
Journal of Computer Science 1 (1): 98-102, 2005
ISSN 1549-3636
© Science Publications, 2005

98

A Note on the Role of Abstraction and Generality in Software Development

Pavol Návrat and Roman Filkorn
Institute of Informatics and Software Engineering

Faculty of Informatics and Information Technologies, Slovak University of Technology
Ilkovicova 3, SK-84216 Bratislava, Slovakia

Abstract: Although the evolving field of software engineering introduces many methods and
modelling techniques, we conjecture that the concepts of abstraction and generality are among the
fundamentals of each such methodology. This study proposed a formal representation of these two
concepts, along with a two-dimensional space for the representation of their application. Based on the
examples, we further elaborate and discuss the notion of abstraction and generalisation transformations
in various domains of software development.

Key words: Abstraction, Generality, Software Development

INTRODUCTION

The field of software engineering gradually matures
and proceeds towards one of its destiny–towards the
mass production of quality software products. Many
well-studied and broadly accepted principles and
methodologies of software development are enhanced
and arranged in entirely new ways. Although the multi-
paradigm approaches introduce new and extended
methods, techniques and models for various aspects of
software development process, one of the assumptions
of their successfulness is tight to their interpretation of
common fundamentals –abstraction and generality.
We conjecture that abstraction and generality play one
of the central roles among the fundamental concepts in
software development. It is the notion of abstraction
and generality, the form of their application and
representation, which is an essential aspect that makes
the paradigm usable and used.
For the purpose of our examples, we often use the word
“concept” instead of the terms like “object” and “class”,
which are often tightly coupled with the semantics
borrowed fro m object-oriented paradigm. We do not
attempt to define exactly various meanings of word
“concept”; we suppose that the reader is with the term
familiar [1].
One of the most widely used architecture for web
applications is an architectural pattern known as Model-
View-Controller [2] (Hierarchical MVCI) [3]. It divides
an application into three separate modules: the model
contains data and problem-domain functionality, the
view displays information to the user and the controller
handles user input. Each module of the MVC
architecture represents a distinct point of view–an
abstraction, focusing on a particular concern of the
application (concepts and relationships relevant for the
concern, respectively). On the other side, the definitions
of the modules are general enough to allow a set of

specifying transformations into any special
environment. We will take a closer look on both
abstraction and generality as fundamental axes of
concept transformations.

Abstraction and Generality in Software
Development: One of the most important issues in
software development is managing complexity. Each
software development methodology or process
proposes some mechanisms for such management. One
fundamental concept, common in these methodologies,
is the concept of abstraction. Another one, useful not
only in reusing what has been developed before, is
generality. Before further elaboration, we take a closer
look at both concepts.

Abstraction: A software developer cannot deal with
more than a few concepts and their relationships
simultaneously. An abstraction allows suppressing
details that are unimportant to him/her and emphasize
the important information [4]. Abstraction helps
manage the intellectual complexity of software [5].
Abstracting means that a higher-level concept
disregards certain properties altogether [6, 7].
Abstraction can be undoubtedly viewed as one of the
most fundamental principles that take into account (and
are applied) in the software development process. It has
been claimed that the process should be abstraction (de-
abstraction, respectively) driven (similar to “stepwise
refinement” originally presented by Dijkstra).
A lot of information about a system in development is
collected in various types of models. Every model can
be viewed as a formalised abstraction of the system, is
concerning on a selected set of system’s features and
characteristics. In a simplified view, a model can be
described by its intent and a set of predefined
mechanisms to help fulfill the intent. The set defines
representation formalisms, in other words, what type of

J. Computer Sci., 1 (1): 98-102, 2005

 99

entities, concepts and relationships to stress out of the
system. In a complementary definition, it describes
what unimportant details are to be abstracted away.
As an attempt towards better formalization, we define
for the purpose of the study operations of abstracting
and concretising as follows.
Abstracting is a transformation that moves e (an entity
in a model, e.g. class in class model, concept in
conceptual model, or even whole model representation
as an entity in software development process) to a more
abstract e’ by suppressing some details from e:

Adetails (e) = e’

Where, e' is e with some details omitted.
The inverse transformation to abstraction is
concretising. Concretising is adding new details to an
(more or less) abstract e:

Cdetails (e) = e’

Where, e' is e with some details added.
By application of these operators, there may be distinct
details omitted/added that are indicated as parameters
of abstraction/concretisation. Details depend (not only)
on the focus, the granularity of the entity they are
applied on, the formalised representation of the entity
and determine what of the entity should be
abstracted/concretised. We further elaborate some
examples of operators, their application on entities and
possible distinct added/omitted details in this study.
A simple example of different levels of abstraction is in
class-like diagram in Fig. 1. At the most abstract level,
no details about class Person are present/modeled. At a
less abstract level (after transformation CPersonal),
methods getName, addChild and getChildren model
behaviour of the class and attributes name and children
add some state to class objects. At the bottom, after

Fig. 1: Different Levels of Abstraction of Class Person

application of Aattributes transformation, more abstract
layer of class person is presented, with its attributes
hidden. Such a class Person declares only its behaviour
in the form of abstract methods.

Generality: Generality can be characterized as a state
or quality of being not limited to one particular case.
Generalisation, as an inductive process, collects
information about a number of particulars and presents
it in a single description [1]. General description
collects a set of individuals according to the features
that are applicable to the whole as well as to every
member of a set.
As noted in Navrat [7], generalisation moves things
along the set-superset relation. Specialization, as an
opposite operation, moves things in set-subset relation.
Less general description determines a smaller set of
things, while its transformation to a more general
description will determine a superset of the original set.
Every member of less general set is a member of more
general superset.
For the purpose of the study, we define generalisation
and specialising as follows:
Generalising is a transformation that moves entity e to a
more general e' in such a way that all the features and
dimensions of e' remains present in e, but at least some
of the features or dimensions are less constrained in e';

Gfeatures (e) = e’

Where, e' is e with some features/dimensions less
constrained.
Specialising is an inverse transformation to
generalising. It produces a specific case e' as one of
possible variations of e by constraining some features
or dimensions of e;

Sfeatures (e) = e’

Where, e' is e with some features/dimensions more
constrained.
Generality is achieved typically by introduction of
some sort of loose definition to properties or
characteristics. Such generality constitutes a variation
point, which allows several distinct alternatives to occur
at the pre-defined point (often referred to as parameter,
or hot spot in [5]). Variation point consists of one or a
combination of features, that are already present in the
description (have been concretised in some previous
transformation), but their values are not further
specified. The property representation is less
constrained or the value is abstracted at all.
As an example of specialisation, consider distinct kinds
of Person depicted in Fig. 2. The most general notion of
Person has three features: age, sex and position. Each of
these features is a variation point and is candidate for
further specialisation of Person. Feature age is
constrained in the interval <0,150>, sex can obtain a

J. Computer Sci., 1 (1): 98-102, 2005

 100

Fig. 2: Specialization of Features of Concept Person

Fig. 3: Space of Abstraction and Generality [10]

value from enumeration <male, female> and position is
of type String, with no value assigned. On the left side
of the diagram, specialisation of feature position
(Sposition) is applied, resulting in two special cases of
Person- “student” and “taxi-driver”. On the right side of
the diagram, variation point age is further constrained
(Sage), resulting in two less general cases of Person. If
the age specialisation plays important role in the
problem domain, these new classes obtain unique
names, InfantPerson and AdultPerson. Another point of
possible discussion in the interval defined for adultness
of person–exact boundaries (18, 21, or else) are the
subject of problem domain, too.
Generality is an inevitable characteristic of reusable
assets. Things get reusable only if they are general and
allow turning to specific in a clear and straightforward
manner. A difficult part of finding appropriate
generalisations is to find a balance between a natural
tendency to over-generalise (which may result in an
introduction of unnecessary variation points and thus
superfluous complexity) and a risk that some of the
relevant variation points will not be identified [1].
There are usually several candidates for variation points
which can be specified in the next step of entity’s
transformation. Although there is not any exact order
defined for specialisation of these variation points, the
order itself might play a significant role. It is often

some sort of knowledge that captures proposed order of
transformations and forms the content of a software
development process definition. Such knowledge is
mostly in a form of natural language sentences and a lot
of research is put in its further formalisation [8, 9] for
concept of design pattern [3].
Abstraction vs. Generality: Since it is very common to
confuse abstraction and generality, we believe the issue
is worth discussion. Although the entire complexity of
the relation between abstraction and generality is
beyond the scope of this article, we present one simple
view on it in the problem domain of previous examples.
Abstraction and generality are undoubtedly two distinct
concepts: while abstraction is concerned with the
amount of details present in an entity, generality makes
things usable in a wider context. Abstraction disregards
certain properties altogether, generality groups
individuals according to the features they all share.
Concretisation selects important features from the
problem domain into the model, while specialisation
helps classification of entities according to those
selected (concretised) properties.
One possible reason of the confusion between
abstraction and generality may be bound with the
specialisation. By specialising, there usually arise new
opportunities to include additional details into the more
specific entity.
Let us consider an example of further transformation of
the concept Person. It may be specialised into
AdultPerson by restricting age to be a value in interval
<18,65>. Once we have this, it is possible to find
further characteristics that are common for the
AdultPerson (and not for the Person) such as (collection
of) its children or id-card number. We can add them by
concretising as a new detail to AdultPerson. Usually,
both transformations are joined into a single step,
resulting in same set of features, but without a clear
realisation of both the involved transformations.
Space of Abstraction and Generality: For the purpose of
clarity and simplicity, let us reduce software
development process to one special case–stepwise

Journal of Computer Science 1 (1): 98-102, 2005
ISSN 1549-3636
© Science Publications, 2005

98

Fig. 4: Two-dimensional Space of Abstraction and Generality

development from domain modeling to class
implementation in object-oriented manner. In such a
process, each concept from problem domain is a subject
to a transformation that essentially alters its level of
abstraction or generality. The course of application of
specialisation and concretising operators transforms the
concept representation to mechanisms defined for
solution domain.
In Fig. 3, we showed the transformation space as a
simplified, two-dimensional space of abstraction and
generality. Abstraction levels vary along the vertical
axis with concept at the high-level abstraction level and
code listed at the low-level end of the axis. Generality
level that is indicated by the horizontal axis ranges from
general to single-application-specific.
In this space, we have depicted two significant states: a
general and abstract one in the top right corner and a
concrete and specific one in the bottom left corner.
Abstract and general state corresponds to a general
definition of a concept in problem domain. Concrete
and specific state represents its class/object
representation, which is embedded in a software
system's implementation.
Concept implementation is a process of transforming its
general and abstract representation (valid in problem
domain) to a specific and concrete representation
(based in solution domain). However, it does not
proceed as straightforwardly as the arrow shown in
Fig. 3 might suggest. It is a systematic step-by-step
process, composed of a series of transformations, most
of them directed towards concrete and specific.
Possible concretising and specialisation steps for the
concept Person are shown in Fig. 4. Starting with
abstract and general representation, various
transformations along one of the axes are possible. In
the first case, we start with specialisation of the concept
towards the person domain of university positions. For
this new specialisation (e.g. PersonAtUniversity), new
detail is concretised-attribute named position
values of which are constrained according to

the problem domain (e.g. Student, Professor, etc.).
Again, many possible transformations arrive in this
state of the process, what gives us responsibility
to choose among (e.g. specialisation to
AdultPersonAtUniversity, or concretize by adding
new attribute named age and constrain it in
a later transformation). Similar approach, different
in the order of applied transformations, is shown
as the lower path in our example. Although both
paths end in the same state in our example, it shall not
be taken as a general rule. The order and dedicated
priority of transformations may lead to very different
representations (e.g. concretizing to different
programming languages). Although being in
different states, the developed systems might
fulfill the requirements criteria and both pass
verification and validation tests.

Abstraction and Generality in Recent Works:
Abstraction plays a significant role in the field of
reverse engineering. In Egyed [11], abstraction
transformations are used for reducing complexity of
class models of large systems. The subject entity for
transformation is the whole graph representation of the
class model of reverse engineered system. Abstraction
transformation is represented as a transformation rule
between two sub-graphs. In the class model graph,
abstraction patterns are recognized and transformed to a
more abstract subgraph representation. A tool was
developed to help manage and apply the abstraction
transformations and was successfully tested on real
software systems.
One of the common consequences of using general
concepts in development is the risk of reduced
performance. In Schultz et al. [12], clear representation
of specialisation transformation for selected design
patterns is proposed. It is captured in a specialisation
pattern. Specialisation pattern holds information about
possible specialisation transformation of the program
code in the context of application of the pattern.

J. Computer Sci., 1 (1): 98-102, 2005

 102

Specialised program code executes with significant
performance improvement. Because of such automated
specialisation might lead to code/complexity explosion,
the process should be overlooked by a human
developer-driven.
One of the characteristics of a programming paradigm
may be the central abstraction it deals with [13]. In a
simplified view, multi-paradigm approaches to software
development offer various combinations of these
verified abstraction concepts. Trying to solve these
constrains often leads to better representation of used
techniques (e.g. the aspect as a separation and an in-
one-place representation of crosscutting concepts,
previously solved for example by macro and
precompiler techniques). The common concept that
remains behind is the abstraction itself. In another point
of view, the abstraction concepts differ according to
level of granularity and the domain/concern they are
applied in. For exa mple, Vranic [14] presents a feature
model of concepts in the solution domain of AspectJ
paradigm. Such a model represents the set of the
higher-level abstractions, along with their variation-
points. Further classification according to the
discrimination of the abstraction and the generality
transformations would probably lead to a more clear
and exhaustive understanding of these concepts and
will be subject of our further work.

CONCLUSION

The application of abstraction and generalisation
transformations is undoubtedly one of the fundamental
mechanisms in the field of software development. We
proposed representation that is more formal with
respect to abstraction and generalisation operators.
Based on our simple examples, we discussed the
possibilities and consequences of these transformations.
For the purpose of a model space for transformations,
we used two-dimensional space for abstraction and
generalization. Application of an operator moves an
entity along one of the axes, mainly towards the
concretisation and specialisation. The ambition of such
representation is not to define the exact order of
transformations that shall be taken, but to help in a
clearer representation and separation of taken steps.
Of course, it is difficult if not even impossible to define
the exact order for the application of the
transformations or the path that has to be traveled in the
two-dimensional space for even the simplest developed
systems. However, the overall direction and some
prediction might be captured to successive level in
some sort of development knowledge. The knowledge
may be helpful in decision-making based on (not
exhaustive list consisting of) the requirements, the
problem domain, solution domain mechanisms to be
used, development methodology, etc. Although the
sequence of modeling, design and development
decisions may lead to different paths and destinations in
the two-dimensional space, the results in the form of
developed systems might still (and of course, should)
fulfill the requirements and successively model the

problem domain. Our future work is concerned with a
definition that is more exact and elaboration of the
notion of abstraction and generality in the field of
software development. We would like to define a set of
transformations, that would form a knowledge base for
designing web applications for various problem
domains. Based on the specific experience, we would
like to progress in building more formal and clear
knowledge for the broad field of software development.

ACKNOWLEDGEMENTS

The work reported here was partially supported by
Slovak Scientific Agency, project No. VG 1/0162/03.

REFERENCES

1. Czarnecki, K. and U.W. Eisenecker, 2000. Generative

Programming. Methods, Tools and Application.
Addison Wesley.

2. Buschmann, F., R. Menier, H. Rohnert, P.
Sommerland and M. Stal, 1996. Pattern-Oriented
Software Architecture, A System of Patterns. John
Wiley.

3. Cai, J., R. Kapila and G. Pal, 2000. HMVC: The
layered pattern for developing strong client tiers, in
JavaWorld (http://www.javaworld.com).

4. Krueger, Ch. W., 1992. Software Reuse. ACM
Computing Surveys, 24: 131-83.

5. Pree, W., 1994. Design Patterns for Object-Oriented
Software Development. Addison-Wesley.

6. Návrat, P., 1994. Hierarchies of programming
concepts. Abstraction, generality and beyond. ACM
SIGCSE Bulletin, 26: 17-21, 28.

7. Návrat, P., 1996. A Closer Look at Programming
Expertise. Critical Survey of Some Methodological
Issues. Information and Software Technol., 1: 37-46.

8. Smolárová, M., P. Návrat and M. Bieliková, 1998.
Abstracting and Generalising with Design Patterns. In:
13th Int. Symp. Computer and Information Sci., Oct.
26-28, Belek-Antalya, Turkey, pp: 551-558.

9. Smolárová, M. and P. Návrat, 2000. Reuse with
Design Patterns: Towards Pattern-Based Design. Proc.
of Conference on Software: Theory and Practice. 16 th
World Computer Cogress, 21.15.8.2000 Beijing,
China. Eds. Z. Feng-D. Notkin-M.C. Gaudel,
Publ.House of Electr. Industry, pp: 232-235.

10. Návrat, P. and M. Smolárová, 2000. Pattern-Supported
Software Development. Role of Abstraction and
Generality. Technical report, STU Bratislava.

11. Egyed, A., 2002. Automated Abstraction of Class
Diagrams. ACM Transactions on Software
Engineering and Methodology, 11: 449-491

12. Schultz, U.P., J.L. Lawall and Ch. Consel, 2000.
Specialisation Patterns, Proceedings of ASE.

13. Vranic, V., 2002. Towards Multi-Paradigm Software
Development. J. Computing and Information Technol.-
CIT 10: 133-147.

14. Vranic, V., 2001. AspectJ Paradigm Model: A Basis
for Multi-Paradigm Design for AspectJ. In Proceedings
of Generative and Component-Based Software
Engineering, GCSE (Ed. Jan Bosch), Springer Verlag.

