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Abstract: In this paper, a squared-Euclidean distance multifacility location problem with inseparable 
demands under balanced transportation constraints is analyzed. Using calculus to project the problem 
onto the space of allocation variables, the problem becomes minimizing concave quadratic integer 
programming problem. The algorithm based on extreme point ranking method combining with logical 
techniques is developed. The numerical experiments are randomly generated to test efficiency of the 
proposed algorithm compared with a linearization algorithm. The results show that the proposed 
algorithm provides a better solution   on average with less processing time for all various sizes of 
problems. 
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INTRODUCTION 
 

 Facility location problem, searching for the 
optimum locations of facilities to attain minimum cost 
or maximum profit, is a significant problem that almost 
every organization has to face with. The appropriate 
locations for the facilities, such as warehouses, 
factories, service centers, outlets, clinics, and so on, to 
provide the minimum total distances between facilities 
and customers are completely required to enhance the 
organization’s performance. Conversely, if the facilities 
are not located in appropriate locations, the company 
will not only be suffered from large investment but it 
will be suffered from low manufacturing and service 
performance for a long period as well. Thus, it is 
undeniable that the excellent decision on facility 
location is indispensable for all types of organization to 
enhance the core competence of the company. As a 
consequence, this decision problem has been studied 
continuously for many decades in both wider and 
deeper area of research. 
 Capacitated version of multifacility location-
allocation problem (CMLP), which requires locating a 
set of facilities and simultaneously allocating to these 
facilities demands for service from a set of customers in 
order to optimize some performance criteria, is a 
specific class of facility location problem proven to be 
NP-hard. This means that it is hard or impossible to be 
solved by the exact methods when the problem is large. 

Unsurprisingly, most of the developed algorithms for 
CMLP are heuristic algorithms, which although cannot 
provide the best solution, they give good solutions with 
much less computational effort than exact algorithms. 
CMLP has been studied in wild diverse versions, which 
can be classified as follows. The classical CMLP 
studied by Nauss[1], Sa[2], Akino and Khumawala[3] 
considered the problem on network and the products are 
separable or can be fraction. The p-median problem 
studied by Mulvey and Beck[4], Koskosidis and 
Powell[5], Lorena and Seene[6] considered the CMLP on 
network with inseparable products. The last class which 
was studied by Sherali and Tuncbilek[7] is to consider 
CMLP on plane with separable products. Therefore, the 
heuristic algorithms for CMLP have wild varieties 
depending on defining the problem. 

In this paper, an efficient algorithm for another 
specific class of CMLP, which considers the problem 
on plane with inseparable product, is developed under 
balanced transportation constraints. The objective is to 
minimize total distance measured by squared-Euclidean 
metric between the facilities and customers. It will be 
hereafter called Capacitated Multifacility Location 
Clustering Problem (CMLCP).  The applications of 
CMLCP can be usually found in computer network or 
electronics system setup such as finding the appropriate 
locations of computer servers and allocation of the 
clients to these servers in order to minimize losses due 
to distance between servers and clients. 
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MATERIALS AND METHOD 
 

This part describes the proposed algorithm to solve 
CMLCP which can be divided into 3 sections as 
follows. 
Define the problem and formulate mathematical 
model: The studied problem is described as follows. 
There are 1m >  new facilities to be located on the 
continuous plane with a certain capacity. They have to 
serve n  customers in their responsibilities whose 
locations and inseparable products or demands are 
known and deterministic. The objective is to find the 
good locations of these new facilities and allocation of 
customers to them so as to minimize the total distance 
measured in squared-Euclidean metric with respect to 
facility capacity. The problem can be mathematically 
formulated as follows. 
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The objective function above gives the total 
transportation cost, while the first constraint set ensures 
that all customer demands are satisfied and the second 
constraint set ensures that all facility capacity limitation 
are respect. If the allocation variable ijz  is fixed, the 

unconstrained minimum of the strictly convex objective 
function is readily obtained by partial derivatives of 
equation (1) to ix  and iy  at the solution   
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Substituting (2) into the objective function of (1), the 
objective function can be projected onto the  
 

space of ijz  variables as follows. 
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The equation (3), which is the reduced objective 
function (1), is equivalent to the following equation����
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The problem (1) with objective function (4) can be 
written in the matrix form as follows. 
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Algorithms development:  Observing that problem (6) 
is minimizing concave function or maximizing convex 
function subject to convex set of constraints, the 
optimal solutions occur at the extreme point of the 
convex set[8]. Therefore, the proposed algorithm is 
based upon extreme point ranking method, which is a 
specific algorithm for this kind of problem.  Moreover, 
since the problem is 0-1 quadratic integer 
programming, then logic based method will be 
combined to reduce the number of variables by fixing 
value of some variables. After that, the next adjacent 
vertices will be explored by exchanging cluster of 
customers corresponding to the balanced transportation 
constraints and then be ranked using extreme point 
ranking approach. These methods and techniques added 
into the algorithm can be described as follows.  
 
Extreme Point Ranking Method: The basic idea of 
extreme point ranking is ranking the vertices of the 
polytope defining the feasible region in order of 
importance regarding the global solution. Starting from 
one of the vertices of the polytope, the nearby vertices 
are ranked using an extreme point approach. This 
provides a new vertex to move to and the process 
continues until no adjacent vertices can be found with a 
decreasing objective function value. The initial vertex is 
found using the same method as Gupta et al.’s 
method[9], while the next adjacent vertices are found 
using the proposed techniques. At each step, linear 
integer programming problem P2 shown below is 
solved to provide lower bounds on the objective 
function values of the quadratic integer programming 
problem P1 while the upper bound can be easily 
updated by substituting this solution in ( )f z .  
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Proposition 1 proven below explains how the 
solution of P2 can provide lower bound on objective 
function P1. 

 
Proposition 1: The solution to problem P2 provides 
lower bound on the objective function of P1. 
 
 
Proof: Let  
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The above equation shows that, for all feasible 
solutions in S, P2 will not give the objective function 
value over that of P1. Thus, P2 is the lower bound of 
P1.                                                  

Proposition 2, proven below, explains how ranking 
feasible solutions for P2 can provide the optimal 
solution to P1. 
 
Proposition 2: Let rz  be rth extreme points ranked in 
ascending order of the objective function value of  
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Logic Based Method: The objective of using logic 

here is to tighten bound of some variables. Regarding to 
0-1 quadratic problem, tightening bound of variables is 
equivalent to fix value of variables. This means that the 
number of variables to branch will be reduced. 
Therefore, the computational time is expected to be 
decreased. The logic used here is fixing 0ijz = , 

if j iw s> . Observe that this logic will work only when 

some facilities have capacity limitation less than 
maximum amount of products shipped: 

{ }max ; 1, ...,
i j

s w j n< = .         

 
Exchanging Method: Although the existing 

method for finding the next adjacent extreme points in 
quadratic integer programming problem is cutting plane 
method[9], it was shown to be non-convergent due to 
cycling or need an infinite sequence of cutting planes 
by Zwart[10]. The reason for the cycling behavior as 
well as non-convergence of these approaches lies in the 
fact that although the approaches generate cones during 
the algorithm, they failed to explicitly incorporate these 
cones into the remaining step. This is essential to avoid 
the reemergence of vertices that have already been 
considered. To avoid the cycling, the exchanging 
method is proposed here. The problem here can be 
classified into clustering problem with balanced 
transportation constraints. Changing value of allocation 
variables between 0 and l, which means changing 
cluster of customers, affects both demand and supply 
constrains.  To conserve the balance of the constraints a 
customer can move from a current facility to other 
facility only when there is another customer requiring 
the same amount of products or a group of some 
customers whose summation of amount of products 
equal to that of leaving customers to exchange with. 
The exchanging method proposed here exchanges 
customers only one pair of facilities at a time not 
consider crossing of the pair to avoid exponentially 

growth of computational time. The customers to be 
exchanged will be considered in order of appearing in 
vector of variable. Therefore, no cycling emerges. The 
exchanging method can be summarized as follows. Let 
t be number of customers considered to be moved out at 
a time. At the kth adjacent extreme point, t customers 
running from 1 to k customers of a current facility will 
be exchanged with k customers of the other facility 
whose summation of amount of products equal to that 
of the t customers.  Observing that the maximum value 
of k is the maximum number of customers assigned to 
each facility. 

 
The proposed heuristics, called EPR algorithm, can 

be summarized step by step as follows. 
INPUT:   Locations ( , )

j j
a b of customers j  on   

continuous plane, capacity is of facility i ; 

1, ...,i m=  and demands 
j

w of customer j .                            

Step 1:   Find the initial solution or initial extreme  
                 point 

0
z  by solving problem P2. 

Take
0

( )
l

f g z= as a lower bound and 

0( )uf f z= as an upper bound on *f . Take 

0
z as the ‘current best solution’ to P1. If 

luf f= , the current best solution is an optimal 
solution (by proposition 2) and then stop. 
Otherwise, go to step 2. 

Step 2:   Search for the new “current best solution”,    
which will be the best incumbent solution to 
be searched for its next adjacent vertices, 

*
0 argmin ( ); 1,...,cz f z c m n= ∀ = ×  ,  where cz is 

the optimal solution of cU . This step is done 
in order to accelerate process of moving to a 
peak of a function.  
Take max{ ( ), 1,..., }cg z c m n∀ = ×  and 

min{ ( ), 1,..., }cf z c m n∀ = ×  as a new lower bound 

and upper bound�respectively. 
Step 3:  Find the next adjacent extreme points using  

exchanging method. Set k=1. If ( )r ug z f≥  

; kz T∈ , then stop. The current best solution is 
an optimal solution to P1 (by proposition 2).  

 
According to the exchanging method, not 

all possible (but some high possibility to be an 
optimal solution) extreme points are 
considered. Therefore, this optimal condition 
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may not be satisfied and then 2 following 
additional stopping rules are constructed.  

 
• No more possible exchanging pairs of 

customers exist. 
• There is no improvement of uf  within 

q=2 consecutive sets of adjacent extreme 
points. Note that q can be more than 2. 
But, the higher value of q, the more 
computational effort is required. 

If at least one of these 2 additional stopping 
rules is satisfied, the existing current best 
solution is the final solution. And, *

uf f= . If 

( )r ug z f<  and the additional stopping rules 

are not satisfied, then replace 
l

f  by ( )rg z . 

Step 4: If ( )r uf z f≤ , then replace 
u

f by ( )rf z and  

replace the current best solution to P1 by rz . 
Otherwise, set k= k+1 and return to step 3 
without changing 

u
f  or the current best 

solution. 
 

Verification and Validation of the Solutions: To verify 
and validate the proposed algorithm the numerical 
experiments are done. With MATLAB, both the 
proposed algorithm and exact algorithm will be applied 
to these sets of data. The solutions and computing time 
will be compared. The selected exact algorithm is 
linearization algorithm proposed by Glover and 
Woolsey[11]. To enhance the efficiency of exact 
algorithm, logic based method will be combined. With 
linearized objective function of (3), the problem 
becomes  
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Observe from problem (9) that the last constraint is 

the least effective constraint. The experiments for 
solving the problems with and without the last 
constraints were done with various numbers of facilities 
and customers and the results show that the solutions 
for both of them are equivalent. Therefore, the last 
constraints will be ignored to reduce size of constraints 
when the problem is solved with “bintprog”. This 
constraint is constructed to force ijkz  to be one when 

both ijz  and ikz  are one.  The value of ijkz  should be 

set at one if there is no restriction on it to gain better 
objective function value. Therefore, if both ijz  and ikz  

are one that allows ijkz  to be one, the value of ijkz  will 

be automatically one. As a result, the last constraint will 
be cut off and the constraints control value of ijkz  will 

remain only 0 ij ijkz z− + ≤  and 0ik ijkz z− + ≤ .  

 
There are ( 1) / 2mn n−  additional variables compared 

with problem (6) solved by the proposed algorithm. 
Problem (9) with ( 1) / 2mn n + variables will be solved 
under branch and bound approach using command 
“bintprog” of MATLAB. The solutions obtained from 
this algorithm will be sequentially compared with ones 
obtained from the proposed algorithm. 
 

RESULTS AND DISCUSSION 
 

This part shows the results of the numerical 
experiments and discussion on these results. It is 
organized as follows. The first section analyzes the 
effect of Hessian construction time on processing time 
in order to ensure that most of processing time is 
devoted to solving the quadratic integer programming 
problem not to developing Hessian matrix. For second 
section, the results of numerical experiments with 
various problem sizes will be shown and discussed. 
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The effect of Hessian construction time on 
processing time: The 5 sets of input data of 13 problem 
sizes are randomly generated by fixing number of 
factory at m = 2 factories and varying number of 
customers (n). And, the number of variables, which 
equal the multiplication of m and n, runs from 10 to 240 
variables. The measure of processing time will be 
divided into two parts: Hessian construction time and 
execution time. These times corresponding to problem 
sizes are shown in Table 1. 
 
Table 1:  Effect of Hessian construction time  
 <1> Hessian 

Construction 
Time

< 2 > 
Execution 

Time
Process Time 
= <1> + <2>

(sec) (sec) (sec)

1 10 0.078 0.238 0.316
2 20 0.216 1.822 2.038
3 30 0.450 4.853 5.303
4 40 0.931 7.303 8.234
5 50 1.828 9.070 10.898
6 80 15.563 57.898 73.461
7 100 42.703 83.602 126.305
8 130 144.797 316.313 461.109
9 150 274.469 225.625 500.094

10 180 547.766 419.609 967.375
11 200 928.359 294.241 1222.600
12 220 1445.600 534.800 1980.400
13 240 2075.900 565.300 2641.200

Problem 
no.

Number of 
variables = 

mxn

  
 

Observe from Table 1 that time used to construct 
Hessian matrix is still less than execution time if 
number of variables are not over 150 variables. For 
problems whose number of variables is not less than 
150 variables, most of process time are devoted to 
constructing Hessian matrix. The Hessian matrix is 
theoretically developed by using calculus method, 
which is doing double partial derivative corresponding 
to each variable. Unsurprisingly, it takes much longer 
time developing Hessian matrix when even small 
number of variables increase. Time used for developing 
Hessian matrix can be reduced by using algebraic 
method instead of calculus method. To verify and 
measure the efficiency of constructing Hessian matrix 
using algebraic method, the same set of experiments 
will be solved by the same algorithm but new Hessian 
construction method. Process time using new Hessian 
construction method compared with the old one (from 
Table 1) can be shown in Fig 1.  

According to Fig.1, even the problem size grows, 
time to construct Hessian matrix by using algebraic 
method does not appear. Thus, process time is used 
only for solving problem and it seems to be equal to 
execution time of using calculus method to construct 
Hessian matrix. On contrary, time to construct Hessian 
matrix by using calculus method increases rapidly when 

problem size grows. Using algebraic method to 
construct Hessian matrix is very efficient.  As a result, 
it will be used to develop Hessian matrix from now on. 
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Fig. 1: Comparison of processing time of the two  
           methods of constructing Hessian matrix 
 
The results of evaluating EPR algorithm: The 
numerical experiments are constructed with various 
problem sizes, which number of variables 
corresponding to EPR algorithm = m n×  no more than 
1000 variables. The problem sizes vary from ( , )m n = (2, 
500) to (20, 50). For each problem size, 10-100 sets of 
data are generated and then solved by two algorithms: 
EPR algorithm and linearization algorithm. Both 
algorithms are coded with MATLAB and use command 
“bintprog” at solving step. The processing time and the 
following % of error for every case of EPR algorithms 
are collected, but only average of them will be reported.  
 

OFV of EPR algorithm- OFVof exact algorithm
% of error 100

OFVof exact algorithm
= ×  

OFV abbreviates from objective function value. Since 
the number of variable of linearization algorithm grows 
nonlinearly when n increase, there are some cases 
taking too much time. Therefore, the cases whose 
number of variable corresponding to the linearization 
algorithm = ( 1) / 2m n n× × +  over 400 will be premature 
terminated by time limitation. The level of time 
limitation is determined as follows. 
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Table 2:  Processing time of both algorithms and % of error of EPR algorithm 

Processing Time Processing Time error Processing Time  error Processing Time error
(sec) (sec) (%) (sec) (%) (sec) (%)

1 2 5 30 0.17 10 0.15 0.00 0.15 0.00 0.15 0.00 2.50
2 2 10 110 28.75 20 2.39 7.38 2.39 0.00 2.39 0.00 5.00
3 2 15 240 1190.80 30 10.46 0.65 10.46 0.00 10.46 0.00 7.50
4 2 20 420 8886.67 40 19.98 -16.67 19.98 -26.16 20.01 -26.28 10.00
5 2 30 930 14601.76 60 63.24 -34.35 63.24 -41.66 63.27 -41.78 15.00
6 2 40 1640 36856.08 80 107.08 -39.52 107.09 -53.79 107.13 -53.79 20.00
7 2 50 2550 46024.80 100 617.22 -48.30 617.23 -52.28 617.41 -52.38 25.00
8 2 60 3660  - 120 902.01  - 902.04  - 903.11  - 30.00
9 2 200 40200  - 400 3045.44  - 3045.67  - 3052.12  - 100.00
10 2 500 250500  - 1000 38540.15  - 38547.10  - 38555.76  - 250.00
11 3 5 45 0.45 15 0.97 39.14 0.99 0.00 1.00 0.00 1.67
12 3 8 108 32.29 24 23.02 2.34 23.05 0.00 23.06 0.00 2.67
13 3 10 165 384.17 30 24.65 9.55 24.65 0.00 24.65 0.00 3.33
14 3 11 198 1543.61 33 31.01 26.50 31.02 7.30 31.02 0.00 3.67
15 3 17 459 9069.11 51 253.14 -38.75 253.24 -42.92 253.54 -43.54 5.67
16 3 20 630 11583.40 60 1841.88 -47.69 1841.94 -53.72 1842.87 -54.96 6.67
17 3 25 975 20469.33 75 2450.39 -32.86 2460.19 -37.90 2461.12 -38.04 8.33
18 4 6 84 2.51 24 1.01 4.50 1.02 0.00 1.02 0.00 1.50
19 4 8 144 57.54 32 15.01 2.61 15.01 0.00 15.02 0.00 2.00
20 4 9 180 239.49 36 40.45 10.22 40.45 0.00 40.45 0.00 2.25
21 4 10 220 3978.41 40 162.11 37.92 162.13 0.00 162.14 0.00 2.50
22 4 15 480 9874.46 60 2288.17 -54.80 2288.32 -56.17 2289.09 -56.17 3.75
23 4 20 840 21146.07 80 4530.30 -45.64 4530.31 -48.03 4531.73 -48.03 5.00
24 4 25 1300 49369.65 100 5471.45 -45.49 5471.98 -49.12 5473.58 -49.12 6.25
25 5 8 180 59.90 40 17.80 10.43 17.81 0.00 17.81 0.00 1.60
26 5 9 225 1345.10 45 220.35 0.00 220.35 0.00 221.16 0.00 1.80
27 5 10 275 1997.01 50 267.08 27.87 267.09 0.00 268.01 0.00 2.00
28 5 15 600 15577.95 75 4232.44 -43.35 4232.65 -43.99 4233.94 -43.99 3.00
29 5 20 1050 49591.39 100 6537.17 -36.44 6538.12 -37.97 6539.19 -37.97 4.00
30 5 200 100500  - 1000 28342.19  - 28344.97  - 28351.11  - 40.00
32 6 7 168 7.64 42 3.29 25.36 3.29 0.00 3.29 0.00 1.17
33 6 9 270 193.59 54 173.91 17.65 173.91 0.00 174.17 0.00 1.50
34 6 12 468 5471.55 72 859.23 0.00 859.43 0.00 859.46 0.00 2.00
35 6 15 720 15597.23 90 5711.84 -41.59 5711.85 -43.03 5711.89 -43.03 2.50
36 7 9 315 147.56 63 39.81 5.72 39.82 0.00 39.84 0.00 1.29
37 7 11 462 2146.66 77 601.27 -18.28 602.97 -18.62 603.97 -18.62 1.57
38 7 12 546 6497.42 84 742.01 -34.44 743.21 -35.21 745.07 -35.21 1.71
39 8 10 440 209.34 80 79.24 9.01 79.24 0.00 79.24 0.00 1.25
40 8 11 528 4998.91 88 1653.44 -26.99 1653.49 -26.99 1654.13 -26.99 1.38
41 8 12 624 7848.46 96 1821.29 -21.74 1825.29 -28.39 1831.97 -28.39 1.50
42 20 50 25500  - 1000 9863.45  - 9887.45  - 9923.95  - 2.50

-19.40 + 14.34  %99.99 % Confident interval of average percentage of error -10.83 + 17.91 % -19.129 + 14.42  %

Proble
m No.

Problem Size
Linearization Method EPR Method

m n
No. of 

Variables 
mn(n+1)/2

n/m

No. of 
Variables 

(mxn)

Initial Solution Incumbent Solution Final Solution

 
 
   Number of variables            Terminated Time  
400 ( 1) / 2 750       5 hrs = 18,000 sec.

750< ( 1) / 2 1000      8 hrs = 28,800 sec.

1000< ( 1) / 2                24 hrs = 86,400 sec.

m n n

m n n

m n n

≤ × × + ≤

× × + ≤

× × +

 

 
The average processing time of both algorithms 

and average % of error of EPR algorithm are 
summarized in Table 2. In Table 2, the blank cells 
represent the unsolvable cases due to number of 
variables over limitation of command “bintprog”, while 
underlined values shows that there are some cases in 
the problem size are premature terminated.  There are 
10 sets of data for these both cases while 100 sets of 
data were generated for the other problem sizes. 
Processing time and % of error of EPR algorithm are 

separately measured into three parts: processing time to 

obtain initial solution ( 0z ), incumbent solution (
0

*
z ), 

and final solution ( ; k
rz z T∈ ), so that the improvement 

rate of solution can be observed.  
According to Table 2, EPR algorithm not only 

provides better solution, but also utilizes much less 
computational time than linearization algorithm for all 
problem sizes. Observe that, for all sizes m of facility 
processing time of linearization algorithm grows 
exponentially when n increases even there are 
premature terminated cases, while that of EPR 
algorithm almost disappear when m is small and grows 
linearly when m is larger. 
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The proposed movement mechanism in EPR 
algorithm works very well. Moving from 0z  to 

0

*
z  by 

examining cz , is very efficient and effective. It can 
reduces much % of error with no difference of 
processing time appear. Moving from 

0

*
z  to final 

solution ; k
rz z T∈  and proposed additional stopping 

rules also works efficiently and effectively because the 
EPR algorithm stops at optimal solutions or good 
solutions, compared with solutions from linearization 
algorithm with and without premature termination 
respectively, with few additional processing time.  

The proposed logic based method is very efficient 
and effective because it reduces processing time of both 
algorithms. For the linearization algorithm, the 
premature terminated cases can stop at optimal 
condition with much less time after combining logic 
based method. 
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Fig. 2: Processing time of EPR algorithm 

 
To observe the efficiency and effectiveness, the 
interesting graph, shown in Fig. 2, of processing time of 
EPR algorithm corresponding to number of variables 
are studied.  Observe from Fig. 2 that the beginning of 
graph of each m lies below the graph of m-1 at the same 
m n× and after passing a certain value of m n×  this 
graph will lies above graph of m-1. After studying in 
detail, this condition can explain as follows. At the 
beginning of the curve of each m, average number of 
customer in each facility = /n m  is very small. 

Therefore, there is high possibility to occur the cases 
that logic based method can be used 
(some max{ ; 1, ..., }i js w j n< = ). By numerical 

experience, this condition usually occurs when.  
/ 2.5n m < . When /n m  over this value, the effect of 

increasing number of facility m will obviously 
expressed. Also, this reason supports summation 
derived from Table 2 that even the increasing number 
of customers makes increasing processing time but it 
has less effect than increasing number of facility. 
Conversely, for linearization algorithm, increasing n 
has higher effect than increasing m . 

 
CONCLUSION 

 
The EPR algorithm can solve CMLCP, which is 

maximizing concave quadratic integer programming 
problem with balanced transportation constraints, more 
efficiently and effectively than linearization algorithm. 
Using much less processing time it provides solutions 
with % error = -19.40 + 14.34 % with 99.99% 
confidence. In additional, thanks to number of variable 
to solve of EPR algorithm is m n×  not ( 1) / 2m n n× × +  
like linearization algorithm, it can solve large sized 
problems (100 1000)m n< × ≤  that linearization 
algorithm cannot solve. The EPR algorithm can 
improve solutions in high rate and stop at optimal 
solution or good solution compared with non-premature 
terminated or premature terminated cases of 
linearization algorithm respectively because of good 
movement mechanisms. These mechanisms are 

selecting 
0

*
z  using cz  based on gradient property 

reason and exchanging method based on balanced 
transportation constraints. In additional, logic based 
method works very well to reduce the processing time 
of both algorithms. Thanks to processing time of EPR 
algorithm depends on increasing m more than n, the 
algorithm is appropriate to use in the realistic problem 
that n much more than m. 
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