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Abstract: Imperfect coverage (IPC) occurs when a malicious component failure causes extensive 
damage due to inadequate fault detection, fault location or fault recovery. Common-cause failures 
(CCF) are multiple dependent component failures within a system due to a shared root cause. Both 
imperfect coverage and common-cause failures can exist in distributed computer systems and can 
contribute significantly to the overall system unreliability. Moreover they can complicate the reliability 
analysis. In this study, we propose an efficient approach to the reliability analysis of distributed 
computer systems (DCS) with both IPC and CCF. The proposed methodology is to decouple the effects 
of IPC and CCF from the combinatorics of the solution. The resulting approach is applicable to the 
computationally efficient binary decision diagrams (BDD) based method for the reliability analysis of 
DCS. We provide a concrete analysis of an example DCS to illustrate the application and advantages of 
our approach. Due to the consideration of IPC and CCF, our approach can evaluate a wider class of 
DCS as compared with existing approaches. Due to the nature of the BDD and the separation of IPC 
and CCF from the solution combinatorics, our approach has high computational efficiency and is easy 
to implement, which means that it can be easily applied to the accurate reliability analysis of large-scale 
DCS subject to IPC and CCF. The DCS without IPC or CCF appear to be special cases of our 
approach. 
 
Key words: Distributed program reliability (DPR), reduced ordered binary decision diagrams 

(ROBDD), separable approach 
 

INTRODUCTION 
 
 A distributed computer system (DCS) is a 
collection of interconnected independent computers 
(hosts) that appears to its users as a single coherent 
system[1]. DCS provide an efficient way to achieve 
fault-tolerance and share system resources such as 
processing elements, memory modules, data files, and 
so on. A successful execution of a distributed program 
usually requires one or more of the resources that reside 
on multiple hosts at different geographic sites of the 
DCS.  
 It is possible that some faults of hosts or 
communication links may not be adequately detected 
and located so that the distributed program cannot be 
executed successfully despite the presence of adequate 
redundancies (other operational hosts and links). This 
phenomenon is known as imperfect coverage (IPC)[2]. 
The IPC introduces additional failure modes that must 
be considered for accurate reliability analysis of DCS. 
In other words, the analysis must allow multiple failure 
modes including operational (not failed), failed covered, 
and failed uncovered, rather than the traditional binary 
designation of operational and failed. This 
consideration poses unique challenges to existing 
analysis methods. Because failure to consider IPC in the 
reliability analysis leads to overestimated system 

reliability, considerable research have been performed 
in studying IPC for the reliability analysis of fault-
tolerant systems[2-7], but only few of them[5,7] are 
applicable to DCS and their complexity can increase 
rapidly as the size of DCS, i.e., the number of hosts and 
links in a DCS increases.  
 The challenges increase when common-cause 
failures are incorporated in the model. Common-cause 
failures (CCF) are multiple dependent component 
failures within a system that are a direct result of a 
common cause (CC) or a shared root cause[8], such as 
extreme environmental conditions, operation and 
maintenance errors.  Examples abound in the real 
world. Sabotage, lightning strike, and power outage can 
cause the simultaneous failure of numerous components 
in a DCS. It has been shown by many reliability studies 
that CCF increase a system’s joint failure probabilities 
and thus contributes significantly to the overall 
unreliability of systems subject to CCF[9]. Therefore, 
failure to consider CCF in the reliability analysis of 
such systems leads to underestimated system 
unreliability measures. Considerable research efforts 
have been expended in the study of common cause 
failures for reliability modeling and analysis of 
computer-based systems. However, the existing CCF 
models are mainly applicable to non-DCS systems. And 
they have various limitations, such as being concerned 
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with a specific system structure[10-13]; applicable only to 
systems  with exponential time-to-failure 
distributions[14-16]; limiting analysis to components 
being affected by at most one common cause, i.e., 
components belonging to at most a single common-
cause group (CCG)[9,17]; having a single common cause 
(CC) that affects all components of a system[12,18]; or 
defining CC as being statistically-independent or 
mutually exclusive. In this study, we seek to address 
some of these limitations in developing a model for the 
reliability analysis of DCS subject to CCF by allowing 
for multiple CC that can affect different subsets of 
system components, and which can occur statistically-
dependently.  
 As discussed above, a great deal of work has been 
done to separately address IPC or CCF in the system 
reliability analysis. To the best of our knowledge, 
however, only little work[12,18] has considered both IPC 
and CCF in solving reliability problems. Moreover, the 
existing methods did not consider IPC and CCF in a 
DCS and they share a restrictive assumption that a 
single elementary CC leads to simultaneous failures of 
all components of a system.  In this study we relax the 
above restriction by utilizing our generalized CCF 
model for DCS. 
 And we propose a separable and efficient reduced 
ordered binary decision diagram (ROBDD) based 
approach to the reliability analysis of DCS with both 
IPC and dependent CCF in an elegant manner. 
 In this study we use the following acronyms, and 
we assume the singular and plural of an acronym are 
always spelled the same: 
 

BDD Binary Decision Diagram 
CC Common Cause 
CCE Common-Cause Event 
CCF Common-Cause Failure 
CCG Common-Cause Group 
DCS Distributed Computer System 
DPR Distributed Program Reliability 
DPUR Distributed Program UnReliability 
DSR Distributed System Reliability 
FST File Spanning Tree 
IPC Imperfect Coverage 
IPCM Imperfect Coverage Model 
MFST Minimal File Spanning Tree 
ROBDD Reduced Ordered BDD 
s- Implies: statistical(ly) 

  
PROBLEM STATEMENT 

 
 This study considers the problem of assessing 
distributed program reliability for distributed computer 
systems. Distributed program reliability (DPR) is 
defined as the probability that at least one minimal file 
spanning tree (MFST) of a distributed program is 
operational within the time interval (0, t)[7]. A file-

spanning tree (FST) is defined as a spanning tree that 
connects the root node, i.e., the host running the 
program under consideration to other nodes such that its 
vertices hold all the required resources for successful 
execution of the program. An FST is an MFST if there 
exists no other FST that is a subset of it. An MFST is 
said to be operational when all its components are 
operational[7,19]. The approach developed in this study is 
also applicable to evaluate distributed system reliability 
(DSR), which is defined as the probability that at least 
one MFST for all programs is operational[7].  
 
Assumptions 
* The DCS is modeled by a probabilistic undirected 

graph G(V,E), in which vertices represent the hosts 
and edges represent the communication links[20]. By 
probabilistic we mean that failure probabilities are 
assigned to each node and link in the graph.  

* Links or nodes in DCS fail s-independently with 
known probabilities. 

* The failure probability for each link or node is 
given as a fixed probability for a given mission 
time or in terms of a lifetime distribution. 

* The imperfect coverage behavior is described using 
Dugan et al’s imperfect coverage model (IPCM, 
Fig. 1)[2]. The entry point to the model signifies the 
occurrence of a fault, and three exits represent three 
possible and mutually exclusive outcomes. If the 
offending fault is transient and can be handled 
without discarding any component, the transient 
restoration exit (labeled R) is taken. The permanent 
coverage exit (labeled C) denotes the determination 
of the permanent nature of the fault and the 
successful isolation and removal of the faulty 
component. If the C exit is reached, then a covered 
component failure is said to occur. An uncovered 
component failure occurs when a single fault (by 
itself) causes the system to crash. The single-point 
failure exit (labeled S) is reached in this case. 
Within the context of reliability analysis it is 
required to refer to the exit probabilities only. We 
assume that the three exit probabilities of the 
IPCM: transient restoration (r), permanent coverage 
(c) and single point of failure (s) for each 
component are given as fixed probabilities. 
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Fig. 1: General structure of the IPCM 
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CCF model for DCS 
* A DCS can be subject to CCF from different 

common-causes (CC). In general, we express the 
CC occurring in a DCS as CC1, CC2, ……, CCm, 
where m is the total number of CC related to the 
DCS.  

* Different CC can occur s-independently, or s-
dependently. 

* A single component may be affected by multiple 
CC, i.e., one component can belong to more than 
one common-cause group (CCG). All components 
that are caused to fail due to the same elementary 
CCi constitute a common cause group CCGi.  
 

 Note that our CCF model is more general and thus 
more practical than the existing CCF models, which 
usually require some restrictive assumptions. 
  
Problem inputs: The following lists all the required 
input parameters for solving the problem: 
* DCS configuration in the probabilistic graph 
* Mission time t 
* Failure parameters of each link and each node 
* Fault coverage factors (ri, ci, si) of each link and 

each node 
* Statistical relationship between elementary CC: s-

independent, or s-dependent 
* Probabilities of elementary CC occurring or 

conditional probabilities of CC occurring 
conditioned on the occurrence of another CC when 
they are s-dependent. 

 
 The accurate reliability analysis of a fault-tolerant 
DCS heavily depends on the realistic estimate of its 
input parameters. Fault injection[21,22] is a commonly 
used technique for estimating the component failure 
parameters and fault coverage factors. The occurrence 
probabilities of CC and their statistical relationship can 
usually be available from sufficient weather data or 
equipment data[23].  In this study, we consider them as 
given input parameters of the problem. 
 

AN ILLUSTRATIVE EXAMPLE 
 
 We use a simple example (adapted from[7]) to 
illustrate the proposed methodology for DCS reliability 
analysis. Figure 2 shows the probabilistic graph of the 
example DCS.  
 The links fail s-independently with constant failure 
rate λ1=2e-7/hour. The links are subject to uncovered 
failures with coverage factors r=0, c=0.95, and s=0.05. 
The nodes fail s-independently with constant failure rate 
λ2=1e-7/hour. The nodes are subject to uncovered 
failures with coverage factors r=0, c=0.99, and s=0.01. 
Note that for simplicity we assume all the link (node) 
failures are exponentially distributed with the same 
failure rate λ1(λ2) and all the links (nodes) have the  

n4
Programs: P1, P3

Files: F1, F3

FN1 : F1, F2, F3
FN2 : F2, F3, F4

FN3 : F1, F3, F4
FN4 : F1, F2, F4

e1

e4

e3

e2

e5

n2
Programs: P4
Files: F3, F4

n3
Programs: P2, P3

Files: F2, F4

n1
Programs: P1, P2

Files: F1, F2

 
Fig. 2: Probabilistic graph model of the example DCS 

(adapted from[7]; FNi denotes the set of files 
required by a program Pi; system resources are 
abstracted into files) 

 
same coverage factors; our methodology is applicable to 
arbitrary link (node) failure distributions and coverage 
factors. In addition, the DCS is subject to CCF from 
two independent common-causes, earthquakes (denoted 
by CC1) and power failures (denoted by CC2). An 
earthquake of sufficient intensity would cause links e2 
and e5 and node n4 to fail (CCG1 = {e2, e5, n4}); a power 
failure would cause nodes n1 and n2 to fail (i.e., CCG2 = 
{n1, n2}). We assume that the following information can 
be extracted from the available weather and power data: 
the probability of an earthquake is PCC1 = 0.001, the 
probability of a power failure is PCC2 = 0.003. The 
problem is to find DPR for program P1 in the example 
DCS for mission time of t = 1000 hours. In the 
following part, the example will be analyzed to illustrate 
our method step by step. 
 
SEPARABLE AND EFFICIENT DPR ANALYSIS 

 
 We present our separable ROBDD-based approach 
for analyzing DPR of DCS with both IPC and CCF. The 
methodology is to separate both IPC and CCF in two 
phases from the combinatorics of the solution based on 
the “Total Probability Theorem”. The resulted reduced 
DCS reliability problems are freed from the concern 
about both CCF and IPC, and can be solved using 
computationally efficient ROBDD methods. Finally, the 
results of all reduced sub-problems are integrated to 
obtain the entire DCS DPR measure.  
 
Separating IPC: Consider two mutually exclusive and 
complete events E1 (1 or more components including 
links and nodes in the DCS fail uncovered) and E2 (no 
component experiences an uncovered failure). 
According to the “Total Probability Theorem”, for 
event E, the failure of a given distributed program 
whose occurrence probability is distributed program 
unreliability (DPUR), we have: 

(1)                                  )Pr()|Pr()Pr(1

)Pr()|Pr()Pr()|Pr()Pr(

222

2211

EEEE

EEEEEEEDPUR

•+−=
•+•==  

 According to Dugan et al’s IPCM[2], we have: 
u[i] = Pr (SFi: component i fails uncovered) = si • qi(t), 
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c[i] = Pr (CFi: component i fails covered) = ci • qi(t), 
n[i] = Pr (NFi: component i does not fail)  
       = 1 - qi(t) + ri • qi(t) (2) 
 
 qi(t) is the failure probability of the link/node i 
within time interval (0,t), which can be obtained directly 
or calculated from the input failure parameters; ri, ci, si 
are fault coverage factors given as input parameters. 
Based on Eq. (2), we can calculate Pr(E2) in Eq. (1) as 
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 Pr(E|E2) in Eq. (1) is the unreliability of 
corresponding perfect coverage DCS that ignores IPC. 
It should be evaluated given that no link or node 
experiences an uncovered failure. Therefore, before 
calculating Pr(E|E2) we modify each node/link’s failure 
function qi(t) to a conditional probability 
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valued as 9.8995e-5 for the nodes and 1.8998e-4 for the 
links of the example DCS. Using these modified 
component failure probabilities, we can calculate 
Pr(E|E2) by any approach that ignores IPC but considers 
CCF.  
 
Separating CCF: Based on our CCF model there exist 
m elementary CC in a DCS. The m CC partition the 
sample space into the following 2m disjoint subsets, 
each called a common-cause event (CCE).  
 

mCCCCCCCCE ∩∩∩= ...211 , 

mCCCCCCCCE ∩∩∩= ...212
, 

…… , 

mCCCCCCCCE m ∩∩∩= ...212
. 

 
 We build a space called “CCE space” over this set 
of collectively exhaustive and mutually exclusive 
common-cause events that can occur in a DCS, that is, 

},...,,{
221 mCCECCECCECCE =Ω . If )Pr( jCCE  denotes 

the probability of 
jCCE  occurring, then we have 

� =
=

m

j jCCE
2

1
1)Pr(  and φ=∩ ji CCECCE  for any 

ji ≠ .  
 For our example DCS presented before, the CCE 
space is composed of 422 =  CCE, that is, 

},,,{ 4321 CCECCECCECCECCE =Ω , because there are 

2 elementary common-causes CC1 (earthquakes) and 

CC2 (power failures). Each CCEi is a distinct and 
disjoint combination of elementary CC, as defined in 
the first column of Table 1.  
 Let 

iCCEA denote a set of components, which are 

the only ones affected by the CCEi. 
iCCEA is simply the 

union of those CCG whose corresponding elementary 
common-causes occur, as shown in the second column 
of Table 1.  
 Because the two CC occurring in the example DCS 
are independent, we can calculate the occurrence 
probability of each CCE as follows: Pr(CCE1) = (1- 
PCC1 )(1- PCC2), Pr(CCE2) = PCC1(1 - PCC2), Pr(CCE3) = 
(1 - PCC1) PCC2 , and Pr(CCE4) = PCC1 PCC2 . The values 
of Pr(CCEi) for the example DCS are shown in the third 
column of Table 1.  
 
Table 1: CCE, affected components, probabilities 

CCEi 
iCCEA  Pr(CCEi)  

211 CCCCCCE ∩=  φ  0.996003 

212 CCCCCCE ∩=  CCG1={e2,e5,n4} 0.000997 

213 CCCCCCE ∩=  CCG2={n1, n2} 0.002997 

214 CCCCCCE ∩=  CCG1 ∪ CCG2=  0.000003 

 {n1,n2,n4,e2,e5}  

 
 As an illustration, we also show the calculation 
procedure for Pr(CCEi) in case of two CC being 
mutually exclusive or being s-dependent.  If elementary 
common-causes CC1 and CC2 are mutually exclusive, 
then Pr(CCEi) can be calculated as: Pr(CCE1) = 1- PCC1 
- PCC2 , Pr(CCE2) = PCC1 , Pr(CCE3) = PCC2 , and 
Pr(CCE4) = 0. The calculation is slightly different when 
the two CC are s-dependent. For example, floods (CC2) 
often occur in conjunction with hurricanes (CC1). 
Suppose that the probability of CC1 occurring is PCC1, 
that Pr{CC2| CC1} = p, and that Pr{CC2| no CC1} = q. 
The CCE occurrence probabilities Pr(CCEi) can be 
calculated as: Pr(CCE1) = (1 - PCC1) · (1 - q), Pr(CCE2) 
= PCC1 · (1 - p), Pr(CCE3) = (1 - PCC1 ) ·q, and Pr(CCE4) 
= PCC1 · p. 
 Based on the CCE space we developed and the 
Total Probability Theorem, we calculate the Pr(E|E2)  in 
Eq. (1) as:   
 

(3)                                         ])(Pr[  
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 As described above, Pr(CCEi) in Eq. (3) can be 
obtained based on the statistical relationship between 
the elementary common-causes and the occurrence 
probabilities of elementary CC (PCC), which are given 
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as input parameters. DPURi is a conditional probability 
that the distributed program fails conditioned on the 
occurrence of CCEi and no uncovered failure.  The 
evaluation of DPURi is actually a reduced DCS 
reliability problem in which the components affected by 
CCEi (

iCCEA ) do not appear and no further attention to 
IPC and CCF is required. Since both IPC and CCF are 
out of the picture, traditional DCS reliability analysis 
approaches that ignore both IPC and CCF can now be 
applied to solve those reduced reliability problems 
DPURi.  In the following, we present an efficient 
ROBDD-based approach for solving DPURi.  
 
Solving reduced problems DPURi: It has been shown 
by many studies that in most cases, ROBDD-based 
algorithms require less memory compared with other 
methods and can perform exact and efficient calculation 
for large system reliabilities[2,7,24]. In the following we 
present a four-step ROBDD-based approach to the 
evaluation of DPURi in Eq. (3).  
Step 1: Obtain the set of MFST using the algorithm 

based on a breadth-first search, described 
in[20]. 

Step 2: Order all the DCS components including 
nodes and links using a good variable 
ordering heuristic. A heuristic is good in the 
sense that it yields a compact BDD[25]. 

Step 3: Generate the ROBDD for the failure function 
of a DPR from the MFST using an algorithm 
similar to the one described in[7].  

Step 4: Evaluate DPURi recursively from the 
ROBDD using the modified failure 

probability )(
~

tqi
.  The evaluation algorithm 

is the same as the traditional BDD 
evaluation[6].  

 For the example DCS, the set of MFST for 
program P1 includes: MFST1 = {n1, e1, n2}, MFST2 = 
{n4, e5, n3}, MFST3 = {n1, e4, n3, e3, n2}, MFST4 = {n4, 
e2, n2, e3, n3}. We use ordering of n1 < n2 < e1 < e4 < n3 < 
n4 < e5 < e3 < e2 to generate the ROBDDs.  
 There are four reduced problems for the example 
DCS: DPURi, i=1,2,3,4. The DPUR4 is simply 1 
because when CCE4 occurs, all MFST for program P1 
fail. According to the components affected by CCEi (i.e. 

iCCEA ), the ROBDD of DPUR1 is generated from all 

the four MSFT; ROBDD of DPUR2 is generated from 
MFST1 and MFST3, and ROBDD of DPUR3 is 
generated from MFST2. Figure 3 and Figure 4 show the 
ROBDD for the first three reduced problems. 
Evaluation of them gives: DPUR1 = 7.6825e-8, DPUR2 

= 1.9807e-4 and DPUR3 = 3.8793e-4. 
 

n1

n2
n2

e1

n3

e4

n4

e5 e5

n4

n3

e3

e2

e3

n4

n3

1

e5

0  
 

Fig. 3: ROBDD for DPUR1 
 

n1

n2

e1

e4

n3

e3

0 1

n4

n3

e5

0 1  
 

Fig. 4: ROBDD for DPUR2 and DPUR3 

 
Integrating results:  Based on the discussion, we 
integrate the results of DPURi with Pr(CCEi) using Eq. 
(3) to generate Pr(E|E2).  Then we integrate the result of 
Pr(E|E2)  with Pr(E2) using Eq. (1) to fulfill the task of 
distributed program reliability analysis for program P1. 
Table 2 summarizes the integration process and the 
results. As a comparison, the distributed program 
unreliability for program P1 without considering IPC 
and CCF is 8e-8 for the example DCS, which shows 
that IPC and CCF contribute significantly to the system 
unreliability and must be properly considered for the 
accurate analysis of DCS reliability.  
 
Summary of the DCS analysis approach: Our DPR 
analysis approach for DCS subject to IPC and CCF first 
separates the consideration of IPC from the solution 
combinatorics and then decompose the resulted 
simplified problem into a number of reduced problems 
according to Total Probability Theorem. The effects of 
both IPC  and CCF  are factored out  through the  above  
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Fig. 5: A conceptual overview of the proposed DPR analysis approach 
 
two-phase reductions. The reduced problems are solved 
using efficient ROBDD based method. Figure 5 shows a 
conceptual overview of the proposed separable 
approach.  
 
Table 2: Results of the example DCS 
Pr(E2) 0.999946 
DPURi DPUR1 = 7.6825e-8  
 DPUR2 = 1.9807e-4  
 DPUR3 = 3.8793e-4 
 DPUR4 = 1 

Pr(E|E2) 

64366.4

Pr
4

1

−=

•�
=

e

)](CCE[DPUR
i

ii  

DPUR(P1) 
5843.5

)Pr()|Pr()Pr(1 222

−=
•+−

e

EEEE  

 
 The advantages of our approach are that it allows 
reliability engineers to use their favorite software 
package that ignores both IPC and CCF for computing 
distributed program reliability, and adjust the input and 
output of the program slightly to produce the DPR 
measure considering both IPC and CCF. As shown  
through the example, due to the nature of the ROBDD 
and the separation of IPC and CCF from the solution 
combinatorics, our approach has higher computational 
efficiency and is easier to implement than other 
potential methods such as Markov chain based methods, 
which can accommodate IPC and CCF by expanding 
the state space and number of transitions, worsening the 
state explosion problem. 
 
 
 

CONCLUSION 
 
 In this study, we presented a separable and efficient 
ROBDD-based approach for DPR analysis of DCS with 
IPC and dependent CCF. Our approach enables the 
analysis of multiple common-causes that can affect 
different subsets of system components, and which may 
be s-dependent. We illustrate the proposed approach by 
considering the DPR analysis of a DCS subject to two 
common-causes. The efficiency of our approach means 
that it can be easily applied to the accurate reliability 
(including both DPR and DSR) analysis for large-scale 
DCS subject to IPC and CCF. 
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