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Abstract:  This paper presents the design concepts and realization of incorporating micro-operation 
simulation and FPGA implementation into a teaching tool for computer organization and architecture.  
This teaching tool helps computer engineering and computer science students to be familiarized 
practically with computer organization and architecture through the development of their own 
instruction set, computer programming and interfacing experiments. A two-pass assembler has been 
designed and implemented to write assembly programs in this teaching tool. In addition to the micro-
operation simulation, the complete configuration can be run on Xilinx Spartan-3 FPGA board. Such 
implementation offers good code density, easy customization, easily developed software, small area, 
and high performance at low cost.   
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INTRODUCTION 
 

Computer organization and architecture is a 
common course that is offered at universities 
throughout the world [1].  Traditionally, teaching such a 
course to computer engineering and computer science 
students can be insufficient if the teaching focus is 
solely on textbook materials [2,3]. Students often have to 
rely on their imaginations to understand the underlying 
hardware-related concepts. In most universities, 
students learn computer design concepts by software 
implementing individual pieces of a computer. This 
approach has several limitations, while students can 
simulate their design using software, they don’t have 
the chance to realize or run their design in hardware [4]. 
Also, it is not feasible to build a laboratory that can 
provide various computer architectures for teaching 
computer organization and architecture. Hence, keeping 
computer education up-to-date requires keeping in 
touch with the rapid evolution of the computer 
technology and industry. Searching for an efficient way 
of teaching computer organization and architecture is 
an ongoing task [2]. An active tool will be considered in 
this paper for teaching computer organization and 
architecture by taking advantage of simulation and 
Field Programmable Gate Array (FPGA) technology 
[5,6].  

FPGA technology offers the potential of designing 
high performance systems at low cost. FPGAs have 
been used for many computational tasks [6], and this 
paper presents the micro-operation simulation of a basic 
computer and its implementation on an FPGA. Field 

programmable gate arrays consist of programmable 
logic blocks, which can each implement a small amount 
of digital logic, and programmable routing which 
allows the logic block inputs and outputs to be 
connected to form larger circuits [7,8,9].  

FPGAs have become a popular technology for 
creating digital systems since they can lead to a shorter 
time-to-market for designs than application-specific 
circuits (ASICs) and allow design modifications to be 
made after system creation [10]. The primary method 
used for validating a design with most FPGA design 
flows is simulation.  

This paper presents the micro-operation simulation 
and FPGA realization of a single cycle computer, which 
can be used for educational purposes. This simulation is 
a set of micro-operations that represent the register 
transfer statements of all operations that can be 
implemented.  Also, it covers the design of an 
assembler for the designed computer, which can be 
used for educational purposes.  The student can obtain a 
better understanding of the internal operation of a 
computer by simulating each element, and this will help 
students to study the design and performance issues.  

  
 
 
 
 
 
 
 
 

Fig.  1:  Teaching Tool Layout 
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COMPUTER ORGANIZATION TEACHING 
TOOL 

 
The design of the computer's instruction set is an 

important architectural issue. The processor structure 
and the functionality of the instructions define the 
computer's behavior.  The objective of this work is to 
design a simple computer that will introduce the single-
cycle computer  features to the students.  The internal 
organization of a digital system is defined by sequence 
of micro-operations that perform on data stored in its 
registers. The computer is capable of executing various 
micro-operations and can be instructed to perform a 
sequence of operations.  

 
I1 I0 Op-Code Address/Data 
15 �� ����������������  ����������������������������������������������  

Fig.  2:    Instruction Format 
 
Each component in the proposed computer was 

designed using Verilog HDL. Some components (e.g. 
Main Memory, Registers, …etc) have several modules 
in order to enable the user to choose his own 
architecture.  To realize this choice a special GUI 
software was developed with multiple values selection 
for each component.  These components include: 
• Main Memory Size, which specifies the size of the 

address field in the instruction format; and then the 
size of address related  internal registers. 

• Total number of instructions. 
• Type of instructions; memory-reference (MRI), 

register reference (RRI) and input/output reference 
(IOI) instructions, which results in determining 
number of cycles automatically. 

• Computer Instructions; specify the required 
instructions and their type to determine the size of 
the operation code in the instruction format and 
size of the op-code register automatically. 

• Addressing Modes; which leads to determine the 
number of required bits in the instruction format. 

• Status Flags; specify the required flags such as 
carry flag, zero flag and interrupt flag. 
 
Once a student selects the design parameters, their 

values are written into a file used by the main module 
in the Verilog HDL code in order to build the required 
architecture. Then this architecture is downloaded into 
the FPGA using Project Navigator Package via USB 
port, see Fig.1. 

 
DESIGN EXAMPLE 

 
Instruction codes together with data are stored in 

memory. The computer reads each instruction from 
memory and places it in a control register. The control 
unit then interprets the binary code of the instruction 
and proceeds to execute it by issuing a sequence of 
micro-operations. 

An instruction code is a group of bits that instruct 
the computer to perform a specific operation. It is made 
up of 16 bits, and divided into three parts, as shown in 
Fig.2. Two bits (I1,I0) to specify the addressing mode, 
four bits binary code to specify the operation, and ten 
bits address field. Table 1 illustrates the addressing 
mode of the proposed computer, which is used to: 
• Reduce the number of bits in the address field of 

the instruction, and 
• Give user flexibility in dealing with counters, 

pointers …etc 
A computer needs registers for manipulating data 

and a register for holding a memory address. Nine 
registers are required for the proposed computer, as 
shown in Table 2. 
 
Table 1:    Addressing Modes. 

 
Table 2:   Basic Computer Registers. 

Register Bits 
No. Function 

Memory Buffer Reg. (MBR) 16 Holds memory word 
Memory Address Reg. 

(MAR) 
10 Holds address for memory  

Address  Reg. (AR) 10 Holds operand/instruction add. 
Accumulator (AC) 8 Processor register 
Counter Reg. (CR) 8 Holds count for loops 
Program Counter (PC) 10 Holds address of instruction 
Operation Reg. (OPR) 4 Holds code of operation 
Input Reg. (INP) 8 Holds input character 
Output Reg. (OUTR) 8 Holds output character 

 
Some registers (such as AC, MAR, and MBR) may 

receive data from several multiplexed sources. A basic 
computer has eight registers, a memory unit, and a 
control unit. Paths must be provided to transfer 
information from one register to another and between 
memory to registers. A more efficient scheme for 
transferring information in a system with many 
registers is to use a common bus. A multiplexer can be 
used to design the common bus. The connection of the 
registers to the common bus system is shown in Fig. 3.  
 
Computer Instructions: A basic computer has three 
basic instruction code formats. A memory-reference 
instruction uses ten bits to specify either an address or 
an operand and two bits to specify the addressing mode 
(I0,I1). For immediate addressing it is 00, 01 for direct 
addressing, and 11 for indirect address. The register-
reference instructions are recognized by the operation 
code 1111 and a 00 in the left most bits of the 
instruction. A register-reference instruction specifies an 

I1 I0 Addressing mode 
0 0 Immediate addressing ($ address) 
0 1 Direct addressing 
1 1 Indirect addressing   (# address) 
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operation on the AC register. An operand from memory 
is not needed; therefore, the other 10 bits are used to 
specify the operation to be executed.  
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Fig.  3: Basic Computer Registers Connected to a Common 

Bus. 
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Fig.  4:  Flowchart of Instruction Cycle      ��

 

Table 3:   Basic Computer Instructions. 
Type Symbol Description 

NOP No operation 
ADD Add memory word to AC 
SUB Subtract memory word from AC 
AND AND memory word to AC 
OR OR memory word to AC 
XOR XOR memory word to AC 
LDA Load memory word to AC 
STA Store content to AC in memory 
BUN Branch unconditionally 

BSA Branch and save return address 
DSZ Decrement and skip if zero 
LDC Load CR 
RET Return 
BZ Branch if zero 

M
em

or
y 

R
ef

er
en

ce
  I

ns
tru

ct
io

ns
 

BC Branch if carry 
CLA Clear AC 
CLS Clear all status flags 
CMA Complement AC 
SRA Shift right AC 
SLA Shift left AC 
INC Increment AC R

eg
. R

ef
er

en
ce

 
In

st
ru

ct
io

ns
 

HALT Terminate program 
INP Input character to AC 
OUT Output character from AC 
SKI Skip on input flag 
SKO Skip on output flag 
ION Interrupt on 
IOF Interrupt off 
SFI Set input flag I/

O
  R

ef
er

en
ce

  
In

st
ru

ct
io

ns
 

SFO Set output flag 
 

Similarly, an input-output instruction does not need a 
reference to memory and is recognized by the operation 
code 1111 and 11 in the left most bits of the instruction. 
The remaining 10 bits are used to specify the type of 
the input-output operation. This technique allows 
having up to 35 different operations, as given in Table 3. 
 
Timing and Control: The timing for all registers in the 
basic computer is controlled by a master clock 
generator. The control signals are generated by the 
control unit and provide control inputs for the 
multiplexer in the common bus, control inputs in 
processor registers, and micro-operations for the 
accumulator. The control unit, Fig. 3, consists of three 
decoders, a sequence counter, and a number of control 
logic gates. The control unit gets the operation code 
from the OPR through a 4x16 decoder. Bits 14 & 15 of 
the instruction code are transferred to two flip-flops 
designated by the symbols I0 & I1. Bits 0 through 9 are 
applied to the control logic gated directly from the 
MBR through the common bus. The outputs of the 
counter are decoded into 4 timing signals T0 through T3.  
The sequence counter (SC) can be incremented or 
cleared. Most of the time, the counter is incremented to 
provide the sequence of timing signals out of the 2x4 
decoder. Once, the counter is cleared, causing the next 
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active timing signal to T0. The decoder is used to 
determine the cycle to be performed. 

 
INSTRUCTION CYCLES  

A program residing in the memory unit of the 
computer consists of a sequence of instructions. Each 
instruction cycle is subdivided into a sequence of sub-
cycles. The value of three flip-flops is entered into a 
decoder to determine the cycle to be served, as 
illustrated in Table 4.  As illustrated in Fig. 4, each 
instruction cycle is divided into the following five sub-
cycles: 
Fetch and Decode Cycle: Initially, the program 
counter is loaded with the address of the first 
instruction in the program. The sequence counter is 
cleared to 0, providing a decoded timing signal T0. 
After each clock pulse, sequence counter is incremented 
by one, so that the timing signals go through a sequence 
T0, T1, T2 and T3. The micro-operations for the fetch 
and decode cycle can be specified by the following 
statements: 
 

Cycle)(Indirect G     0 F,0  R,1:TCII

Cycle)(Direct G    0 F,1  R,O:TCII

Cycle) (ExecuteG      0 F,1  R,1    :TCI

ARAddressMBR            
 OPR,OP_CodeMBR            

 ),I,(II,IMBR:TC

PC1PC  MBR,M(MAR):TC

MARPC:TC

3001

300I

300

101020

10

00

→→→
→→→

→→→

>→<
>→<

>→<
→+→

→

 

 
Table  4:.  Cycles Combination. 

Flip-flops 
G F R Cycle 
0 0 0 Fetch & Decode 
0 0 1 Indirect 
0 1 0 Direct 
0 1 1 Execution 
1 0 0 Interrupt 

 
Indirect Cycle: At this cycle, the effective address of 
the operand is to be read from the memory. The register 
AR holds the address of memory word which contains 
the effective address of the operand: 
 

Cycle)(Direct G    0 F,1  R,0:TC

ARAddressMBR:TC

MBRM(MAR):TC

MARAR:TC

31

21

11

01

→→→
>→<

→
→

 

Direct Cycle: The effective address of the operand may 
be read during two time pulses. Therefore, to disable 
the delay of waiting for T3, the sequence counter may 
be cleared at time T2. Thus, the next time pulse will be  
T0 of the execution cycle and not T3 of the indirect 
cycle: 

Cycle) (Execution  CC0            

G,0 F,1  R,1:TC

MBR,M(MAR):TC

MARAR:TC

22

12

02

→
→→→

→
→

 

Execute Cycle: At this cycle, the fetched instruction 
(register-reference, memory reference, or input-output-
reference) is executed. The type of the instruction is 
decided according to: 

- If  0q15 = , then RRI. 

- If  1 IIq 0115 = , then RRI. 

- If 1 IIq 0115 =  , then IOI. 
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Fig .5:  Basic Computer Block Diagram 
 



J. Computer Sci., 3 (8): 624-632, 2007 
��

��628

Table 5: Control functions and micro-operations for  
selected instructions 

Symbol Miro-operations 

ADD AC DataMBRAC :TCq 030 →><+  

OR AC DataMBRAC :TCq 033 →><�  

STA 
M(MAR) DataMBR :TCq

DataMBRAC MAR, AR :TCq

136

036

→><
><→→  

BSA 

PCAR :TCq
AR1AR              

M(MAR), AddressMBR :TCq

MAR AR ,AddressMBRPC :TCq

238

138

038

→
→+

→><
→><→

 

LDC CR DataMBR :TCq 0310 →><  

RET 
PC addressMBR :TCq

MBR M :TCq

0 :TCq

2311

1311

0311

→><
→><

→
MAR

MAR
 

CLA AC0 :TrB 00 →  

SRA AC(7)0 AC,SHR(AC):TrB 03 →→  

INP FGI0 AC,INPR:TpB 00 →→  

SKO PC1PC then 1)IF(FGO:TpB 03 →+=  
Where:    

30115 CIIq r = ,   Common to all RRIs. 

MBR(n)Bn = ,  [MBR (0-9) that specifies the operation] 

30115 CIIq  p =     (Common to all IOIs). 

 
Interrupt Cycle: The interrupt cycle is initiated after 
the execute cycle if the interrupt flip-flop (INF) is equal 
to 1. The flip-flop is set to 1 manually using a switch, 
and it may be set during the execution of the program 
by the instruction ION. The flip-flop is reset to 0 
whenever the interrupt is served or by the instruction 
IOF. 

This basic computer serves the interrupt by saving 
the next sequential instruction in memory address 0, 
and then it starts execution from address 1 in the 
memory. The micro-operations required for this 
instruction are: 

Cycle)(Fetch G        0 F,0 R,0:TC

PC1PC M(MAR),DataMBR:TC

MAR0 PC,0 :TC

INF0 ,DataMBRPC:TC

34

24

14

04

→→→
→+>→<

→→
→><→

 

Register  Transfer   Statements: A    register   transfer 
language  is  useful not only for describing  the   internal 
organization  of   the   computer, but also   for specifying  
the logic circuits needed for its design. The implemented 
computer    has   35   instructions, as   in  Table     3. Each  
instruction   is  represented by a single statement or a set  
of   statements.   Table 5 illustrates the control functions  

and   micro-operations  for   selected instructions. The  
obtained statements give all the information necessary  
for the design of the logic circuits of the computer.  

The schematic diagram of the basic computer is 
given in Fig. 5. It is compound of one 16-bit register, 
three 10-bit registers, four 8-bit registers, one 4-bit 
register, eight D-Flip-flops, one 1024x16-bit RAM, one 
ALU, one 8-bit inverter, two 2-to-1 Multiplexer, one 4-
to-1 Multiplexer, one 4-to-16 decoder, one 3-to-8 
decoder, one 2-to-4 decoder, and one 2-bit sequence 
counter. 

ASSEMBLER DESIGN 
 

A two pass assembler has been designed and 
implemented to write assembly programs and use the 
output of the assembler to run these programs on the 
basic computer.  Figure 6 shows the files used as input 
and those generated as output by the assembler. These 
are; 
• Source File (input): It is a text file containing the 

source program to be assembled. It has a ".asm" 
extension. It consists of two segments, the code 
segment followed by the data segment. The data 
segment starts with "data:". 

• Binary Code File (output): It contains the 
assembled statements represented in binary form. 
This file is stored in the block memory, and it has a 
".dat" extension. 

• Hex Code File (output): It contains the assembled 
statements in hexadecimal form. This file is stored 
in the external memory, and it has a ".mem" 
extension. 

• Listing file (output): It consists of the source file 
statements, the assembled code, and the Branch 
Vector Table BVT. This file has a ".lst" extension. 
 
The basic computer assembly language character 

set consists of the following subset of the standard 
ASCII character set:  
• Lower-case letters (a to z). 
• Digits 0 through 9. 
• Blanks (ASCII 32). 
 
Assembler Instructions: Any assembly program for 
the basic computer consists of  text lines, and each line 
contains only one instruction and an optional comment. 
Table 6 shows all instructions and their appropriate 
operands and addressing modes.  

A symbolic destination must be placed at the 
beginning of the line of code for branching to a line of 
assembly code. A line that begins with comment 
symbol (//) is considered a comment line.  It is printed 
into the list (.lst) file but will not be encoded into the 
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hex (.mem) and the binary (.dat) files. Comments may 
be added to lines that contain program code. 

 

 
 

Fig.  6:   Assembler Input and Output Files. 
 

Table 6:  Possible Types for Each Assembly Instructions 
Instr.�� Type of operand�� Function 
nop 
�� No operation 
add Immediate data/Add. Add operand to AC 
sub Immediate data/Add. Subtract operand from AC 
and Immediate data/Add. AND operand to AC 
or Immediate data/Add. OR operand to AC 
xor Immediate data/Add. XOR operand to AC 
lda Immediate data/Add. Load operand to AC 
sta Address Store AC content in memory 
bun Label Branch unconditionally 
bsa Label Branch and save return add. 
dsz 
�� Decrement and skip if zero 
ldc Immediate data/Add. Load CR 
ret 
�� Return 
bz Label Branch if zero 
bc Label Branch if carry 
cla 
�� Clear AC 
cls 
 Clear all status flags 

cma 
 Complement AC 
sra Immediate data Shift right AC 
sla Immediate data�� Shift left AC 
inc 
�� Increment AC 
halt�� 
 Terminate program 
inp 
 Input character to AC 
out 
 Output character from AC 
ski�� 
 Skip on input flag 
sko 
 Skip on output flag 
ion 
�� Interrupt on 
iof 
 Interrupt off 
sfi 
 Set input flag 
sfo�� 
 Set output flag 

 
Example: To write an assembly program for the 
implemented basic computer, follow these steps: 
• Write an assembly program, using a text editor 

such as Microsoft Notebook. 

• Save the file as text only, using a ".asm" extension, 
in the same directory as the Basic Computer 
Assembler. 

• Using Windows Explorer or a command window, 
start the assembler. 

• When the assembler comes up, enter the name of 
your file with  .asm extension. 

 

 
Fig. 7:   Listing file of an assembly program. 
 
Three new files are generated in the directory, the 
assembly language file with extensions  .mem, and the 
list file with .lst extension (see Fig. 7), and the binary 
file have a "mem1.dat" name. 
 
SIMULATION AND FPGA IMPLEMENTATION 

 
Once files defining mico-operations are ready, the 

proposed computer can be entirely simulated with the 
simulator included in the Xilinx Development 
Environment. This is found particularly important to 
help students to; 
• understand what is going on and why, 
• check that obtained values from simulation confirm 

to what is expected, 
• verify  and follow the progression of the signals 

directly on the screen, since it matches the 
architecture layout given in Fig. 5. 

 
Figure 8 shows the trace window for the signals 

generated by the assembly program  given in Fig.7. By 
examining the control signals, contents of computer 
registers and memory at address 1 to 9 and at addresses 
900, 901 1000 and 1001, we can determine whether the 
prototype is functioning correctly or not? Once we have 

 

Basic Computer Assembler 

prog1.mem��Mem1.dat prog1.lst 
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Fig. 8:   Waveforms Generated by the Program in Fig. 7. 
 

 

 
Fig. 9: Teaching Tool Screen. 

 
determined that the design is functioning 

correctly we are ready to proceed to the synthesis and 
device programming to generate a configuration that 
will program an FPGA device to implement the 
proposed computer system. 

Field programmable gate arrays are a class of 
programmable logic devices based on an array of 
logic cells surrounded by a periphery of input/output 
cells. These programmable integrated circuits can be 
programmed in the field to implement specific design 
function.  A basic computer architecture is created 
from the ground up as a scalable architecture, 
covering the basic operations in 16-bit processor 
domain.  

The general layout of the user I/O user interface 
of the teaching tool is given in Fig. 9. An I/O 
interface is connected to the FPGA board to input any 
command or data from the student and to monitor 
current values of all registers,  flags and related 
memory locations.   

There are eight slide switches (SW0-SW7) in the 
system. Switches (SW4-7) are used as input data, 
switches (SW1 & SW2) are used as external  
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Table 7:  Device Characteristics 
Device: Xilinx Spartan-3 XC3S200FT256 
Slices: 3584, 256-ball thin Ball Grid Array 

System 
gates 

Logic cells Multipliers blocks 
(18*18) 

Digital 
Clock 

Managers 

Max I/O 
Signals 

200 k 4320 12 4 173 
Select RAM 

18K-bits 
Blocks 

Max RAM  
K-bits 

In-system 
programmable 
configuration 

PROM 

Fast Asynchronous 
SRAM 

12 216 2 M-bits 1 M-byte 
 

Table 8:  Macro Statistics 
ROMs 16x7-bit 

Registers 17 
Counters 3 
Multiplexers 7 
Tri-states 27 
Decoders 2 

Adders/Subtractors 4 
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              Fig. 10: Design Flow Map 
 

Table 9:  Utilization Summary 
Item Used Available Percentage 

Slices 433 3584 12% 
Slice Flip Flops 114 7168 1% 
4 input LUTs 802 7168 11% 
Bonded IOBs 23 173 13% 
GCLKs 2 8 25% 

 
interrupts, while switch (SW0) is used to indicate if 
the clock is a system clock or a user clock. Figure 10 
shows the design procedure of the basic computer. 
Table 7 shows the different characteristics of the 
FPGA board used in the implementation[11,12. Tables 
8 and 9 show the macro statistics and FPGA 
resources are shown in Tables 8 and 9 respectively. 
 

CONCLUSION 
 

This paper addressed the importance of using 
computer simulation and FPGA realization in 
learning computer organization and architecture.  The 
given teaching tool can be considered as a useful 
practical addition to computer engineering and 
computer science curricula.  This teaching tool helps 
computer engineering and computer science students 
to be familiarized practically with computer 
organization and architecture through development of 
their own instruction set and computer programming 
and interfacing experiments.  In this paper; 
• The simulation of a single cycle basic computer 

and the implementation of an assembler has been 
presented. 

• The micro-operation of the computer module and 
its assembler are implemented on Xilinx 
Spartan-3 FPGA board, since it offers good code 
density, easy customization, easily developed 
software, high performance and small area. 

• It is worthwhile to mention that this teaching tool 
has been developed and implemented using 
popular Xilinx boards found in many 
universities. It has been tested by 3rd year 
undergraduate students enrolled at the computer 
architecture course given at Philadelphia 
university-Jordan. The students performed better 
when they used this teaching tool. 

• The codes of the various modules are 
implemented and tested with a program which 
utilizes every instruction as well as exercises the 
critical paths of the chip. 

• This FPGA application runs at a maximum 
frequency of 73.465 MHz. 
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