
Journal of Computer Science 2 (6): 496-504, 2006 
ISSN 1549-3636 
© 2005 Science Publications 

Corresponding Author: Yuan-Shun Dai, Indiana University, Purdue University, Indianapolis, USA. 
496 

 
Autonomic and Dependable Computing: Moving Towards a Model-Driven Approach 

 
1Yuan-Shun Dai, 1Tom Marshall and 2Xiaohong Guan 

1Department of Computer and Information Science, Purdue University School of Science 
Indiana University, Purdue University, Indianapolis, IN, USA 

2Department of Automation, Tsinghua University, China 
 

Abstract: The rapidly increasing complexity of computing systems is driving the movement towards 
autonomic systems that are capable of managing themselves without the need for human intervention. 
Without autonomic technologies, many conventional systems suffer reliability degradation and 
compromised security. Autonomic management techniques reverse this trend. This study describes the 
roles and functions of various autonomic components, and systematically reviews past and current 
approaches that have been/are being developed to address specific areas of the autonomic computing 
environment that focus on improving system dependability including both reliability and security 
concerns. Analyzing past research can lead to the design of a more advanced, dependable autonomic 
computing system. A novel and promising prototypical system that is a work-in-progress will be 
presented finally. 
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INTRODUCTION 

 
 Dependability can be defined as the quality of a 
delivered service such that reliance can justifiably be 
placed on the service[1]. Five attributes of dependability 
are: (1) Reliability, (2) Availability, (3) Safety, (4) 
Security, and (5) Robustness. Our goal is to incorporate 
each of these attributes into holistic autonomic 
management architecture. 
 Ensuring dependable system performance is 
important because of the high costs typically associated 
with failure and/or fault recovery. Patterson, estimates 
that, “companies spend 33 – 50% of their total cost of 
ownership recovering from or preparing against 
failures.” Improving system dependability can have a 
dramatic impact on a company’s bottom line. 
 The economic impact of dependable systems is but 
one reason why improving system dependability 
through autonomic means is important. However, there 
are situations in which the general well-being of a 
geographical region’s populace is at stake. For example, 
a series of failures that occurred at the Three Mile 
Island nuclear power plant in 1979 nearly led to 
catastrophic consequences. Making systems safer, 
without relying on human intervention, is a kind of 
insurance policy on the health and welfare of a society’s 
citizens.  
 Furthermore, in the post 9/11 era it is extremely 
important to develop autonomous methods of self- 
protection to ensure that a nation’s computerized 
defense systems remain reliable in the face of malicious 
attacks. If a terror organization is successful in bringing 
down a nation’s power grid, or render communication 

channels useless, the security of that nation is at dire 
risk. The integration of a security component into the 
autonomic system design enhances dependability. 
 Although the study of autonomic computing is in 
its relative infancy, there have been some projects and 
articles on the subject. Autonomic computing is a 
concept envisioning self-managing systems. The term 
“autonomic” is intentionally chosen because the idea is 
to mimic the autonomic nervous systems found in 
biology. The systems self-configure, self-optimize, self-
heal, and self-protect. Because of the increasing 
complexity of computing systems, human systems 
management is rapidly becoming obsolete. Humans are 
simply not able to optimally configure these large, 
complex, heterogeneous, and dynamically evolving 
systems in an effective manner. Therefore, there is a 
strong need to move away from human managed 
systems to autonomic managed systems 
 This study identifies some important technologies 
and theories that have been proposed to be useful in an 
autonomic computing environment focusing on those 
areas that will enhance the dependability of such a 
system. The three areas this study will address are: (1) 
Self-configuration – automatic adaptability to changes 
in a system’s physical topology, software environment, 
or communication channels; (2) Self-healing – 
automatic recovery from faults that have occurred or are 
about to occur; and (3) Self-protection – automatic 
protection from malicious attacks or insider abuses. 
Finally, a preliminary design for a highly dependable 
autonomic system is presented. Monitoring plays a 
central role in the implementation of these concepts in 
an autonomic computing system[2].  
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 Another primary contribution of this study is the 
introduction of the Model-Driven approach for 
autonomic management. This scheme utilizes a 
hierarchical approach to provide for customization, 
flexibility and adaptability. The Model-Driven approach 
is a new idea in the development of a comprehensive, 
dependable autonomic management system. It uses 
probability-based monitoring, has a machine learning 
component that enables it to perform better the longer it 
runs, and is able to focus its resources on those 
components that are most likely to experience problems. 
A thorough description of this novel design is presented 
in Section 5 of the study. 
 

SELF-CONFIGURATION 
 
Self-configuration[3] refers to the ability of the system to 
automatically adapt to changes in its physical topology 
as well as its software environment. Configurations may 
also need to be altered based on a change in the quality 
of network connections. Self-configuration improves 
system reliability by reducing human configuration 
errors and minimizing downtime to increase system 
resource availability[4,5].  
 
Adaptive domains: Motezenko[6] presents the idea of a 
generic adaptation environment for building distributed 
object systems with multiple self-managing attributes. 
Each domain is separately managed based on policies 
that are either input by a human or loaded from a parent 
domain during runtime. The system is hierarchical. A 
Host Manager oversees the operation of the Domain 
Manager which manages parent and child nodes of a 
specific domain. The Domain Manager then is tied to a 
specific Managed Object which may be a sensor that is 
responsible for one or more domains.  
 Adaptation strategies can be reactive, event-driven; 
proactive, preventive; or retroactive. Adaptation 
decisions are implemented by using three types of 
actuators: (1) Configuration Manager – implements 
dynamic reconfiguration based on the system 
components and connections graph which can be built 
at runtime; (2) Adaptation Commands – used for 
communication between parent and child domains; and 
(3) Mobile Adaptation Agents – used for executing 
changes within managed objects 
 The adaptive domain strategy improves system 
reliability by eliminating or dramatically reducing the 
need for human systems managers to configure 
complex, dynamic systems. Human configuration of 
these systems, because of their complexity, can often be 
error prone and suboptimal.  
 
Adaptive Techniques Using AOP:  Chan and Chieu[7] 
present the idea of using Aspect-Oriented Programming 

(AOP) to implement a monitor system that is outside the 
OS kernel or applications.  
 The application being monitored is connected to 
sensors and effectors of the autonomic manager via an 
aspect crosscut layer. The effectors self-configure if the 
sensors suggest corrective action needs to occur. The 
main advantage of this system is that it provides for 
clear separation of concerns and the ability to crosscut 
the concerns without modifying the source code which 
makes it suitable for providing monitor services to 
legacy applications. AOP functions are treated as a 
concern, developed separately, and integrated 
selectively in applications either during development or 
at runtime.  
 Utilizing the Aspect-Oriented approach enhances 
system reliability because each monitoring system can 
be specifically tuned to the application(s) being 
monitored without modifying the application’s source 
code and does not impose additional overhead on OS 
resources because it is not kernel resident. 
 
Topology based adaptation: Paulson[5] considers self-
configuration to be concerned with the physical design 
and deployment of the system. This approach considers 
both static and dynamic aspects. Static is concerned 
with the physical topology of the system and dynamic is 
concerned with adapting to changes from initial state. A 
current project that utilizes this approach is called 
LAMDA (Lights-out, Automated Management of 
Distributed Applications). For self-configuration, 
LAMDA uses Hierarchical Queuing Petri Nets to model 
the environment.  
 Again, because the human element is removed from 
configuring a complex, dynamic system, reliability is 
improved by reducing the possibility of configuration 
errors and suboptimal tuning.  
 
Utility optimized adaptation:  Boutillier[8] and Buyya[9] 
use the economic theory of utility to determine how 
resources should be allocated among competing 
resource users. Resources are limited, but wants are not. 
Economic utility theory analyzes what the consumer is 
willing to give up in order satisfy its wants and/or 
needs. Individual utility curves are constructed to form 
an aggregate utility curve which can be fitted against the 
available resources to find various combinations of 
resources that can maximize organizational utility.  
 Boutillier[8] uses an automated resource manager, 
called a provisioner, which works in concert with a 
workload manager to allocate resources to clients. The 
provisioner’s task is to allocate resources to the 
workload managers in a way that maximizes total 
organizational utility and solves the problem of resource 
allocation in autonomic systems. 
 To determine maximum organizational utility, 
samples of individual machine utility curves are taken at 
certain critical allocation levels. Based on these 
samples,  the   maximum utility function is created using  
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regression analysis. The problem is framed as a form of 
cooperative negotiation between the provisioner and the 
workload managers[8]. 
 A problem arises in how one defines utility. If 
reliability is chosen as the metric of utility, total system 
reliability is enhanced because each machine’s utility is 
maximized when it is operating in its most reliable state. 
   
Decentralized multi-agent management:  An agent-
based model is a dynamic description of a system, its 
entities and properties, and has the capability of 
adapting to its environment. DeWolf and Hoelvet[10] 
postulate that multi-agent systems allow a natural 
modeling of the system, and explicitly consider 
autonomous behavior and distributed interaction. 
Dynamical systems theory allows analysis of the 
dynamics of these models. Decentralized control 
analysis can use insights gathered from the analysis to 
create decentralized control mechanisms to control the 
dynamics of autonomous systems. Multi-agent systems, 
dynamical systems theory, and decentralized control in 
combination can make significant contributions in 
achieving the development of highly reliable, autonomic 
systems.  
 Dynamical systems theory offers a conceptual 
framework with which dynamical systems can be 
characterized. The choice of what data to monitor is a 
critical aspect of dynamical analysis. 
 Decentralized control systems consist of controllers 
that are designed and operated with limited knowledge 
of the complete system. It is actually a self-organizing 
dynamic property of the system that allows control to be 
applied to complex systems. 
 A hierarchical control mechanism is a good 
compromise to avoid the performance degradation of a 
completely decentralized system as well as the high cost 
and complexity of a centralized solution. It still has a 
degree of decentralization but also keeps a degree of 
centralization through a higher-level control layer that 
manages lower level units. The advantage is that control 
can be enforced through multiple hierarchies, each with 
their own effect thus improving overall system 
reliability. 
  

SELF-HEALING 
 
Self-healing is concerned with the ability of the system 
to automatically recover from faults. Accurate detection 
is critical to designing an effective self-healing system. 
Fault detection is accomplished by some form of 
monitoring. The questions to be answered are what 
parameters to monitor, how to determine accurately  if  
a  fault has  occurred  or  is likely to occur and what 
corrective measures can be taken to repair the system 
unobtrusively.  The goal is to repair only that 
component that has failed without bringing down the 
entire system so that resource availability is maintained 

even if the QoS is somewhat degraded. Fault tolerance 
is crucial to system operation[11]. 
 
Protective techniques using AOP: AOP can be used 
for self-healing in addition to self-configuration. The 
basic approach is same in that the source code need not 
be accessed to implement the system. For self-healing 
applications, the parameters to be monitored are those 
that are associated with fault-detection rather than 
configuration. Corrective action takes place when a 
monitored parameter indicates that a fault is occurring 
or about to occur. 
  Sensors monitor the state of the system and pass the 
information to an analyzer which can then determine if 
the system is in a steady state. If not, the analysis is 
passed to a planner which contains a set of rules and 
action plans. Once an action has been selected it is 
passed to the executor which implements the change 
through an effector that is interfaced to the monitored 
application via an aspect crosscut layer which is 
developed independently of the application and the 
autonomic manager[7]. 
 
Self-healing using LAMDA:  In the LAMDA project, 
the critical prerequisite for self-healing is the same as 
that for self-configuration[12].  For self-healing the design 
uses multi-agent architectures coupled with distributed 
correlation algorithms that correlate across network, 
computer, and software infrastructure layers. The reason 
given for this approach is that it provides the ability to 
decentralize decision making as related to root cause 
isolation and provides a means for machine learning to 
identify causal patterns of faults that occur in complex 
systems. The decentralization improves system 
reliability because determination of the cause of a fault 
is distributed, and not dependent on one central control 
mechanism which may itself be affected by a fault. 
Decentralization can also provide for redundancy, 
which has historically been an effective reliability 
strategy. 
 
Recovery oriented computing (ROC): Patterson et 
al.[4] state that ROC focuses on MTTR rather than 
MTTF in order to provide higher system availability. 
ROC suggests the following six techniques: 1) 
Redundancy; 2) Failure containment; 3) Fault insertion 
testing; 4) Error diagnosis; 5) Non-overwriting storage 
systems; and 6) Orthogonal mechanisms. 
 Traditional fault diagnosis methods use 
dependency models that have a static nature. The 
problem with static dependency   models   is   that   they   
are   ill   suited for dynamically evolving systems. 
  Dynamic dependency models are used in the ROC 
approach. The dynamic analysis methodology is 
automated and implemented by tracing real client 
requests through a system. The success or failure is 
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recorded together with the components that served the 
request. Standard data clustering and statistical 
techniques correlate the request failures to the 
components most likely responsible for the failure. The 
use of data clustering to analyze successes and failures 
provides for the discovery of the combination of 
components that are most highly correlated with the 
failed requests. The prototype system using this 
approach is called “Pinpoint.” 
 Once failures have occurred, how is recovery 
initiated? Rather than perform a hard reboot on the 
system, a recursively restartable system that gracefully 
tolerates successive restarts at multiple levels is used. 
Also, fine grain partitioning of the system enables 
bounded, partial restarts that recover a failed system 
faster than a full reboot. It also enables strong fault 
containment and diagnosis providing for enhanced 
system reliability. 
 
Machine learning to promote self-healing: Based on 
the RAS Cluster system, Sahoo et al.[3] propose a self-
healing approach for the system to “learn” the series of 
events that lead to failures thereby providing prediction 
and system management process control. 
 To diagnose the path of failure propagation in a 
large cluster, a machine learning algorithmic approach 
is needed to make the system prediction more intelligent 
and reduce failures thus improving system reliability. 
One of the first steps for developing machine learning 
algorithms is to carefully select variables that can be 
analyzed using event log collection. 
 Time-series algorithms are used to predict system 
parameters such as percent of system utilization, idle 
time, and network I/O. Rule-based classification 
algorithms are synonymous with statistical control 
mechanisms. Events of a critical nature must be 
identified and prediction mechanisms must be 
constructed in order to anticipate the occurrence of the 
critical event(s). The goal is to create a set of rules that 
can accurately predict with high probability that a 
critical event will occur.  Bayesian network techniques 
are utilized for root cause analysis. This involves 
“learning” the cause of critical events through 
probabilistic dependency models based on event log 
data. 
 A hybrid prediction and proactive control model 
has been theoretically designed utilizing the above 
techniques[3]. The system “learns” over time the patterns 
that lead to critical events, and should be able to send 
an alarm when patterns occur that it believes with high 
probability will lead to a critical event. 
 
Autonomic middleware services: The use of 
middleware for achieving an autonomic system shows 
much promise for autonomic computing. In 
AUTONOMIA[13], an autonomic computing project 
being conducted by the University of Arizona, 

autonomic middleware services are described as an 
operating system that provides applications with all the 
services and tools required to achieve the desired 
autonomic requirements. It contains five modules, the 
most important of which is the Policy Engine and 
Autonomic Services module. This is where the 
autonomic “rules” and action plans are stored. 
 In AUTONOMIA, self-healing is realized by 
analyzing data from an event server. If any data is 
“suspect”, the policy engine is notified where the data is 
compared against a pre-defined set of rules. If a rule is 
violated an action plan associated with that rule is 
activated initiating healing activity. 
 
Nonintrusive healing using backdoors: Sultan et 
al.[14] propose a method whereby the system utilizes an 
architecture that supports monitoring and repair actions 
on a remote operating system or application memory 
image without using the processor(s) of the target 
machine. It uses technology that provides support for 
remote DMA read and write operations.  
 External monitoring overcomes the weaknesses of 
internal monitoring. For example, it is not dependent on 
the resources or adversely affected by component 
failures in the monitored machine, it does not rely on 
the integrity of the machine, and it can detect intrusion 
from an already compromised machine. 
 To support remote healing a computer system must 
be equipped with a backdoor, a specialized network 
interface that allows external accesses to its resources 
without involving its processors. Backdoors enable 
intervention on a system even when it is “dead.” There 
must be generic support by the OS to enable remote 
healing via a backdoor and channels to allow remote 
access to system memory. Backdoors can be 
implemented using remote memory communication 
(RMC). RMC significantly reduces communication 
overhead associated with TCP/IP networking by 
bypassing the OS in the send/receive path while 
providing a protected channel for communication. 
 Nonintrusive Remote Monitoring alleviates the 
problems of imperfect system knowledge, network 
unreliability, resource contention, and does not incur the 
overhead at the monitored nodes. Furthermore, it does 
not suffer from a lack of direct access to the state of the 
monitored node. Once a failure has been detected, 
healing is performed using RMC. To support remote   
healing   the   OS must   provide   remote access hooks 
to provide an interface for enforcing actions on the OS 
or the applications running on it. The hooks must be 
registered with the RMC for remote access by another 
system that runs recovery or repair code. 
 

SELF-PROTECTION 
 
The self-protection component of an autonomic 
computing system is concerned with protecting the 
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system from malicious attacks. Most of these attacks are 
assumed to be generated from external sources, but the 
system must be prepared to address attacks that are 
initiated from within the system as well. Examples of 
types of attacks that should be monitored fall into three 
basic categories: (1) Denial of Service; (2) Viruses and 
Worms; and (3) Application level attacks or failures. 
The introduction of a security component in the 
autonomic system design moves the focus from 
reliability to dependability. 
 
Dynamic defense theory: Kewley and Bouchard[15] 
implemented their ideas in experiments conducted by 
DARPA. The goal was to determine if dynamically 
modifying one’s defensive posture would hinder the 
adversary’s intelligence gathering process thus 
decreasing system vulnerability. Three mechanisms 
were employed: prevent, detect, defend. 
 Two basic categories of attacks need to be 
defended: (1) outsider attacks; and (2) insider abuses. 
Statistical methods, machine learning algorithms, and 
rule-based approaches are examples of methods that 
have been used in an attempt to solve the problem of 
cyber defense. 
 An effective defense mechanism relies on a 
thorough understanding of the system to be protected. 
An intrusion detection strategy that is specifically 
designed for that system must then be implemented. 
Points of vulnerability must be identified and protected. 
Once the detectors are properly implemented, an 
autonomous response system is possible. The three 
pronged scheme of prevention, detection, and defense 
provides multiple layers to help ensure system 
dependability. By dynamically changing the prevention 
mechanism, intrusion is made more difficult. Highly 
accurate detection mechanisms reduce the risk of a 
compromised system in the event that the prevention 
layer is penetrated. Finally, if intrusion is detected the 
defense mechanism can automatically be initiated to 
minimize the potential damage of the attack. 
 
Feedback control as a defense mechanism:  Kreidl 
and Frazier[16] propose a feedback mechanism that 
considers the tradeoffs of compromised information 
systems resulting from “false negatives” and the 
maintenance costs of unnecessary ongoing defensive 
countermeasures that result from “false positives.”  
 They propose to combine online implementation 
using sensors to detect intrusions and an offline 
component that stores models and numerical 
optimization utilities. The approach makes heavy use of 
probabilistic models for decision-making. 
 The offline component performs the mathematical, 
probabilistic computations for decision-making that is 
then stored in an online module to determine if the 
system state is normal. In order to accurately detect 
whether the system state is normal, the choice of a 

tolerance range is critical. Choose too small a tolerance 
range then the rate of false positives increases. 
Alternatively, a tolerance range that is too large may 
result in attacks going undetected. Feedback can allow 
for the dynamic adjustment of tolerance ranges.  
 The mechanism they propose is called an 
Autonomic Defense System (ADS). The ADS consists 
of the information system to be protected, sensors to 
detect attacks, actuators to implement appropriate 
responses, and a controller to coordinate the sensors 
with the actuators. A Feedback Controller is also part of 
the ADS system. Feedback control continuously 
receives sensor information, estimates its implication 
based on historical data, and generates an appropriate 
response. Feedback is important because it can cause 
decision making to change over time based on historical 
data from both the sensors and actuators so that better, 
more appropriate decisions can be made thus enhancing 
system dependability.  
 
Software agents for self-protection:  Qu et al.[17] 
propose a scheme whereby software agents monitor 
several attributes of a system online to characterize the 
state of the network as normal, uncertain, or abnormal. 
Measurement attributes that are deemed appropriate at 
various network levels are used to quantify the behavior 
of a network or its components. A recovery mechanism 
is executed once it is determined that the system or a 
component is functioning abnormally. 
 The approach is proactive, and uses the self-
protection engine of AUTONOMIA[15]. Self-protection 
mechanisms are implemented to protect against attacks 
based on predefined metrics used to monitor the states 
of services and resources. If an attack is “identified”, 
proactive measures are initiated by the self-protection 
mechanisms.  
 By constantly examining specific activity at various 
levels of the OSI reference model, overall dependability 
can be improved by defending against attacks at the 
point of intrusion. The system is monitored to determine 
whether it is operating in a normal, uncertain, or 
abnormal state. When it is determined to be in abnormal 
state, appropriate recovery procedures are initiated to 
affect self-protection. 
 

MODEL-DRIVEN AUTONOMIC APPROACH 
 
Characteristics: Although some approaches have been 
proposed to address the requirements of specific 
autonomic components, our goal is to develop a 
comprehensive system that deals with all of the areas of 
autonomic computing that relate to dependability 
improvement: self-configuring, self-healing, and self-
protecting. The prototype we propose is based on, what 
we term, the model-driven approach.  
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 In developing the framework for our system, not 
only did we attempt to weave together the best ideas 
from previous approaches, but also integrate novel ideas 
into the design. 
 One of the most significant differences in the 
model-driven approach is that network components (e.g. 
nodes, channels and traffic) are not monitored 
evenly/randomly. Rather they are monitored based upon 
the predicted reliability or security provided by the 
models. For example, the components that are predicted 
to have lower dependability at any given point in time 
are monitored more intensively than highly reliable 
components. Furthermore, the dependability is not 
static. As time passes a component that may initially be 
highly reliable could become more prone to failure. 
Therefore, the monitoring frequency of that component 
should be adapted accordingly over time. Failure 
correlations should also be integrated into the 
monitoring decision[19]. For example, Component B 
may be highly reliable, but if Component A fails, 
Component B may then have a higher probability of 
failure, perhaps due to the heavier load moved from A, 
and thus requires more intensive monitoring. 
 To initially test this approach, a software 
simulator[20] was developed that utilized fault insertion 
testing to determine if uneven/probability-based  
monitoring and healing was superior to traditional 
“even/random” monitoring approaches. The results 
were clear: “uneven/probability-based” monitoring 
consistently showed that more nodes were operational 
at any given time, and the healing process was 
performed more quickly. The development of the 
automated fault/intrusion detection/healing mechanism 
is the first step in improving system reliability 
autonomously. The simulator is publicized by[20]. 
 Following validation of the significant 
improvement provided by the “uneven/probability-
based” monitoring approach, we determined what 
characteristics the system design should possess. First, 
it is important that the model be general so that it can 
be applied to as many network topologies and structures 
as possible. Second, the system should provide 
interfaces to identify different levels of models so that 
new reliability and security services can be built on top 
of, and integrated with, existing models. In other words 
the system components should be pluggable. Third, the 
system model needs to possess the ability to adapt to 
component changes “on the fly” rather than require 
periodic reevaluation that is computationally expensive. 
Fourth, the structure should be hierarchical. In fact, our 
design develops two types of hierarchical architectures: 
a monitoring hierarchy and a modeling hierarchy as 
depicted in Fig. 1 and 2 respectively. 
 
Monitoring hierarchy: In the monitoring hierarchy, 
the higher levels monitor the levels beneath them, as 

depicted by Fig. 1. Additionally, monitors in each level 
monitor other monitors on the same level except at the 
machine level. 
 

 
Fig. 1: Monitoring hierarchy 
 
  Hierarchical control allows monitoring to be 
utilized in different ways at different levels. Machine 
level monitoring can be accomplished either through an 
OS resident approach by patching the OS to provide the 
additional functionalities, or perhaps the AOP approach 
offers more potential because it can be implemented 
without altering the OS or applications’ source code. At 
the machine level it is important that the monitoring 
system not consume much computational or storage 
resources. It should be a background process that 
transparently runs without degrading the performance of 
the applications that are running on the machine. 
 Moving up the monitoring hierarchy, the next layer 
is the LAN level. At this level the individual machines 
would be monitored for aliveness. In the event the 
machine is detected to be in a state whereby it is unable 
to perform the autonomic functions that are resident in 
it, this layer could revive the system, and heal it through 
Backdoor mechanisms. Self-protection would also be 
present at this layer. In fact, the self-protection that is 
present at the machine level could be viewed as the last 
line of defense. The outermost layer would be the first 
line of defense. It would probably be appropriate to 
utilize redundancy as we move farther away from the 
machine level, i.e. employ multiple monitors that not 
only monitor the individual machines, but also watch 
other machines or monitors. 
 At the LAN level, monitoring and control 
mechanisms can be configured to meet the specific 
requirements of the organization. For example, 
tolerance ranges would be configured more tightly for 
safety-critical organizations. Alarms and corrective 
measures may be designed to be more aggressive and 
proactive in these organizations. Furthermore, at this 
layer and other layers that are farther away from the 
machine, the resources consumed by the monitoring 
processes is not a constraint as it is at the machine level. 
This is because the hosts/servers/agents in these higher 
layers are dedicated solely to the management process 
(coordination, diagnosis, modeling, analysis, and 

 

Machine Level 

LAN 

WAN 

Global 

. 

. 

. 



J. Computer Sci., 2 (6): 496-504, 2006 

 502 

healing) The complexity of the monitors at the 
organization level may be greater than the more generic 
monitoring processes of the higher layers which might 
encompass multiple organizations, thus reducing the 
potential for customization at those layers. 
 
Modeling hierarchy: The modeling hierarchy depicted 
in Fig. 2 can be briefly described as follows: There are 
three layers in the hierarchy. Communication between 
the layers is provided by interfaces that allow pertinent 
information to be passed to the appropriate model 
modules resident in each layer. 
 

 
Fig. 2:  Modeling hierarchy 
 
 Each layer is comprised of various model modules. 
For example, in the component layer (which is the 
lowest level of the modeling hierarchy) the SW/HW 
Reliability module contains models that enable the 
autonomic system to determine the state of the software 
and hardware components. Stochastic control charts 
may be one method that is used to determine whether 
these components are in a normal or abnormal state.  
 The Human Behavior models in this layer are 
responsible for ensuring system dependability in spite 
of human errors which can never be eliminated.  Three 
types of human operator errors[18] that our Human 
Behavior models must address are: (1) Slips/Lapses - 
operators not doing what they intended to do, (2) 
Unintentional Mistakes – operators doing what they 
intended to do, but their action was the wrong action to 
perform, and (3) Intentional Mistakes – malicious 
actions carried out by hackers, intruders, or 
eavesdroppers. 
 The Virus/Spam Behavior models are concerned 
with system security and protection and are thus 
designed to improve system dependability. 
 The model modules resident in the communication 
layer are self-descriptive. Network Reliability models 
are responsible for ensuring reliable communication 
between nodes, files and services that may be 
distributed throughout the network. Network Security at 
the Communication Layer includes models for 
authentication via keys and certificates, for example. 
Also cryptography is utilized to ensure secure data 
transfer and communications. 

 At the highest level of the Modeling Hierarchy is 
the System Layer. The most important model module in 
this layer is the Management module which stores the 
models for three distinct management areas: (1) 
Resource management, (2) Reliability and Security 
management, and (3) Service management. 
 It should be noted that the model modules shown in 
Fig. 2 is not an all-inclusive list. Other modules can be 
added based on organization-specific requirements. 
This provides for additional customization offered by 
the model-driven approach. For a more comprehensive 
discussion of the specifics of various models, please 
refer to[21]. 
 
Overall architecture of model-Driven autonomic 
management: Once the monitoring hierarchy and 
modeling hierarchy have been established, the next step 
is to determine how to integrate these ideas into an 
architecture that produces the prototype design for a 
dependable, secure, and comprehensive autonomic 
system that meets all four of the aforementioned design 
goal characteristics. The proposed architecture is 
depicted in Fig. 3. 
 

 
Fig. 3: Autonomic system architecture 
 
 The modeling hierarchy is present in each network 
that is resident in the entire system (only one network is 
shown for illustration purposes).  This allows for a new 
LAN, for example, to be “plugged in” to the existing 
architecture without the need for manual 
reconfiguration.  
 The sensor collects data deemed relevant for 
evaluating the state of the network or machines for 
which it is responsible. The sensor can initially be 
configured with default values, or parameters may be 
loaded from other domains that are already present in 
the system. However, the sensor is dynamic. This is 
accomplished by integrating a machine-learning 
component into the sensing and monitoring mechanism.  
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 Data retrieved and stored by the sensor is passed to 
the monitor where a decision regarding the system state 
is made. If the system is determined to be in an  
abnormal or uncertain state, the pertinent data is passed 
to a high-level controller that makes a determination on 
the nature of the problem at hand. The controller then 
chooses the configuration, healing, or protection 
component of the diagnostic unit, which is linked to a 
problem/prescription library. The library contains a list 
of known problems (configuration issues, fault/failure 
issues, and security/protection issues). Each problem is 
mapped to a list of proposed corrective “prescriptions”. 
The prescription that is determined to be the best to 
solve the current problem is chosen and passed to an 
effector, which implements the cure by sending it to the 
component, that needs to be healed. 
 A feedback loop from the effector to the problem 
library, the controller, and the monitor modules 
provides a machine learning mechanism for the system 
architecture, and thus provides for adaptability. This 
feedback loops allow the system to perform better with 
the passage of time. 
 First, the feedback to the Problem/Prescription 
library tells this module whether the prescription 
successfully solved the problem. If not, the library notes 
that the fix was unsuccessful then chooses another 
prescription to try.   
 Second, the feedback to the Controller is used to 
notify the Controller that it erroneously decided 
corrective action was necessary when in fact no 
problem existed. For example, the Controller may have 
incorrectly identified a user attempting to access the 
network as an “intruder” and thus triggered a protection 
mechanism. The feedback loop will tell the Controller 
that the user was “safe”.  Not only must this information 
be passed back to the Controller, but cooperative 
communication between the Controller and Modeling 
Hierarchy must also be present. This is required so that 
the models can be updated as necessary, and the 
Controller can make better decisions based upon the 
updated models. 
 Lastly, the feedback to the Monitor provides real-
time updates to the parameters being monitored to 
determine the state of the system and adjust tolerance 
ranges if necessary. For example, if the tolerance range 
is too narrow for a specific parameter, the system will 
experience a higher frequency of false alarms than 
would typically be expected. Therefore, the effector 
provides this information back to the Monitor where 
adjustments can be made autonomously. 
 It should be noted that the components of the 
system architecture are distributed and varied within 
and across network layers. They are dynamic and 
customizable.  
 Although the system is a work-in-progress that 
needs validation through testing, we believe that the 
model-driven approach will improve system 
dependability for many reasons, some of which are: 
 

* Monitoring resources are well allocated on 
components according to their predicted reliability 
and security, and real-time behaviors, 

* Model-Driven provides for not only a reactive, 
event-driven healing mechanism but more 
importantly a proactive, predictive technique to 
prevent failures before they occur, 

* Network resources are not wasted on unnecessarily 
monitoring highly reliable components intensively, 

*  MTTR is reduced, 
* The hierarchical structure provides for task-specific 

and organization-specific tuning at the various 
monitoring levels and within the modeling 
hierarchy, 

* The hierarchical structure provides multi-level 
intrusion detection, protection, and response, 

* The feedback loops provide a mechanism for 
continuous real-time updates to critical components 
of the Autonomic System Architecture. 

 
DISCUSSION AND COCLUSION 

 
 The goal of developing a completely autonomic 
computing system has been the motivation for much 
research. This study has presented research that appears 
promising in designing an autonomic strategy that will 
improve overall system dependability. While the study 
looks at ideas in a categorical manner, the challenge in 
realizing a truly dependable autonomic system lies in 
weaving together the best ideas from each area into a 
cohesive and complete system and building new ideas 
into the system.  
 The Model-Driven approach we present utilizes a 
hierarchical structure; one in which the system is 
viewed as a series of layers. This design provides for 
both customization and adaptability. 
 Monitoring is implemented either by statically 
establishing parameters to be monitored or dynamically 
through communication with the monitored nodes at 
run-time. Sensors and effectors are used to monitor the 
system and adjust the system as necessary. 
 The preliminary design of the Model-Driven 
approach presented utilizes some aspects of previously 
proposed approaches but adds significant novel 
techniques that we believe will produce a better and 
more intelligent autonomic system thus providing 
dependability improvements that are superior to the 
current technologies. To validate our design and 
assumptions, the prototype design must be implemented 
and tested on a distributed system at our research 
facilities. 
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