
Journal of Computer Science 3 (2): 104-106, 2007 
ISSN 1549-3636 
© 2007 Science Publications 

Corresponding Author: Dr. Musbah, J. Aqel, Faculty of Electrical and Computer Engineering, Applied Science University, 
Amman, 11931, Jordan 

104 

 
Computer Arithmetic Algorithms for Mega-Digit Floating Point Numbers’ Precision 

 
Musbah J. Aqel and Mohammed H. Saleh 

Faculty of Electrical and Computer Engineering, Applied Science University, Amman, 11931, Jordan 
 

Abstract: IEEE standard 754 floating point is the most common representation used for floating point 
numbers, and many computer arithmetic algorithms are developed for basic operations on this 
standard. In this study, new computer algorithms are proposed to increase the precision range and to 
solve some problems that are available while using these algorithms. However, these algorithms 
provide an optional range of required accuracy (Mega-Digit precision) to meet new computer’s 
applications. 
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INTRODUCTION 

 
 There are several ways to represent real numbers 
on computers. Fixed point places a radix point 
somewhere in the middle of the digits, and is equivalent 
to using integers that represent portions of some unit[1]. 
Floating point representation is the most important 
representation, which is defined in IEEE 754 
standard[2]. This standard was developed to facilitate the 
portability of programs from one processor to another 
and to encourage the development of sophisticated, 
numerically oriented programs. The standard has been 
widely adopted and is used virtually on all 
contemporary processors and arithmetic coprocessors. 
 The IEEE standard defines both a 32-bit single and 
64-bit double format, with 8-bit and 11-bit exponent 
respectively. . The implied base is 2. In addition, the 
standard defines two extended formats, single and 
double, whose exact format is implementation 
dependent. The extended formats include additional bits 
in the exponent (extended range) and in the significand 
(extended precision)[2]. 
 There are many computer algorithms that have 
been developed to perform the basic operations for 
floating-point arithmetic[3]. However, IEEE 754 has 
gone beyond the simple definition of a format to lay 
down specific practices and procedures so that floating-
point arithmetic produces uniform, predictable results 
independent of the hardware platform. However, some 
problems and difficulties may arise as a result of 
performing these operations[4]. Some of these problems 
can be summarized as follows: 
 
* Exponent overflow 
* Exponent underflow 
* Significand underflow 
* Significand overflow 
 In order to increase the precision ranges while 
performing arithmetic operations and to make the 

precision range a user dependent (i.e. unlimited and 
optional) according to the application at hand. This is 
called mega –digit precision. So, a set of computer 
arithmetic algorithms have been proposed to increase 
the precision range to mega-digit and also to solve the 
above mentioned problems. 
 The algorithms are developed to solve most 
arithmetic operations including some most common 
mathematical functions, which are necessary (scientific 
and general) to solve scientific and general-purpose 
problems. These algorithms are developed and 
implemented by C++ language to increase the accuracy 
and extendibility of this language.  
 
Floating point proposed algorithms: To facilitate the 
algorithms’ performance, there are some points, which 
are considered and assumed for algorithms 
development: 
* All the numbers are entered as a string format 

except for the data within the standard range of the 
machine accuracy.   

* If the intended number is huge in precision and 
difficult to be entered by the user, then it should be 
stored in a file and, by using the overloaded 
operator; the file will be loaded (file 
name).However, the output is also can be stored in 
a file for further use. 

* The entered number (float point number) should be 
checked for its format. If it is written incorrectly, 
the software will give error massage. 

* Whatever the size of accuracy required, the last 
two digits in the floating -point number will be 
zero. 

* Whenever the number is entered, it will be mapped 
into an array with a free size that may equal to data 
segment reserved. While mapping, the number will 
be represented in the array as follows: 

 
 A:  decimal point by (-1). 
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B: The plus sign of a positive signed number or 
unsigned number will be represented by (-2). 
C: The minus sign of a negative signed number is 
represented by (-3).             

* Due to mapping, the float point numbers that have 
many useless zeros, either to the left or to the right 
of the decimal point, will be truncated and not 
mapped. 

* The accuracy size is a machine dependent in the 
sense of the memory size (i.e. array size) that 
reserved by the machine, where the array size 
allowed for the number is machine dependent and 
differs from machine to machine  

 
Floating point addition algorithm for extendible 
accuracy  
* The two numbers will be mapped into two arrays 

including their sign and decimal point. 
* The numbers will be normalized and shifted to left 

or right and place zeros at the normalized positions 
so that the length of the two numbers becomes 
equal and then represented in the arrays. 

* The two numbers will be checked out after 
mapping, if any has a minus sign. 

* For example, (-3), then the subtraction procedure 
will be called otherwise it proceeds in the addition 
procedure  

* Normal addition will be carried out. 
* Whenever a carry out is taken place, it will be 

stored in the position of the sign bit for the two 
numbers. 

 
Example: Assume that two small numbers are taken, X 
= 53.0320, Y = 324.689053210, then X + Y is required. 
After checking these two numbers and performing 
normalization then these two numbers are now mapped 
into two arrays as follows: 
 

-2 0 0 5 3 -1 0 3 2 0 0 0 0 0 0
 

 

-2 7 3 2 4 -1 6 8 9 0 5 3 2 1 0
 

 
 Then after carrying out normal addition between 
the contents of the two arrays the result will be as 
follows: 
 

-2 7 3 7 7 -1 7 3 1 0 5 3 2 1 0
 

 
Floating point subtraction algorithm for extendible 
accuracy 
* Map the two numbers in two different arrays 

including their sign and decimal point  
* Carry out the 9’s complement of the subtrahend 

number  
* Carry out normal addition procedure.  

* Then, follow the rules of subtraction with 9’s 
complement regarding to the result. 

 
Example: Assume X=30.25, Y= 30131.256, then carry 
out X – Y. 
 After performing normalization or the two 
numbers, then X=00030.250 
 And Y=30131.256. 
 Take the 9’complement of subtrahend, then 
X=69868.743 
 Perform normal addition as explained in previous 
algorithm. 
 
Floating point multiplication algorithm for 
extendible accuracy 
* The two numbers will be kept in two arrays and 

double size of the largest of the two numbers array 
will be reserved.  

* The decimal point will be removed from its 
position from the two arrays and will be placed 
back after completing multiplication process.  

* The multiplication will proceed as normal 
multiplication procedure with writing the result on 
the same double sized array. 

* The decimal point will be placed back after 
completing the multiplication process as usual in 
the double sized array. It will be placed in the 
position equal to its original digits position in the 
two numbers (i.e.: number of digits in the first 
number plus number of digits in the second 
number. Then, a shift left will be performed.        

 
Example: Assume that X= 57.321 and Y=1.123456, 
then X, Y is required. 
 The size of the two numbers will be determined 
after mapping in arrays, and the largest in size will 
determine the size of the output array that, the result 
will be stored in it. This output array will be double in 
size, in this example it is equal to double of size of Y 
(14). 
 The decimal point will be shifted to the rightmost 
of the two numbers. 
 

5 7 3 2 1 -1 0 
 

1 1 2 3 4 5 6 -1 0 
 
 Normal multiplication will be carried out and 
stored in the double size array as follow: 
 The final result will be determined by calculating 
the number of digits after decimal in both numbers (X 
=3, Y =6), which is equal here (9). Then, by placing the 
decimal point 9 digits to the left. The final result will be 
(64. 397621385). 
 

-2 6 4 -1 3 9 7 6 2 1 3 8 5 0
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Floating point division algorithm for extendible 
accuracy: The dividend and the divisor will be 
compared. If the dividend is less than the divisor then 
go to step (4). Otherwise do the following: 
* Subtract the divisor from the dividend and count 

how many times this value can be subtracted. The 
number of times is considered as a result of the 
division and it represents the value that will be 
placed as an integer part to the left of the decimal 
point of the result. 

* Take the result of subtraction and shift right the 
decimal point of the original number one position 
to the right and then carry out the subtraction as in 
step (I) except that the result of count is placed to 
the right of the decimal point. 

* Carry out the result of true subtraction as in step 
(II) till the required precision is reached. 

* Whenever the dividend is less than the divisor, the 
dividend will be normalized to the left of the 
decimal point with one digit only. 

* Carry out subtraction as in step (1) but the result 
will be placed to the right of the decimal point, 
where a number of zeros will be placed directly 
after the decimal point equal to the shifted digits 
that carried out by the dividend. 

 
Example: Assume that X= 9.83, Y=7.0 then find X/Y. 
 Since dividend is greater than divisor, then the 
value (7) will be checked how many times can be 
subtracted from (9). The result is (1) and the result of 
true subtraction is (2). The dividend number now is 
(2.83). 
 he dividend will be shifted right one position so 
that the dividend becomes (28.3). 
 Carrying out the same previous procedure, the 
divisor can be subtracted (4) times from the dividend[ 
21.3,14.3,7.3,0.3].  
 The result of these steps (1.4) for one digit 
precision only. This procedure can be repeated up to the 
required precision size. 
 
Floating point exponential algorithm for extendible 
accuracy: Given that  en: where, N is a float number 
with any accuracy  
 
Assume that AN = ex1  (1) 
Find  Ln of both sides  
Ln  A  = ex1 
 
 
 
 
 
 
 
 
 

       N Ln A = x1 (2) 
Find Ln A 
Assume that    A = ex2  
Where A = 1 + x2 + x2

2 / 2!  + … + x2
m  / m!                                            

Assume that m is the accuracy required 
Then, m = (accuracy required + k) 
This k number is used to prevent any approximation 
error and k ≥15 
Ln A = Ln ( ex2) 
Where A = 1 + x2 + x2

2 / 2!  + … + x2
m  / m!   

Here, bisection method is used. 
Find x2 using halving procedure where the values of x2 
are [0, A] 
 The value of x2 which is equal to Ln A  
X2 = Ln A  from  (2) 
Substitute the value of x2 in step 2 
   N x2 = x1                                    

  Then   AN = ex1   
  x2N = ex1 from (2) 
Direct substitution of x1 in the series  

ex2 =1 + x2 + x2
2 / 2!  + … + x2

m  / m!  
 

CONCLUSION 
 
 Computer arithmetic algorithms are developed and 
proposed to solve the limited precision range defined by 
IEEE 754 standard. These algorithms are implemented 
by C++ language and could successfully perform all the 
basic and exponential operation with unlimited (i.e. 
Mega-digit) precision range. This will be helpful to 
newly introduced computer’s applications that require 
more precision range than IEEE 754 standard.  
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