
Journal of Computer Science 3 (8): 583-591, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Peerayuth Charnsethikul, Operations Research and Management Science Units,
Industrial Engineering Department, Kasetsart University, Bangkok 10903, Thailand

583

An Efficient Algorithm for Capacitated Multifacility Location Problems

Chansiri Singhtaun and Peerayuth Charnsethikul

Operations Research and Management Science Units, Industrial Engineering Department
Kasetsart University, Bangkok 10903, Thailand

Abstract: In this paper, a squared-Euclidean distance multifacility location problem with inseparable
demands under balanced transportation constraints is analyzed. Using calculus to project the problem
onto the space of allocation variables, the problem becomes minimizing concave quadratic integer
programming problem. The algorithm based on extreme point ranking method combining with logical
techniques is developed. The numerical experiments are randomly generated to test efficiency of the
proposed algorithm compared with a linearization algorithm. The results show that the proposed
algorithm provides a better solution on average with less processing time for all various sizes of
problems.

Keywords: Multifacility location problem, Minimizing concave function, Quadratic integer

programming Problem, Extreme point ranking method

INTRODUCTION

 Facility location problem, searching for the
optimum locations of facilities to attain minimum cost
or maximum profit, is a significant problem that almost
every organization has to face with. The appropriate
locations for the facilities, such as warehouses,
factories, service centers, outlets, clinics, and so on, to
provide the minimum total distances between facilities
and customers are completely required to enhance the
organization’s performance. Conversely, if the facilities
are not located in appropriate locations, the company
will not only be suffered from large investment but it
will be suffered from low manufacturing and service
performance for a long period as well. Thus, it is
undeniable that the excellent decision on facility
location is indispensable for all types of organization to
enhance the core competence of the company. As a
consequence, this decision problem has been studied
continuously for many decades in both wider and
deeper area of research.
 Capacitated version of multifacility location-
allocation problem (CMLP), which requires locating a
set of facilities and simultaneously allocating to these
facilities demands for service from a set of customers in
order to optimize some performance criteria, is a
specific class of facility location problem proven to be
NP-hard. This means that it is hard or impossible to be
solved by the exact methods when the problem is large.

Unsurprisingly, most of the developed algorithms for
CMLP are heuristic algorithms, which although cannot
provide the best solution, they give good solutions with
much less computational effort than exact algorithms.
CMLP has been studied in wild diverse versions, which
can be classified as follows. The classical CMLP
studied by Nauss[1], Sa[2], Akino and Khumawala[3]
considered the problem on network and the products are
separable or can be fraction. The p-median problem
studied by Mulvey and Beck[4], Koskosidis and
Powell[5], Lorena and Seene[6] considered the CMLP on
network with inseparable products. The last class which
was studied by Sherali and Tuncbilek[7] is to consider
CMLP on plane with separable products. Therefore, the
heuristic algorithms for CMLP have wild varieties
depending on defining the problem.

In this paper, an efficient algorithm for another
specific class of CMLP, which considers the problem
on plane with inseparable product, is developed under
balanced transportation constraints. The objective is to
minimize total distance measured by squared-Euclidean
metric between the facilities and customers. It will be
hereafter called Capacitated Multifacility Location
Clustering Problem (CMLCP). The applications of
CMLCP can be usually found in computer network or
electronics system setup such as finding the appropriate
locations of computer servers and allocation of the
clients to these servers in order to minimize losses due
to distance between servers and clients.

J. Computer Sci., 3 (8): 583-591, 2007

 584

MATERIALS AND METHOD

This part describes the proposed algorithm to solve
CMLCP which can be divided into 3 sections as
follows.
Define the problem and formulate mathematical
model: The studied problem is described as follows.
There are 1m > new facilities to be located on the
continuous plane with a certain capacity. They have to
serve n customers in their responsibilities whose
locations and inseparable products or demands are
known and deterministic. The objective is to find the
good locations of these new facilities and allocation of
customers to them so as to minimize the total distance
measured in squared-Euclidean metric with respect to
facility capacity. The problem can be mathematically
formulated as follows.

2 2

1 1

Minimize [() (-)]
j i j i j

m n

ij
i j

z w x a y b
= =

− +�� (1)

1

1

1, if customer is assigned to facility
,where

0, otherwise

subject to 1 ; 1, ...,

 ; 1, ...,

i

ij

i

m

ij

ij j i
j

n

j i
z

s

z j n

z w s i m

=

=

=

= =

= =

�
�
�

�

�

 is capacity of facility ; 1, ...,

 is demand of customer ; 1, ...,

 (,) is known co-ordinate of customer on plane

 (,) is unkown co-ordina

j

j j

i i

i i m

w j j n

a b

x y

=

=

te of facilities on plane

 and ,
i

m
ix y R∈

The objective function above gives the total
transportation cost, while the first constraint set ensures
that all customer demands are satisfied and the second
constraint set ensures that all facility capacity limitation
are respect. If the allocation variable ijz is fixed, the

unconstrained minimum of the strictly convex objective
function is readily obtained by partial derivatives of
equation (1) to ix and iy at the solution

1 1

1 1

 and ; 1,...,
ij j j ij j j

n

ij j ij j

n n

j j
i i n

j j

z w a z w b

x y i m
z w z w

= =

= =

= = =
� �

� �
 (2)

Substituting (2) into the objective function of (1), the
objective function can be projected onto the

space of ijz variables as follows.

2

2 2

2

1

1 1 1 1 1 1

 + 2ij j

ij j j j ij j j ij j j j
n

ij j
j

m n n n n n

ij
i j j j j j

z w
z wb b z wb z w b z w

z w
=

= = = = = =
− +

� �� � � �� � � �
	
� � � �� � � �

 �
 �
 �
 �� �� �

� �

 �

�� � � � �
�

2 2 2 2

1 1 1 1

1

1
= () () ()ij j j ij j j j j j

ij j

m n n n

n
i j j j

j

z wa z wb w a b

z w= = = =

=

− + + +
� �
	

� �

� � � �
�

 (3)

The equation (3), which is the reduced objective
function (1), is equivalent to the following equation����

����

2 2

1 1 1

1

1
Minimize () ()ij j j ij j j

ij j

m n n

n
i j j

j

z w a z wb
z w= = =

=

− +
� �
	

� �

� � �
�

 (4)

or,

2 2

1 1 1

1

1
Maximize () ()ij j j ij j j

ij j

m n n

n
i j j

j

z w a z w b
z w= = =

=

+
� �
	

� �

� � �
�

 (5)

The problem (1) with objective function (4) can be
written in the matrix form as follows.

2 2

1

1

1
1: Minimize () () ()

1 1

2

m
t t

i i
i i

m
t t

i i
i i

z S
P f z z wa z wb

s

z Hz z Gz
s

=

=

∈

� �
� �= − +� �� �

� �

� �≡ − ≡� �

�

�

 (6)

1 1

1 1

1 1

1 2

,where {0,1}, 1,

 [,...,] ; 1,...,

 [,...,] ; 1,...,

 [, ,...,] ; 1,.

m n

ij ij ij j i
i j

n n

n n

i i i in

S z z and z w s

wa w a w a j n

wb w b w b j n

z z z z i

= =

� �
= ∈ = =� �
� �

= ∀ =
= ∀ =

= ∀ =

� �

..,

 ()
 a negative semi-definite symmetric matrix

 Hessian Matrix of objective function (4)

t t

m

H wa wa wb wb

G

= +
=
=

� �

2 2

2

2

2

1 1 1 1 1 1

1

2

1 1 1

1

Min

) 2

m n n n n n
ij j

ij j j j ij j ij j j j ij j
ni j j j j j

ij j
j

n n n
ij j

ij j j j ij j j ij j j ij
n j j j

ij j
j

z w
z wa a z w z wb b z w

z w

z w
z wa a z wa z w a z

z w

= = = = = =

=

= = =

=

− + −

= +

� �� � � �
	
� � � �

� �
 �
 �	
� �
� �

 �

� � � �� �
� � � �� �

� �
 �
 �
 �
� �

 �

−

�� � � � �
�

� � �
�

2

1 1 1

m n n

j
i j j

w
= = =

� �� �
	
� �

 �	
� �
�� �

J. Computer Sci., 3 (8): 583-591, 2007

 585

Algorithms development: Observing that problem (6)
is minimizing concave function or maximizing convex
function subject to convex set of constraints, the
optimal solutions occur at the extreme point of the
convex set[8]. Therefore, the proposed algorithm is
based upon extreme point ranking method, which is a
specific algorithm for this kind of problem. Moreover,
since the problem is 0-1 quadratic integer
programming, then logic based method will be
combined to reduce the number of variables by fixing
value of some variables. After that, the next adjacent
vertices will be explored by exchanging cluster of
customers corresponding to the balanced transportation
constraints and then be ranked using extreme point
ranking approach. These methods and techniques added
into the algorithm can be described as follows.

Extreme Point Ranking Method: The basic idea of
extreme point ranking is ranking the vertices of the
polytope defining the feasible region in order of
importance regarding the global solution. Starting from
one of the vertices of the polytope, the nearby vertices
are ranked using an extreme point approach. This
provides a new vertex to move to and the process
continues until no adjacent vertices can be found with a
decreasing objective function value. The initial vertex is
found using the same method as Gupta et al.’s
method[9], while the next adjacent vertices are found
using the proposed techniques. At each step, linear
integer programming problem P2 shown below is
solved to provide lower bounds on the objective
function values of the quadratic integer programming
problem P1 while the upper bound can be easily
updated by substituting this solution in ()f z .

1

2 : Minimize ()
2z S

P g z Uz
∈

= (7)

cU (the cth column of matrixU) is found by solving

 = Minimize c
t

c z S
U z G

∈
 (8)

,where - cG is the c th column of G .

Proposition 1 proven below explains how the
solution of P2 can provide lower bound on objective
function P1.

Proposition 1: The solution to problem P2 provides
lower bound on the objective function of P1.

Proof: Let

Since each cU is obtained as an optimal solution, then

 minc c c
t tU z G z G= ≤ .Multiplying 1

2 z× to both sizes,
the equation becomes

1 1

 () ();
2 2

t
c cU z z G z g z f z z S≤ → ≤ ∀ ∈

The above equation shows that, for all feasible
solutions in S, P2 will not give the objective function
value over that of P1. Thus, P2 is the lower bound of
P1.

Proposition 2, proven below, explains how ranking
feasible solutions for P2 can provide the optimal
solution to P1.

Proposition 2: Let rz be rth extreme points ranked in
ascending order of the objective function value of

()g z and kT be the set of all extreme points collected
from the 1st to the kth set of adjacent extreme points.

If { }() min () : (*)
k

rg z f z z T f z≥ ∈ = , then *z is an optimal

solution of P1.

Proof: Since ()rg z is the value of ()g z at the rth best
integer feasible solution of P2, then

() () ; 1v rg z g z v r> ∀ ≥ + . Therefore,

{ }() () () min () : (*)k
v v rf z g z g z f z z T f z≥ > ≥ ∈ =

That is () (*); 1vf z f z v r> ∀ ≥ + . This means that

(*)f z is the least among the values of ()f z at all of
the integer feasible solutions in S. Thus, *z is an
optimal solution of problem P1.

To find cU and ()g z , Hessian matrix generally
found by calculus, is needed. In this paper, the algebraic
method is used to construct the closed form solution to
each component of the Hessian matrix. The algebraic
method arises from finding the closed from solution of
the partial derivative terms corresponding to each

, 1, ..., ; 1, ...,
ij

z i m j n∀ = = . The closed form solutions

are
2 2 2

2

2 ()()

j j j

ij i

w a bf z

z s

+∂
=

∂
 and

2 ()() j k j k j k

ij ik i

w w a a bbf z

z z s

+∂
=

∂ ∂
. Then, plugging these closed

form solutions into their related position in the original
Hessian matrix shown below. 1 1

 {0,1}, 1,
m n

ij ij ij j i
i j

S z z and z w s
= =

� �� �
� �
� �� �

= ∈ = =� �

J. Computer Sci., 3 (8): 583-591, 2007

 586

2 2 2

2
11 11 21 11

2 2 2

2
21 11 21 21

2 2 2

2
11 11

() () ()
. . .

() () ()
. . .

.

.

.

() () ()
. . .

mn

mn

mn mn mn

f z f z f z
z z z z z

f z f z f z
z z z z z

f z f z f z
z z z z z

� �∂ ∂ ∂
	
∂ ∂ ∂ ∂ ∂	

	
∂ ∂ ∂
	

∂ ∂ ∂ ∂ ∂	

	

	

	

	

	

	
∂ ∂ ∂
	
∂ ∂ ∂ ∂ ∂� �

Logic Based Method: The objective of using logic

here is to tighten bound of some variables. Regarding to
0-1 quadratic problem, tightening bound of variables is
equivalent to fix value of variables. This means that the
number of variables to branch will be reduced.
Therefore, the computational time is expected to be
decreased. The logic used here is fixing 0ijz = ,

if j iw s> . Observe that this logic will work only when

some facilities have capacity limitation less than
maximum amount of products shipped:

{ }max ; 1, ...,
i j

s w j n< = .

Exchanging Method: Although the existing

method for finding the next adjacent extreme points in
quadratic integer programming problem is cutting plane
method[9], it was shown to be non-convergent due to
cycling or need an infinite sequence of cutting planes
by Zwart[10]. The reason for the cycling behavior as
well as non-convergence of these approaches lies in the
fact that although the approaches generate cones during
the algorithm, they failed to explicitly incorporate these
cones into the remaining step. This is essential to avoid
the reemergence of vertices that have already been
considered. To avoid the cycling, the exchanging
method is proposed here. The problem here can be
classified into clustering problem with balanced
transportation constraints. Changing value of allocation
variables between 0 and l, which means changing
cluster of customers, affects both demand and supply
constrains. To conserve the balance of the constraints a
customer can move from a current facility to other
facility only when there is another customer requiring
the same amount of products or a group of some
customers whose summation of amount of products
equal to that of leaving customers to exchange with.
The exchanging method proposed here exchanges
customers only one pair of facilities at a time not
consider crossing of the pair to avoid exponentially

growth of computational time. The customers to be
exchanged will be considered in order of appearing in
vector of variable. Therefore, no cycling emerges. The
exchanging method can be summarized as follows. Let
t be number of customers considered to be moved out at
a time. At the kth adjacent extreme point, t customers
running from 1 to k customers of a current facility will
be exchanged with k customers of the other facility
whose summation of amount of products equal to that
of the t customers. Observing that the maximum value
of k is the maximum number of customers assigned to
each facility.

The proposed heuristics, called EPR algorithm, can

be summarized step by step as follows.
INPUT: Locations (,)

j j
a b of customers j on

continuous plane, capacity is of facility i ;

1, ...,i m= and demands
j

w of customer j .

Step 1: Find the initial solution or initial extreme
 point

0
z by solving problem P2.

Take
0

()
l

f g z= as a lower bound and

0()uf f z= as an upper bound on *f . Take

0
z as the ‘current best solution’ to P1. If

luf f= , the current best solution is an optimal
solution (by proposition 2) and then stop.
Otherwise, go to step 2.

Step 2: Search for the new “current best solution”,
which will be the best incumbent solution to
be searched for its next adjacent vertices,

*
0 argmin (); 1,...,cz f z c m n= ∀ = × , where cz is

the optimal solution of cU . This step is done
in order to accelerate process of moving to a
peak of a function.
Take max{ (), 1,..., }cg z c m n∀ = × and

min{ (), 1,..., }cf z c m n∀ = × as a new lower bound

and upper bound�respectively.
Step 3: Find the next adjacent extreme points using

exchanging method. Set k=1. If ()r ug z f≥

; kz T∈ , then stop. The current best solution is
an optimal solution to P1 (by proposition 2).

According to the exchanging method, not

all possible (but some high possibility to be an
optimal solution) extreme points are
considered. Therefore, this optimal condition

J. Computer Sci., 3 (8): 583-591, 2007

 587

may not be satisfied and then 2 following
additional stopping rules are constructed.

• No more possible exchanging pairs of

customers exist.
• There is no improvement of uf within

q=2 consecutive sets of adjacent extreme
points. Note that q can be more than 2.
But, the higher value of q, the more
computational effort is required.

If at least one of these 2 additional stopping
rules is satisfied, the existing current best
solution is the final solution. And, *

uf f= . If

()r ug z f< and the additional stopping rules

are not satisfied, then replace
l

f by ()rg z .

Step 4: If ()r uf z f≤ , then replace
u

f by ()rf z and

replace the current best solution to P1 by rz .
Otherwise, set k= k+1 and return to step 3
without changing

u
f or the current best

solution.

Verification and Validation of the Solutions: To verify
and validate the proposed algorithm the numerical
experiments are done. With MATLAB, both the
proposed algorithm and exact algorithm will be applied
to these sets of data. The solutions and computing time
will be compared. The selected exact algorithm is
linearization algorithm proposed by Glover and
Woolsey[11]. To enhance the efficiency of exact
algorithm, logic based method will be combined. With
linearized objective function of (3), the problem
becomes

() ()2 2 2
1

1 1 1

1
Minimize 2

j j j ij j

i

m n n n

j k j k k ijk
i j j k j

w a b z w w a a bb z
s

−

= = = >

− + + +
� �
	
� �

� � ��

1

1

subject to 1 ; 1,...,

 ; 1,...,

m

ij
i

n

ij j i
j

z j n

z w s i m

=

=

= =

= =

�

�

1, if customer is assigned to facility
here

0, otherwise

 is capacity of facility ; 1, ...,

 is demand of customer

, w

i

j

ij

ijk ij ik

j i
z

z z z

s i i m

w j

=

=

=

�
�
�

 ; 1, ...,

 (,) is known co-ordinate of customer on plane
j j

j n

a b

=

Observe from problem (9) that the last constraint is

the least effective constraint. The experiments for
solving the problems with and without the last
constraints were done with various numbers of facilities
and customers and the results show that the solutions
for both of them are equivalent. Therefore, the last
constraints will be ignored to reduce size of constraints
when the problem is solved with “bintprog”. This
constraint is constructed to force ijkz to be one when

both ijz and ikz are one. The value of ijkz should be

set at one if there is no restriction on it to gain better
objective function value. Therefore, if both ijz and ikz

are one that allows ijkz to be one, the value of ijkz will

be automatically one. As a result, the last constraint will
be cut off and the constraints control value of ijkz will

remain only 0 ij ijkz z− + ≤ and 0ik ijkz z− + ≤ .

There are (1) / 2mn n− additional variables compared

with problem (6) solved by the proposed algorithm.
Problem (9) with (1) / 2mn n + variables will be solved
under branch and bound approach using command
“bintprog” of MATLAB. The solutions obtained from
this algorithm will be sequentially compared with ones
obtained from the proposed algorithm.

RESULTS AND DISCUSSION

This part shows the results of the numerical
experiments and discussion on these results. It is
organized as follows. The first section analyzes the
effect of Hessian construction time on processing time
in order to ensure that most of processing time is
devoted to solving the quadratic integer programming
problem not to developing Hessian matrix. For second
section, the results of numerical experiments with
various problem sizes will be shown and discussed.

(9)

()
 1,..., , 1,..., 1, 2,..., , and

 0

 0 ;

1

 , , {0,1}

ij ijk

ik ijk

ij ik ijk

ij ik ijk

i m j n k n k j

z z

z z

z z z

z z z

= = − = >

− + ≤

− + ≤

+ − ≤

∈

�
�
�
�
�

J. Computer Sci., 3 (8): 583-591, 2007

 588

The effect of Hessian construction time on
processing time: The 5 sets of input data of 13 problem
sizes are randomly generated by fixing number of
factory at m = 2 factories and varying number of
customers (n). And, the number of variables, which
equal the multiplication of m and n, runs from 10 to 240
variables. The measure of processing time will be
divided into two parts: Hessian construction time and
execution time. These times corresponding to problem
sizes are shown in Table 1.

Table 1: Effect of Hessian construction time
 <1> Hessian

Construction
Time

< 2 >
Execution

Time
Process Time
= <1> + <2>

(sec) (sec) (sec)

1 10 0.078 0.238 0.316
2 20 0.216 1.822 2.038
3 30 0.450 4.853 5.303
4 40 0.931 7.303 8.234
5 50 1.828 9.070 10.898
6 80 15.563 57.898 73.461
7 100 42.703 83.602 126.305
8 130 144.797 316.313 461.109
9 150 274.469 225.625 500.094

10 180 547.766 419.609 967.375
11 200 928.359 294.241 1222.600
12 220 1445.600 534.800 1980.400
13 240 2075.900 565.300 2641.200

Problem
no.

Number of
variables =

mxn

Observe from Table 1 that time used to construct
Hessian matrix is still less than execution time if
number of variables are not over 150 variables. For
problems whose number of variables is not less than
150 variables, most of process time are devoted to
constructing Hessian matrix. The Hessian matrix is
theoretically developed by using calculus method,
which is doing double partial derivative corresponding
to each variable. Unsurprisingly, it takes much longer
time developing Hessian matrix when even small
number of variables increase. Time used for developing
Hessian matrix can be reduced by using algebraic
method instead of calculus method. To verify and
measure the efficiency of constructing Hessian matrix
using algebraic method, the same set of experiments
will be solved by the same algorithm but new Hessian
construction method. Process time using new Hessian
construction method compared with the old one (from
Table 1) can be shown in Fig 1.

According to Fig.1, even the problem size grows,
time to construct Hessian matrix by using algebraic
method does not appear. Thus, process time is used
only for solving problem and it seems to be equal to
execution time of using calculus method to construct
Hessian matrix. On contrary, time to construct Hessian
matrix by using calculus method increases rapidly when

problem size grows. Using algebraic method to
construct Hessian matrix is very efficient. As a result,
it will be used to develop Hessian matrix from now on.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

0 50 100 150 200 250

N um be r o f Va ria b le s (m xn)

Tim e (s)
H e s s ia n c o ns truc tio n t im e _c a lc ulus m e tho d
Exe c utio n Tim e _c a lc ulu s m e tho d
P ro c e s s Tim e _c a lc u lus m e tho d
P ro c e s s Tim e _with a lg e bra ic m e tho d

Fig. 1: Comparison of processing time of the two
 methods of constructing Hessian matrix

The results of evaluating EPR algorithm: The
numerical experiments are constructed with various
problem sizes, which number of variables
corresponding to EPR algorithm = m n× no more than
1000 variables. The problem sizes vary from (,)m n = (2,
500) to (20, 50). For each problem size, 10-100 sets of
data are generated and then solved by two algorithms:
EPR algorithm and linearization algorithm. Both
algorithms are coded with MATLAB and use command
“bintprog” at solving step. The processing time and the
following % of error for every case of EPR algorithms
are collected, but only average of them will be reported.

OFV of EPR algorithm- OFVof exact algorithm
% of error 100

OFVof exact algorithm
= ×

OFV abbreviates from objective function value. Since
the number of variable of linearization algorithm grows
nonlinearly when n increase, there are some cases
taking too much time. Therefore, the cases whose
number of variable corresponding to the linearization
algorithm = (1) / 2m n n× × + over 400 will be premature
terminated by time limitation. The level of time
limitation is determined as follows.

J. Computer Sci., 3 (8): 583-591, 2007

 589

Table 2: Processing time of both algorithms and % of error of EPR algorithm

Processing Time Processing Time error Processing Time error Processing Time error
(sec) (sec) (%) (sec) (%) (sec) (%)

1 2 5 30 0.17 10 0.15 0.00 0.15 0.00 0.15 0.00 2.50
2 2 10 110 28.75 20 2.39 7.38 2.39 0.00 2.39 0.00 5.00
3 2 15 240 1190.80 30 10.46 0.65 10.46 0.00 10.46 0.00 7.50
4 2 20 420 8886.67 40 19.98 -16.67 19.98 -26.16 20.01 -26.28 10.00
5 2 30 930 14601.76 60 63.24 -34.35 63.24 -41.66 63.27 -41.78 15.00
6 2 40 1640 36856.08 80 107.08 -39.52 107.09 -53.79 107.13 -53.79 20.00
7 2 50 2550 46024.80 100 617.22 -48.30 617.23 -52.28 617.41 -52.38 25.00
8 2 60 3660 - 120 902.01 - 902.04 - 903.11 - 30.00
9 2 200 40200 - 400 3045.44 - 3045.67 - 3052.12 - 100.00
10 2 500 250500 - 1000 38540.15 - 38547.10 - 38555.76 - 250.00
11 3 5 45 0.45 15 0.97 39.14 0.99 0.00 1.00 0.00 1.67
12 3 8 108 32.29 24 23.02 2.34 23.05 0.00 23.06 0.00 2.67
13 3 10 165 384.17 30 24.65 9.55 24.65 0.00 24.65 0.00 3.33
14 3 11 198 1543.61 33 31.01 26.50 31.02 7.30 31.02 0.00 3.67
15 3 17 459 9069.11 51 253.14 -38.75 253.24 -42.92 253.54 -43.54 5.67
16 3 20 630 11583.40 60 1841.88 -47.69 1841.94 -53.72 1842.87 -54.96 6.67
17 3 25 975 20469.33 75 2450.39 -32.86 2460.19 -37.90 2461.12 -38.04 8.33
18 4 6 84 2.51 24 1.01 4.50 1.02 0.00 1.02 0.00 1.50
19 4 8 144 57.54 32 15.01 2.61 15.01 0.00 15.02 0.00 2.00
20 4 9 180 239.49 36 40.45 10.22 40.45 0.00 40.45 0.00 2.25
21 4 10 220 3978.41 40 162.11 37.92 162.13 0.00 162.14 0.00 2.50
22 4 15 480 9874.46 60 2288.17 -54.80 2288.32 -56.17 2289.09 -56.17 3.75
23 4 20 840 21146.07 80 4530.30 -45.64 4530.31 -48.03 4531.73 -48.03 5.00
24 4 25 1300 49369.65 100 5471.45 -45.49 5471.98 -49.12 5473.58 -49.12 6.25
25 5 8 180 59.90 40 17.80 10.43 17.81 0.00 17.81 0.00 1.60
26 5 9 225 1345.10 45 220.35 0.00 220.35 0.00 221.16 0.00 1.80
27 5 10 275 1997.01 50 267.08 27.87 267.09 0.00 268.01 0.00 2.00
28 5 15 600 15577.95 75 4232.44 -43.35 4232.65 -43.99 4233.94 -43.99 3.00
29 5 20 1050 49591.39 100 6537.17 -36.44 6538.12 -37.97 6539.19 -37.97 4.00
30 5 200 100500 - 1000 28342.19 - 28344.97 - 28351.11 - 40.00
32 6 7 168 7.64 42 3.29 25.36 3.29 0.00 3.29 0.00 1.17
33 6 9 270 193.59 54 173.91 17.65 173.91 0.00 174.17 0.00 1.50
34 6 12 468 5471.55 72 859.23 0.00 859.43 0.00 859.46 0.00 2.00
35 6 15 720 15597.23 90 5711.84 -41.59 5711.85 -43.03 5711.89 -43.03 2.50
36 7 9 315 147.56 63 39.81 5.72 39.82 0.00 39.84 0.00 1.29
37 7 11 462 2146.66 77 601.27 -18.28 602.97 -18.62 603.97 -18.62 1.57
38 7 12 546 6497.42 84 742.01 -34.44 743.21 -35.21 745.07 -35.21 1.71
39 8 10 440 209.34 80 79.24 9.01 79.24 0.00 79.24 0.00 1.25
40 8 11 528 4998.91 88 1653.44 -26.99 1653.49 -26.99 1654.13 -26.99 1.38
41 8 12 624 7848.46 96 1821.29 -21.74 1825.29 -28.39 1831.97 -28.39 1.50
42 20 50 25500 - 1000 9863.45 - 9887.45 - 9923.95 - 2.50

-19.40 + 14.34 %99.99 % Confident interval of average percentage of error -10.83 + 17.91 % -19.129 + 14.42 %

Proble
m No.

Problem Size
Linearization Method EPR Method

m n
No. of

Variables
mn(n+1)/2

n/m

No. of
Variables

(mxn)

Initial Solution Incumbent Solution Final Solution

 Number of variables Terminated Time
400 (1) / 2 750 5 hrs = 18,000 sec.

750< (1) / 2 1000 8 hrs = 28,800 sec.

1000< (1) / 2 24 hrs = 86,400 sec.

m n n

m n n

m n n

≤ × × + ≤

× × + ≤

× × +

The average processing time of both algorithms

and average % of error of EPR algorithm are
summarized in Table 2. In Table 2, the blank cells
represent the unsolvable cases due to number of
variables over limitation of command “bintprog”, while
underlined values shows that there are some cases in
the problem size are premature terminated. There are
10 sets of data for these both cases while 100 sets of
data were generated for the other problem sizes.
Processing time and % of error of EPR algorithm are

separately measured into three parts: processing time to

obtain initial solution (0z), incumbent solution (
0

*
z),

and final solution (; k
rz z T∈), so that the improvement

rate of solution can be observed.
According to Table 2, EPR algorithm not only

provides better solution, but also utilizes much less
computational time than linearization algorithm for all
problem sizes. Observe that, for all sizes m of facility
processing time of linearization algorithm grows
exponentially when n increases even there are
premature terminated cases, while that of EPR
algorithm almost disappear when m is small and grows
linearly when m is larger.

J. Computer Sci., 3 (8): 583-591, 2007

 590

The proposed movement mechanism in EPR
algorithm works very well. Moving from 0z to

0

*
z by

examining cz , is very efficient and effective. It can
reduces much % of error with no difference of
processing time appear. Moving from

0

*
z to final

solution ; k
rz z T∈ and proposed additional stopping

rules also works efficiently and effectively because the
EPR algorithm stops at optimal solutions or good
solutions, compared with solutions from linearization
algorithm with and without premature termination
respectively, with few additional processing time.

The proposed logic based method is very efficient
and effective because it reduces processing time of both
algorithms. For the linearization algorithm, the
premature terminated cases can stop at optimal
condition with much less time after combining logic
based method.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

0 10 20 30 40 50 60 70 80 90 100

m x n

Time(s) m=2 m=3 m=4 m=5
m=6 m=7 m=8

Fig. 2: Processing time of EPR algorithm

To observe the efficiency and effectiveness, the
interesting graph, shown in Fig. 2, of processing time of
EPR algorithm corresponding to number of variables
are studied. Observe from Fig. 2 that the beginning of
graph of each m lies below the graph of m-1 at the same
m n× and after passing a certain value of m n× this
graph will lies above graph of m-1. After studying in
detail, this condition can explain as follows. At the
beginning of the curve of each m, average number of
customer in each facility = /n m is very small.

Therefore, there is high possibility to occur the cases
that logic based method can be used
(some max{ ; 1, ..., }i js w j n< =). By numerical

experience, this condition usually occurs when.
/ 2.5n m < . When /n m over this value, the effect of

increasing number of facility m will obviously
expressed. Also, this reason supports summation
derived from Table 2 that even the increasing number
of customers makes increasing processing time but it
has less effect than increasing number of facility.
Conversely, for linearization algorithm, increasing n
has higher effect than increasing m .

CONCLUSION

The EPR algorithm can solve CMLCP, which is

maximizing concave quadratic integer programming
problem with balanced transportation constraints, more
efficiently and effectively than linearization algorithm.
Using much less processing time it provides solutions
with % error = -19.40 + 14.34 % with 99.99%
confidence. In additional, thanks to number of variable
to solve of EPR algorithm is m n× not (1) / 2m n n× × +
like linearization algorithm, it can solve large sized
problems (100 1000)m n< × ≤ that linearization
algorithm cannot solve. The EPR algorithm can
improve solutions in high rate and stop at optimal
solution or good solution compared with non-premature
terminated or premature terminated cases of
linearization algorithm respectively because of good
movement mechanisms. These mechanisms are

selecting
0

*
z using cz based on gradient property

reason and exchanging method based on balanced
transportation constraints. In additional, logic based
method works very well to reduce the processing time
of both algorithms. Thanks to processing time of EPR
algorithm depends on increasing m more than n, the
algorithm is appropriate to use in the realistic problem
that n much more than m.

REFERENCES

1. Nauss, M.R. 1978. An Improved Algorithm for the
Capacitated Facility Location Problem. J.
Operational Research Society, 29(12): 1195-1201.

2. Sa,G. 1969. Branch-and-Bound and Approximate
Solutions to the Capacitated Plant Location
Problem. Operations Research, 17: 1005-1016.

3. Akino, U. and B.M. Khumawala. 1977. An
Efficient Branch and Bound Algorithm for the
Capacitated Warehouse Location Problem.
Management Science, 20: 822-844.

J. Computer Sci., 3 (8): 583-591, 2007

 591

4. Mulvey, J. and Beck, M. 1984. Solving
Capacitated Clustering Problems. J. of Operations
Res., 18: 339- 348.

5. Koskosidis, I. and W.B. Powell. 1992. Clustering
Algorithms for Consolidation of Customer Orders
Into Vehicle Shipments. Transportation Res., 26B:
365-379.

6. Lorena, L.A.N. and E.L.F. Senne. 2003. Local
Search Heuristics for Capacitated p-Median
Problems. Home Page:
 http://www.citeseer.istpsu.edu/306404.htm

7. Sherali, H.D. and Tuncbilek, C.H. 1992. A
Squared-Euclidean distance Location Allocation
Problem. Naval Res. Logistic, 39: 447 –469.

8. Floudas, C.A. and V. Visweswaran. 1995.
Quadratic Optimization. Home Page:

 http://citeseer.ist.psu.edu/26184.html.
9. Gupta, R. and Bandopadhyaya.L, and Puri,.M.C.

1996. Ranking in Quadratic Integer Programming
Problems. European Journal of Operational
Research. 95:231-236.

10. Zwart,P.B. 1973. Nonlinear programming:
Counterexamples to two global optimization
algorithms. Operations Res. 21(6): 1260-1266.

11. Glover,F. and Woolsey , E. 1974. Converting the
0-1 Polynomial Programming Problem to 0-1
Linear Program. Operations Research.22: 180-182.

