
→><→

LDC CR DataMBR :TCq 0310 →><

RET
PC addressMBR :TCq

MBR M :TCq

0 :TCq

2311

1311

0311

→><
→><

→
MAR

MAR

CLA AC0 :TrB 00 →

SRA AC(7)0 AC,SHR(AC):TrB 03 →→

INP FGI0 AC,INPR:TpB 00 →→

SKO PC1PC then 1)IF(FGO:TpB 03 →+=
Where:

30115 CIIq r = , Common to all RRIs.

MBR(n)Bn = , [MBR (0-9) that specifies the operation]

30115 CIIq p = (Common to all IOIs).

Interrupt Cycle: The interrupt cycle is initiated after
the execute cycle if the interrupt flip-flop (INF) is equal
to 1. The flip-flop is set to 1 manually using a switch,
and it may be set during the execution of the program
by the instruction ION. The flip-flop is reset to 0
whenever the interrupt is served or by the instruction
IOF.

This basic computer serves the interrupt by saving
the next sequential instruction in memory address 0,
and then it starts execution from address 1 in the
memory. The micro-operations required for this
instruction are:

Cycle)(Fetch G 0 F,0 R,0:TC

PC1PC M(MAR),DataMBR:TC

MAR0 PC,0 :TC

INF0 ,DataMBRPC:TC

34

24

14

04

→→→
→+>→<

→→
→><→

Register Transfer Statements: A register transfer
language is useful not only for describing the internal
organization of the computer, but also for specifying
the logic circuits needed for its design. The implemented
computer has 35 instructions, as in Table 3. Each
instruction is represented by a single statement or a set
of statements. Table 5 illustrates the control functions

and micro-operations for selected instructions. The
obtained statements give all the information necessary
for the design of the logic circuits of the computer.

The schematic diagram of the basic computer is
given in Fig. 5. It is compound of one 16-bit register,
three 10-bit registers, four 8-bit registers, one 4-bit
register, eight D-Flip-flops, one 1024x16-bit RAM, one
ALU, one 8-bit inverter, two 2-to-1 Multiplexer, one 4-
to-1 Multiplexer, one 4-to-16 decoder, one 3-to-8
decoder, one 2-to-4 decoder, and one 2-bit sequence
counter.

ASSEMBLER DESIGN

A two pass assembler has been designed and
implemented to write assembly programs and use the
output of the assembler to run these programs on the
basic computer. Figure 6 shows the files used as input
and those generated as output by the assembler. These
are;
• Source File (input): It is a text file containing the

source program to be assembled. It has a ".asm"
extension. It consists of two segments, the code
segment followed by the data segment. The data
segment starts with "data:".

• Binary Code File (output): It contains the
assembled statements represented in binary form.
This file is stored in the block memory, and it has a
".dat" extension.

• Hex Code File (output): It contains the assembled
statements in hexadecimal form. This file is stored
in the external memory, and it has a ".mem"
extension.

• Listing file (output): It consists of the source file
statements, the assembled code, and the Branch
Vector Table BVT. This file has a ".lst" extension.

The basic computer assembly language character

set consists of the following subset of the standard
ASCII character set:
• Lower-case letters (a to z).
• Digits 0 through 9.
• Blanks (ASCII 32).

Assembler Instructions: Any assembly program for
the basic computer consists of text lines, and each line
contains only one instruction and an optional comment.
Table 6 shows all instructions and their appropriate
operands and addressing modes.

A symbolic destination must be placed at the
beginning of the line of code for branching to a line of
assembly code. A line that begins with comment
symbol (//) is considered a comment line. It is printed
into the list (.lst) file but will not be encoded into the

J. Computer Sci., 3 (8): 624-632, 2007
��

��629

hex (.mem) and the binary (.dat) files. Comments may
be added to lines that contain program code.

Fig. 6: Assembler Input and Output Files.

Table 6: Possible Types for Each Assembly Instructions
Instr.�� Type of operand�� Function
nop
�� No operation
add Immediate data/Add. Add operand to AC
sub Immediate data/Add. Subtract operand from AC
and Immediate data/Add. AND operand to AC
or Immediate data/Add. OR operand to AC
xor Immediate data/Add. XOR operand to AC
lda Immediate data/Add. Load operand to AC
sta Address Store AC content in memory
bun Label Branch unconditionally
bsa Label Branch and save return add.
dsz
�� Decrement and skip if zero
ldc Immediate data/Add. Load CR
ret
�� Return
bz Label Branch if zero
bc Label Branch if carry
cla
�� Clear AC
cls
 Clear all status flags

cma
 Complement AC
sra Immediate data Shift right AC
sla Immediate data�� Shift left AC
inc
�� Increment AC
halt��
 Terminate program
inp
 Input character to AC
out
 Output character from AC
ski��
 Skip on input flag
sko
 Skip on output flag
ion
�� Interrupt on
iof
 Interrupt off
sfi
 Set input flag
sfo��
 Set output flag

Example: To write an assembly program for the
implemented basic computer, follow these steps:
• Write an assembly program, using a text editor

such as Microsoft Notebook.

• Save the file as text only, using a ".asm" extension,
in the same directory as the Basic Computer
Assembler.

• Using Windows Explorer or a command window,
start the assembler.

• When the assembler comes up, enter the name of
your file with .asm extension.

Fig. 7: Listing file of an assembly program.

Three new files are generated in the directory, the
assembly language file with extensions .mem, and the
list file with .lst extension (see Fig. 7), and the binary
file have a "mem1.dat" name.

SIMULATION AND FPGA IMPLEMENTATION

Once files defining mico-operations are ready, the

proposed computer can be entirely simulated with the
simulator included in the Xilinx Development
Environment. This is found particularly important to
help students to;
• understand what is going on and why,
• check that obtained values from simulation confirm

to what is expected,
• verify and follow the progression of the signals

directly on the screen, since it matches the
architecture layout given in Fig. 5.

Figure 8 shows the trace window for the signals

generated by the assembly program given in Fig.7. By
examining the control signals, contents of computer
registers and memory at address 1 to 9 and at addresses
900, 901 1000 and 1001, we can determine whether the
prototype is functioning correctly or not? Once we have

Basic Computer Assembler

prog1.mem��Mem1.dat prog1.lst

J. Computer Sci., 3 (8): 624-632, 2007
��

��630

Fig. 8: Waveforms Generated by the Program in Fig. 7.

Fig. 9: Teaching Tool Screen.

determined that the design is functioning

correctly we are ready to proceed to the synthesis and
device programming to generate a configuration that
will program an FPGA device to implement the
proposed computer system.

Field programmable gate arrays are a class of
programmable logic devices based on an array of
logic cells surrounded by a periphery of input/output
cells. These programmable integrated circuits can be
programmed in the field to implement specific design
function. A basic computer architecture is created
from the ground up as a scalable architecture,
covering the basic operations in 16-bit processor
domain.

The general layout of the user I/O user interface
of the teaching tool is given in Fig. 9. An I/O
interface is connected to the FPGA board to input any
command or data from the student and to monitor
current values of all registers, flags and related
memory locations.

There are eight slide switches (SW0-SW7) in the
system. Switches (SW4-7) are used as input data,
switches (SW1 & SW2) are used as external

J. Computer Sci., 3 (8): 624-632, 2007
��

��631

Table 7: Device Characteristics
Device: Xilinx Spartan-3 XC3S200FT256
Slices: 3584, 256-ball thin Ball Grid Array

System
gates

Logic cells Multipliers blocks
(18*18)

Digital
Clock

Managers

Max I/O
Signals

200 k 4320 12 4 173
Select RAM

18K-bits
Blocks

Max RAM
K-bits

In-system
programmable
configuration

PROM

Fast Asynchronous
SRAM

12 216 2 M-bits 1 M-byte

Table 8: Macro Statistics
ROMs 16x7-bit

Registers 17
Counters 3
Multiplexers 7
Tri-states 27
Decoders 2

Adders/Subtractors 4

Verilog
Description

Simple Computer
Design Specifications

Simulation

Error?

Yes

Assembler Design
Specifications

Assembler
Implementation

Emulation

Top Level
Circuit Entry

Sub-Circuit
Entry

Preliminary Choices
of Leaf Parts

Error?
Yes

Timing Constraints

No

Error?

Synthesize

No

Error?
Yes

Place & Route

Error?

No

Yes
Run

Memory

No

Machine
Code

No

FPGA

 Fig. 10: Design Flow Map

Table 9: Utilization Summary
Item Used Available Percentage

Slices 433 3584 12%
Slice Flip Flops 114 7168 1%
4 input LUTs 802 7168 11%
Bonded IOBs 23 173 13%
GCLKs 2 8 25%

interrupts, while switch (SW0) is used to indicate if
the clock is a system clock or a user clock. Figure 10
shows the design procedure of the basic computer.
Table 7 shows the different characteristics of the
FPGA board used in the implementation[11,12. Tables
8 and 9 show the macro statistics and FPGA
resources are shown in Tables 8 and 9 respectively.

CONCLUSION

This paper addressed the importance of using
computer simulation and FPGA realization in
learning computer organization and architecture. The
given teaching tool can be considered as a useful
practical addition to computer engineering and
computer science curricula. This teaching tool helps
computer engineering and computer science students
to be familiarized practically with computer
organization and architecture through development of
their own instruction set and computer programming
and interfacing experiments. In this paper;
• The simulation of a single cycle basic computer

and the implementation of an assembler has been
presented.

• The micro-operation of the computer module and
its assembler are implemented on Xilinx
Spartan-3 FPGA board, since it offers good code
density, easy customization, easily developed
software, high performance and small area.

• It is worthwhile to mention that this teaching tool
has been developed and implemented using
popular Xilinx boards found in many
universities. It has been tested by 3rd year
undergraduate students enrolled at the computer
architecture course given at Philadelphia
university-Jordan. The students performed better
when they used this teaching tool.

• The codes of the various modules are
implemented and tested with a program which
utilizes every instruction as well as exercises the
critical paths of the chip.

• This FPGA application runs at a maximum
frequency of 73.465 MHz.

J. Computer Sci., 3 (8): 624-632, 2007
��

��632

REFERENCES

1. Holland, M., J. Harris and S. Hauck, 2003.

Harnessing FPGAs for computer architecture
education, Proceedings of the IEEE Intr. Conf.
on Microelectronic Systems Education (MSE03),
USA.

2. Hatfield, B. and M. Rieker, 2005. Incorporating
simulation and implementation into teaching
computer organization and architecture", 35th
ASEE/IEEE Frontiers in Education Conf,
Indianapolis, USA, pp: FIG-18.

3. Al-Aubidy, K. M., R. F. Al-Bader and A. A.
Samadi, 2005. Simulation and FPGA
implementation of a simple computer. The 7th
Middle Eastern Simulation Multiconference
"MESM2005", Porto, pp:151-158.

4. Quintans, C. and M. D. Valdes, L. Fernandez-
Ferreira, M. J. Moure & E. Mandado, 2005.
Digital electronics learning system based on
FPGA applications, 35th ASEE/IEEE Frontiers in
Education Conf, Indianapolis, USA, pp: S2G-7.

5. Li, Y. and W. Chu, 1996. Using FPGA for
computer architecture/organization education,
EEE Computer Society Press, USA, pp.31-35.

6. Sugawara, Y. and K. Hiraki, 2006. A computer
architecture education curriculum through the
design and implementation of original processors
using FPGAs, 36th ASEE/IEEE Frontiers in
Education Conference.

7. Hennessy, J. L. and D. A. Patterson, 2003.
Computer architecture: a quantitative approach,
Morgan Kaufmann, USA.

8. Ciletti M. D., 2002. Advanced digital design
with the Verilog HDL, Prentice Hall, USA.

9. Yalamanchili S., 2001. Introductory VHDL:
from simulation to synthesis, Prentice Hall,
USA.

10. Krid M. and D. S. M. Masmoudi, 2005. FPGA
implementation of a feedforward neural network,
3rd Intr. Conf. on Systems, Signals & Devices
(SSD05), Tunisia, pp: .

11. Digilentic Co, 2004. Spartan-3 starter kit board
user guide, Digilentic Co.,
www.digilentinc.com.

12. ST Microelectronics, 2004. Design guide for
Xilinx FPGA power management systems, ST
Microelectronics, Version 1.2, pp.1-11.

