
Journal of Computer Science 3 (6): 449-453, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Zarina Shukur, Computer Science Dept., FTSM, University Kebangsaan Malaysia, 43600, Bangi,
MALAYSIA

449

Formal Validation of the Safety Property of Sack Protocol Using

Theorem Proving Technique

Shukur Z., Alias N, Mohamed Halip M.H. and Idrus B.
Fakulti Teknologi dan Sains Maklumat, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor, MALAYSIA

Abstract: This paper demonstrates the formal validation process of safety properties of Selective
ACKnowledgment (SACK) protocol. SACK is a complex communication protocol as it is used in
various types of distributed computer systems and networks. This acknowledgment mechanism is used
with sliding window protocol that allows the receiver to acknowledge packets received out of order,
but within the correct sliding window. One of the critical property of SACK is its’ safety property. In
order to validate this property formally by using the Z/Eves theorem prover, we specify the SACK
protocol using Z formal specification language. By using theorem prover tool, it helps to reduce time,
energy and mistake than in relatively manual theorem proving which can be tedious and error-prone
task.

Key words: formal validation, Z specification, safety property, protocol communication, SACK

INTRODUCTION

Communication protocol is a complex protocol and

it is used in many distributed system and networks.
Non-formal techniques are successfully used to design
the protocol, but it contains unexpected error and
unwanted behavior[1]. Validation needs to be done on a
formal specification so that the unexpected error and
unwanted behavior are discovered in the earlier
development phase in order to design the correct
protocol.

One of the two properties that are normally
discussed in protocol communication are; safety. The
other one is liveness. Safety properties are assertions
that certain undesirable things do not happen[2]. For
example in communication protocol, the stream of
messages received should be the same as the stream
transmitted, without loss, replication or permutation.
Klapuri et al [3] said in their paper that a natural way of
asserting a safety property is to specify the allowed
initial states and state transitions.

Formal proving is a complete argument of
mathematical representation and it is used to validate
statement about system description. Formal proving can
be done manually or with the support of formal method
tools[5] such as theorem prover tools[6] such as proof
checker[7]. Theorem prover is a tool that implements
automatic theorem proving without the need of user
support [5]. Manual proving using humans is a long and
looping process and there is a great possibility a
mistake will be made. Therefore in order for humans to
check proofs efficiently the proofs should not be
unreasonably large and they should be presented in a
user-friendly fashion. However, much of the proof
involved in software verification is naturally detailed,

low-level and repetitious, and often results in large
proofs - in short it is unsuitable for human checking.
Thus, formal proving supported by tool may not only
reduce the possibility of mistake but not totally removes
it [8]. Therefore, the use of support tool is a main factor
that can effect the acceptance of formal method
practically [4]. In this research, one theorem-proving
tool is chosen to support formal proving process, which
is Z/EVES[9]. Z/EVES is chosen as a support tool
because it can be applied in most process and need only
a minimum background education such as Degree to
use it. It can be learned in a few months depending on
the type of applications and can be run in many
platforms such as Unix, SunOS, Linux and Windows.
In this research, the chosen formal specification to be
developed is the specification for Selective
ACKnowledgment (SACK) which is a part of TCP
(Transmission Control Protocol) communication
protocol. TCP is beyond the scope of this paper.

Overview of SACK: Transmission Control Protocol
(TCP) acknowledgement system is a reliable sliding
window transport protocol and flow control mechanism
used on the Internet today. Selective
ACKnowledgement (SACK) is a newer mechanism that
allows the receiver to let the sender know what packet
has been received. SACK is used to report multiple lost
segments. In SACK, a window of TCP segment may be
sent and received before an acknowledgement is
received by the sender. Sender, receiver and channel are
the main basic components in SACK mechanism. The
flow control works when the sender first receives a
message from the user application process. The
message is then put in the transmission’s buffer at the
sender. The message is segmented and a unique

J. Computer Sci., 3 (6): 449-453, 2007

 450

sequence number is attached to every segment before it
is sent to the receiver through a channel. The receiver
buffer the received data segment at the receiver. To
validate the received segments, the receiver transmits
ACK to the sender with a sequence number for the next
segment it is waiting to receive. If the receiver does not
receive the data segment, it will asks the sender to make
a retransmission of that segment. This provides
reliability, as the sender retransmits any segments that
are not acknowledged by the receiver. Smith &
Ramakrishnan[10] model the components, which consist
of a sender, a receiver and two channels using I/O
automata method as shown in Figure 1. Basic structure
for the formal model described in the figure includes a
sender, a receiver, a channel for packets from the
sender to the receiver, and a channel for packets from
the receiver to the sender. All these component is
presented by the symbol S, R, Csr dan Crs.

Fig 1: Structure of the SACK formal model shows the
four basic components

In this paper, we will only discuss about the formal
validation of Z specification of SACK’s sender
automata model.

SACK Sender: As described in Section 1, this paper
will only discuss about the formal validation of Z
specification for the sender automata model. Figure 1
shows that the sender has two input operations which
are send(m) and rcv-pkt(t). The figure also shows that
the sender has one output operation that is send-pkt(t).
However, in detail implementation of SACK
mechanism,[10] identify three input operations, three
internal operations and one output operation for the
sender. Thus, there are seven operations for the sender
as describe below:
1. input operation that receives message from user

application, send(m).
2. input operation that receives validation from the

receiver upon reception of the data segment, rcv-
pkt(t).

3. input operation that receives validation from the
receiver upon reception of the data segment and
ask for a retransmission of a data segment, rcv-
pkt(ack, b1, b2, b3).

4. internal operation that prepares a data segment to
be sent to the receiver, prepare-new-seg(s).

5. internal operation that prepares a retransmission
data segment to be sent to the receiver, prepare-
retran-seg(s).

6. internal operation that causes a state of a data
segment in retransmission buffer to be set to not
yet received by the receiver. This operation is
enabled if time for retransmission is expired, reset-
sack.

7. output operation that sends a data segment to the
receiver, send-pkt(t).

All the seven operations are presented in Figure 2 as
follows.

Fig. 2: Input, internal and output operation for sender

Safety property of SACK sender protocol: In 2002,
Smith and Ramakrishnan[10] have developed a formal
specification of TCP SACK by using I/O automaton
model. They verified the safety properties by using
invariant assertion and simulation (refinement)
techniques. To carry out the simulation, they defined a
simple automaton to represent the safety properties,
which they called ReliableQ. Then, in order to prove
the safety properties, they prove that a mapping from
states of SACK to states of ReliableQ is a refinement
mapping.

Based on the I/O automaton model by Smith and
Ramakrishnan, we develop a formal specification of
SACK by using a Z specification language. Before
proving the safety properties, we define several
invariants as proposed by Smith and Ramakrishnan in
the form of theorems. These theorems are then proved
by using Z/Eves theorem prover. For the safety
properties, a number of theorems are developed based
on the related operations and are also proved by using
Z/Eves theorem prover.

The following sections discuss the specification of
SACK, then the theorems that have been developed to
represents the invariants and safety properties.

J. Computer Sci., 3 (6): 449-453, 2007

 451

Z Specification of Selective Acknowledgement
Protocol: Z specification of SACK sender declares
variables that are used in the sender automata model
into a form of paragraphs. State, initial state and
operation of the sender is declared into a number of
schemas. There are seven operation schemas in the Z
specification for SACK sender: send, prepareNewSeg,
sendPkt, rcvPkt, rcvPkt1, prepareRetranSeg and
resetSack. The following section presents the
specification.

Global Variables: Sender has a global variable which
presents a message, sequence number of a data and
some other variables. The message received from a user
is hold into a buffer. The buffer is presented as a BYTE
variable value 0 or 1. The message is segmented into
several segments. The size of a segment is a constant
value and is presented as a MSS. In this specification,
we assume that one segment can have a size of an
alphabet data. A ByteInt variable represents a data
segment. Each segment is presented by Byte variable
and a sequence number of the segment is presented by
Seqnum variable. Value of Seqnum is based on the
value of WS, which is a window size in the sender. The
window size is fixed with a constant value of 8. Thus, a
value of Seqnum is between 0 and 7. Sender also has a
retransmission buffer which contains data segments,
sequence number of the data segment and a state of the
data segment. This is presented by SByte. BOOL
variable shows the state of a data segment, either the
data segment has been received or not by the receiver.
If the data segment is received by the receiver, the
value of the BOOL is set to TRUE. Otherwise, the
value is set to FALSE. Blk variable shows a sequence
number of a data segment place on the left and right of
a sequence number of retransmission data segment.

State of the Sender : State for the sender is represented
by variables called state variables. The state variables
are as follows:
• sendBuf represents a sender buffer which contain

messages sent from user application.
• segmen presents a segmented messages.

• retranBuf variable represents a retransmission
buffer

• readyToSend represents a state of the sender
whether it is ready to send data or not.

• sndUna represents the sequence number of data
segment which is not yet validated its reception by
the receiver.

• sndNxt represents the next sequence number of
data segment to be transmitted.

All these variables are declared in state schema as
follows:

In order to simplify the mathematical statements in the
specification, five auxiliary variables are introduced, as
in schema OriginalMessage. These variables are used to
store the original information of the respective message.

Initial State of the Sender : An initial state for the
sender needs to be declared by identifying the initial
value for every variable in the state schema. This is
presented in schema InitSender.

Operations of SACK’ Sender: Seven schemas have
been developed based on the operation for the sender as
described in Section 2. All the schemas cause changes
to state schema of the sender which are presented by
expression DSender. Only related schemas are
presented in this paper.
• send schema; the sender receives message from the

user application.
• prepareNewSeg schema; It shows the sender

prepares a segment that is needed to be transmitted
to the receiver.

• sendPkt schema; In this operation, the sender
transmits the data segment to the receiver.

J. Computer Sci., 3 (6): 449-453, 2007

 452

• rcvPkt schema; It shows the sender has received a
validated sequence number that was received by
the receiver.

• rcvPkt1 schema; It shows that the sender receives a
validated sequence number that was received by
the receiver and need to be retransmitted.

• prepareRetranSeg schema; It shows that the sender
is preparing a segment that need to be retransmitted
to the receiver.

• resetSack schema; It shows that all of the segment
state in the retransmission buffer is not yet received
by the receiver.

Formal Validation of Safety Property of SACK
Protocol: In our works, our objective is to prove that
our Z specification contains the safety properties. This
means that the invariants discussed in Smith and
Ramakrishnan work will be one of the aspects to be
proved. The second aspect that will be proved is about
the operations. The invariants mentioned in [10] were
defined separately from their specification. In Z,
invariants can be defined in the state schemas.
However, we define the invariants as theorems to make
our specifications more readable.

Invariants: The four invariants (which we will call
theorems after this) that will be proved are about the
relation among the state variables.
• First theorem; theorem that shows “the relationship

between sndUna, sndNxt and the sequence
numbers of the first and last elements of
retransmission buffer, retranbuf”:

• If the retransmission buffer is not empty, sndUna is
equal to the value of the sequence number of the
first data in the buffer.

If the retransmission buffer is not empty, sndNxt is
equal to the value of the sequence number of the last
data in the buffer plus 1.

If the retransmission buffer is not empty, sndUna is
equal to sndNxt.

• Second theorem: theorem that states “the elements

of the retransmission buffer, of segments from the
sender, and of the receive buffer, are sorted in
ascending sequence number order. Additionally,
the sequence numbers of elements of the
retransmission buffer and of segments are
contiguous"

• The elements of the retransmission buffer,
retranBuf, are sorted in ascending sequence
number order.

The elements of segments from the sender, segment, are
sorted in ascending sequence number order.

J. Computer Sci., 3 (6): 449-453, 2007

 453

Additionally, the sequence numbers of elements of
retransmission buffer, retranBuf, and the sequence
numbers of elements of segments, segment, are
contiguous.
• Third theorem: states that “elements in buffers or

in segments that have the same sequence number
part also have the same data part”.

Proof of operations: This section describes about the
theorems that represents tha safety properties of
operations in SACK. The first property is that; all
buffers in SACK specification should starts with an
empty buffer. This property can be proved by using
initial state theorem.

a) Safety property of sending operation; send

The message that is going to be sent, m, will be added
at the back of sender buffer.

b) Safety property of preparing new segment;
prepareNewSeg.

The message m, that is retrieved from the sender buffer
(sendBuf) will be added at the back of retransmission
buffer, retranBuf.

c) Safety property of receiving packet; rcvPkt.

The message, m, that is removed from the
retransmission buffer, is a message that is located at the
front of the buffer. The message has a sequence number
less than ack.

For safety property of sending packet; sendPkt,

safety property of preparing retransmission segment;
prepareRetranSeg and safety property of resetting the
SACK; resetSack, no theorems were developed. This is
because the respective operations do not change the
value of sender buffer, sendBuf (that stores message
from user application) and segmen (that store the
segmented messages) of sender of SACK.

All of the theorems discussed in this sections have
been proved using Z/Eves thereom prover by using only
one command; prove by reduce. This shows that the Z

specification of SACK’s Sender is reliable and contains
safety properties.

CONCLUSION

In this paper, we demonstrate a validation on Z formal
specification of SACK sender using theorem proving
technique. According to our experience, many theorems
have been through a long and repetitious proving
process. If the proving is done manually by humans, the
possibility a mistake will be made is higher. With
Z/EVES, not only this possibility can be reduced, the
proving can be done fast and reliable.

REFERENCES

1. Bochmann G.V. and C.A. Sunshine, 1983. A

Survey of Formal Methods in Computer Network
and Architectures and Protocols. IBM Corporation
Yorktown Heights, New York. Plenum Press.

2. Duke R. and G. Rose, 2000. Formal Object-
Oriented Specification Using Object-Z. MacMillan
Press Ltd.

3. Klapuri H., J. Takala and J. Saarinen, 2001.
Implementing reactive closed-system
specifications. Journal of Network and Computer
Applications., 24: 101–123

4. Babich F. and L. Deotto, 2002. Formal Methods
for Specification and Analysis of Communication
Protocols. IEEE Communications Surveys &
Tutorials., 4(1): 2-15.

5. WetStone Technologies, Inc. October 26, 1999.
Formal Methods Framework, F30602-99-C-0166,
Final Monthly Status Report. Air Force Research
Laboratory/IFGB, Rome, NY 13441-4505.

6. Wing, J.M., 1990. A Specifier’s Introduction to
Formal Methods. Computer. IEEE, 23(9): 8-23.

7. Azurat A., I.S.W.B., 2002. A Survey on
Embedding Programming Logics in Theorem
Prover. (online) http://www.library.uu.nl/
digiarchief/dip/dispute/2002-0308-131854/2002-
007.pdf.

8. Bowen J.P. and M.G. Hinchey, 1995. Ten
Commandments of Formal Methods. Computer,
28(4): 56-63.

9. Meisels I. and M. Saaltink, 1997. The Z/EVES
Reference Manual (for Version 1.5). Ora Canada.
Canada.

10. Smith M.A. and K.K. Ramakrishnan, 2002. Formal
Specification and Verification of Safety and
Performance of TCP Selective Acknowledgment.
IEEE/ACM Transaction On Networking, 10(2):
193-207.

