
Journal of Computer Sciences 1 (4): 530-537, 2005
ISSN 1549-3636
© 2005 Science Publications

Corresponding Author: Djamel Meslati, LRI Laboratory, University of Annaba, BP 12, Annaba, Algeria
530

Towards Autonomously Developed Software:

A genetic Approach in Critical and Embedded Systems

1Djamel Meslati and 2Saïd Ghoul
1LRI Laboratory, University of Annaba, BP 12, Annaba, Algeria

2Philadelphia University, Computer Science Department, Sweilah, PoBox 1101, Amman, Jordan

Abstract: Nowadays, we are still considering changes undergone by a software system as a sporadic
phenomenon and we do not sufficiently anticipate future changes during the development phase.
Consequently, many problems arise in the maintenance phase. In this study, we present an approach
where all changes undergone by a software system are considered as its ontogenetic dimension. We
represent this dimension by specific concepts as a continuous and well delimited process that is
embedded in the software model of a system. Inspired by genetics, our approach proposes a model
where anticipated and unanticipated changes are modeled by a collection of fine grained instructions
called genes.

Keywords: Anticipated changes, evolution, gene, genome, unanticipated changes

INTRODUCTION

 Genetics has two aspects, ontogenesis and
phylogenesis, that govern two processes in biological
organisms. The ontogenesis governs all the
developmental changes that shape an organism
throughout its life by interpreting its genetic code. The
phylogenesis governs evolution, it has no effect on the
organism itself, but on maintenance and enhancement
of species[1-3]. This aspect has been used in
evolutionary algorithms, where each iteration consists
of handling the genetic codes of individuals using
crossover and mutation operators and then selecting the
best individuals according to some adaptation
function[4,5]. Evolutionary algorithms are widely and
successfully used in many domains. Unfortunately,
neither phylogenesis nor ontogenesis is really used in
software engineering.
 In this study we are concerned by the ontogenetic
aspect of genetics. We exploit a genetic metaphor by
considering that a critical and embedded software
system has, in addition to structural and behavioral
dimensions, a third dimension called ontogenesis that
governs all the changes undergone by the two first
ones. In our approach, the model of given software
system consists of a phenotype and a genome. While
the phenotype captures the structural and behavioral
dimensions, the genome captures all changes that shape
the system to keep it conform to the changing
environment and requirements. The genome is
composed of fine grained instructions called genes.
Each gene achieves an elementary change on the
model.
 Figure 1 shows our vision of ontogenesis and
phylogenesis. We can see that what we call the

modeling phase consists of creating the first genome of
the software system (G0). The interpretation of G0 will
produce the first phenotype (P1). The end of an
important phase, called embryogenesis, is reached
when the phenotype becomes able to run and interact
with the real world. During the life cycle of the
software system, the genome remains active and
continuously shapes the phenotype. Unanticipated
changes consist of deleting genes from, adding genes
to, the genome. Notice that phylogenesis is achieved
through a partial reuse of the genome.
 To avoid ambiguities, we separate clearly the
software development from the evolution. Biologists
consider that any change undergone by an organism
belongs to its developmental process, which is called
ontogenesis and use the evolution or phylogenesis
terms when studying species and comparing individuals
with their ancestors[1]. According to this, it’s
inappropriate to use the evolution term as a synonym of
changes undergone by a software system during its life
cycle.

Our approach is based on four principles:

* Any change undergone by a software system

belongs to its ontogenetic process.
* Ontogenesis is a continuous process. In current

approaches, changes occur during the
development and maintenance phases and are
considered as a sporadic phenomenon[6]. In our
approach, the genome is the kernel of the model
that continuously achieves changes according to
internal or external triggering conditions and
events.

* Ontogenesis is an embedded dimension. i.e. the

J. Computer Sci., 1 (4): 530-537, 2005

 531

 software system develops autonomously.
Anticipated changes are coded in the genome as
genes and executed when triggering conditions
and events are met. Anticipating and coding the
future changes is what we call the modeling of
ontogenesis.

* Unanticipated changes are coded as genes and
added to the genome when needed.

 The remaining part of this study is composed of
five sections. Section 2 states clearly the motivations of
our approach. Section 3 gives target applications where
our approach can be used. Section 4 describes the main
concepts and their use through an example. In section 5
we discuss related work, and in 6, we give a conclusion
and some perspectives.

MOTIVATIONS

Modeling the ontogenetic process: This implies two
aspects. First is the integration of the process in the
software system itself and second is the modeling of the
ontogenesis as a continuous process.
 Today, the change process is seen as a human
intervention on the software system that keeps it
conform to the domain it represents and supporting
evolving requirements of the users. The software
system is considered as a collection of facts or passive
entities. However, when modeling ontogenesis, we
model the change process itself. This means
investigating the future of a given domain to determine
what it will be, when and under what conditions it will
change, then adding some knowledge and mechanisms
to the software system allowing it to change
autonomously.
 To illustrate our proposal, let's consider the
biological example of Fig. 2, where an egg transforms
into a butterfly. A static view of this reality, leads us to
model it by static structures whose types and values
change by external intervention. A dynamic view
assigns to some behaviors the task of changing the
structure values. However, not all the dynamicity is
captured since the change of structures and behaviors
themselves remains necessary.
 The ontogenesis is a continuous process. If we
consider the previous example: An egg undergoes a
continuous change until it becomes a butterfly, even if
we perceive only distinct phases. In a static view the
changes of the attribute value are accumulated (for
example a length of 6,5 cm), then the model is updated
by an external intervention (for example the value 6,5
replaces 5). When adding the behavior
ChangeLength(), the value of the attribute can be
changed more frequently (5, 5.2, 5.3, …, 7) according
to a certain natural rule. In a similar way the
maintenance accumulates several changes before

modifying a model. In the ontogenetic approach we use
behaviors of higher order to continuously change the
structural and behavioral properties.
 Reducing the interactions with the real world.
Interactions that involve human being are generally
error prone. Therefore, their reduction is worthwhile.
We distinguish two kinds of interactions. First are
interactions that aim to change the model. They are
effectively reduced in our approach as changes are
anticipated and encoded in the genome. However, the
genome extension constitutes unavoidable interactions
corresponding to unanticipated changes.
 Second are interactions which derive from the use
of the model’s functionalities: inputs, outputs and
perception of external stimuli. Although, those
interactions are design depend, meaningless
interactions can be avoided when the model always
conforms to the requirements. For example, when an
object field is no longer needed, its deletion avoids
unneeded input of its value.

Reducing the maintenance effort: Although an
autonomously updated system needs less external
interactions to change, this is not what reduces the
maintenance effort. In deed we must take into account
that, initially, we need an important effort to describe
the ontogenesis.
 The main reason behind this reduction is rather
due to the fact that when we anticipate changes, using a
systematic approach, we can avoid any inappropriate
ones and the corresponding feed backs. For example,
when an investigation leads to the conclusion that in
some phase of an object life, a field type will become a
real, we can avoid intermediary changes that this type
subsumes such as integer.

Enhancing performances: It is a consequence of the
specialization and the dynamic adaptation of
programs[7,8]. To understand this, we need to compare a
system, modeled using our approach, with what we call
a stable system, i.e. a utopist system that deals with
anticipated changes without any maintenance and that
can run on several platforms. For example, one can
imagine a class that regroups all properties along with
conditional instructions that avoid erroneous use (for
example the caterpillar cannot fly). Dealing with all
incompatibilities between properties, makes the stable
system less efficient, complex and entangled. We
advocate an approach where a software system is
dynamically updated and a general exception
mechanism (similar to the Java one) is used to deal with
objects in different stages of their life. In the same way,
it is possible to dynamically adapt a system to its
execution platform.

J. Computer Sci., 1 (4): 530-537, 2005

 532

Embryogenesis

G1 P1 G0 G2 P2 Gn Pn…Doesn’t
exist

Modeling phase

Ph
yl

og
en

es
is

M0 M1 M2 Mn

Real
World

Gext1 Gext2 Gext3

A software system

Another software system

Ontogenesis

Real
World

Real
World

Legend
Mi : Model in phase i ⇔ (Gi, Pi)
Gi : Genome in phase i
Pi : Phenotype in phase i
Gext : Genes added to the genome

Interactions

Change of the software system

Partial reuse of the genome

Delet ion/Adjunction of genes

Fig. 1: Ontogenesis and phylogenesis in the proposed approach

Phases

Egg

Caterpillar

Chrysalis

Winged adult

Static
modeling

Relief : Streaky
Color : Green
Length : 0,3 mm

True legs:6
Pro-legs : 10
Length : 5 cm
SkinShedNumber : 5

Volume : 8 cm3
Length : 6,5 cm

Legs : 6 ; Wings : 4
Wingspread : 10 cm
Length : 7 cm
Wings beating : 35 per second

Dynamic
modeling

idem static +
Method Hatch()

idem static +
ProduceSilk(),
Breathe(),ShedSkin(),
ChangeLength()

idem static +
Breathe()

idem static +
Fly(), SuckFloralNectar(),
ChangeLength()

Fig. 2: Modeling of a butterfly at different phases of its life

Fig. 3: The concepts

TARGET APPLICATIONS

 Our approach has three features that deal with the
change process: modeling of the process itself,
modeling of changes as a continuous process and
autonomy. Each feature is a response to a requirement
of practical applications[9].
 Our approach aims at modeling applications
having intensive and deep changes. While intensive
refers to the frequency of changes, deep refers to the
scope of changes on the software system. In most cases,
a software system controlling a system that is variable
is as effective as itself is adaptable.
Modeling and embedding of ontogenesis as a
continuous process within a software system aims at
modeling applications such as simulation of complex

systems and applications where a gradual change is a
requirement. For example, the study of biological
systems requires the simulation of their continuous
development[4,9]. The gradual change is an important
characteristic of human-machine interfaces[10]. Indeed,
progressively changing a software system won't cause a
hindrance to users accustomed to that system.
 Autonomously updating a system is a good feature
in adaptive systems that deal with different execution
environments[7]. The autonomy implies the dynamic
updating of a system (i.e. during its execution). It is an
important feature in mission critical systems that must
provide continuous and uninterrupted services such as
air-traffic control, telephone switches, the financial
transaction processors and power plants
management[11,12].

A software
system

Modeled part

Phenotype Objects, Classes,
Properties

Genome

Real world
n Perception of interactions
o Perception of activities and states
p Perception of activity within the genome
q Deletion/Adjunction of genes
r Interactions

s Change of the phenotype

n
o

p q

s

r

J. Computer Sci., 1 (4): 530-537, 2005

 533

CFIN

CFOUT1

Select

Ret

Type / Name

CFOUT2

Data In

Data Out CFEX
The universal component

Type : Indicates the role of the UC (class, method, instruction, …)
Name : Is a symbolic name or a unique number that identifies the UC. If the UC is a
call instruction, the name indicates the object whose the method is called.
CFIN : Input of the control flow
CFOUT1 : First output of the control flow
CFOUT2 : Second output of the control flow
CFEX : Output of the control flow in case of an exception
Select : Untyped input which receives a value, an object reference or a method selector
Ret : Untyped output giving the value/object reference or the result of a method
DataIn : DI0 ..DIN are untyped inputs used to receive parameters if the UC is a method
or a call instruction or element indexes if the UC is an array
DataOut : Output of values or object references that are results of the method execution

U
C

CFIN Select

Integer / I

Data In

CFOUT1 Ret CFOUT2 Data Out CFEX

CFIN Select

Real[4][5] / T

Data In

CFOUT1 Ret CFOUT2 Data Out CFEX

CFIN Select

IF-Else / Choix

Data In

CFOUT1 Ret CFOUT2 Data Out CFEX

CFIN Select

Assign / Aff

Data In

CFOUT1 Ret CFOUT2 Data Out CFEX

W
ha

t i
t r

ep
re

se
nt

s A primitive object of type integer.
Only Select and Ret are used.
Select is used to assign the value to
the component and Ret to read it.

A bi-dimensional array of
real values called T. Select
and Ret allow to write and
read the value. DI0 and DI1
are used as indexes of the
values.

If-Else instruction. The Select
input receives the Ret output of
the sub-graph evaluating the
condition. The token
representing the control flow
enters by the CFIN and is
transmitted by CFOUT1 or CFOUT2

according to the value of Select.

Assigning instruction. The
UC establishes a connection
between two objects. The
Select of the assigned object
is connected to The Ret of Aff
and the value which is
assigned is given in Select of
Aff

Fig. 4: Modeling structures and statements using the UC

Class/Account

Method/Credit

Method/Debit <=/ Cmp

Assign/As IF-Else/Ch

Sub/Su

Real/Balance

Balance.Ret

Balance.Select

Method/Main

Account/C1

Real/Amount

Call/C1

Debit
 Credit Account/C2

Call/C2

Fig. 5: Example of a phenotype

THE APPROACH

 The proposed model is based on four concepts:
phenotype, genome, interaction and stimuli Fig. 3. We
describe the role of each.
 As previously suggested, a software system
consists of a phenotype and a genome. The genome is
the kernel of the software system that initially creates
and then continuously shapes the phenotype. For this
purpose it perceives its self state, activities and states of
the phenotype as well as interactions between the
phenotype and the real world. In a previous work, we
have considered the phenotype as a set of classes and
objects along with various properties, methods and
links[13]. However, we found this approach difficult
when describing genes to affect the phenotype. In this
study, we have made a projection of the phenotype

space on a space where we use only one kind of
construct called universal component (UC). The
phenotype is thus a graph consisting of a multitude of
simple or composed UC that are interconnected to form
what corresponds to a classical object system. As in[14],
the graph of UCs combines data and control flows at
the same time. This has the effect of limiting the kind
of changes that a gene can achieve.
 The UC, we propose, is an abstract element that
can represent all the components in a software system
program: a graph, a sub-graph, a class, a method, a
primitive object, an object of a class, an array. Figure 4
shows the UC and its use in various situations.
 Figure 5 shows an example of a phenotype which
consists of a class called Account containing two
methods (Debit() and Credit()) and a method called

J. Computer Sci., 1 (4): 530-537, 2005

 534

Main() that transfers an amount from one account C1 to
another C2.
 The genome is composed of a collection of fine
grained instructions called genes. They can achieve a
development action, a control action or a functional
action. Genes are grouped in higher level structures
called chromosomes according to the type of their
actions:

Chromosome D contains constructor or developer
genes that change structure and behavior of all entities
Chromosome F consists of genes that ensure
functionalities such as controlling values or
periodically triggering methods
Chromosome C consists of genes that control the other
by activating and deactivating them

 Genes are objects having a structure composed of
four parts: Action type, Activation state, Triggering
condition and Information part.
The action type indicates the role of the gene. We have
identified various actions such as: CreateUC,
DeleteUC, DuplicateUC, IntegrateUC, AssignType,
AssignName, Activate, Deactivate, Run, Connect,
Lock, Unlock, NoAction, ReplaceUC.
 The activation state can be Activated or
Deactivated. It indicates if the gene can be run. When
the activation state is activated, the gene first checks for
the triggering condition before executing the assigned
action. The triggering condition allows the gene to
perceive stimuli such as the existence of an object or
some property in an object, activation or deactivation of
other genes, comparison of objects values, etc. An
active gene, will continuously verify if its triggering
condition is satisfied, in such case the assigned action is
executed. When the condition is about the other genes
(their state or their existence), it allows the introduction
of a dependence that expresses a relationship or a
mutual exclusion between genes (i.e. gene G1 cannot
run until gene G2 is activated/deactivated[1]). The
information part supplies the necessary information to
allow the execution of the gene. The condition part
allows the gene to perceive four types of stimuli:

* Factual stimuli reflecting the state of a component

in the phenotype or the genome (i.e. existence of
UCs, existence of genes, connections …).

* Activity stimuli reflecting that currently an activity
is executing/started/finished within the phenotype
or the genome.

* Interaction stimuli reflecting an interaction
between the phenotype and the real world.

* Temporal stimuli that allow genes to execute
independently of the structure of the software
system but according to a temporal reference.
References can be associated to properties,

objects, classes or to the whole system. This
feature allows us to express situations like creating
an object O2 after 10 chronons of the creation of
object O1. (chronon being a unit of time[15]).

 The separation between activation state and
triggering condition is necessary because some genes
are executed only once. For example, the genes that
create a class are not used once the class has been
created. In the opposite functional genes are
deactivated when the class is being created and
activated after that. Let's note that if the gene is
deactivated; the evaluation of the triggering condition
won't take place. This avoids a mistimed execution of
genes if the condition remains true and also avoids a
repetitive evaluation when we know that in some
situation the condition will remain false. The change of
the activation state of genes is under the control of
genes in chromosome C. All genes are deactivated once
their assigned actions achieved unless a clause
KeepActive is given in the information part.
 The following Table partially shows the genome
that creates the phenotype in Fig. 5. Genes are
identified using their indexes within the chromosome.

Computational models: The approach uses two
different computational models. For the phenotype we
use a Java-like concurrent computational model while
genes are executed like guarded commands, with the
command being the action type of the gene and the
guard, the triggering condition. What follows gives the
semantic of the UC:

* UC representing data don’t use the control flow

input and outputs. Its possible to introduce a value
in the component using Select or to read what is
stored in, using Ret.

* UCs representing methods or statements use the
control and data flows. Action assigned to the UC
runs when a token representing the control flow
arrives at CFIN and the necessary data are present
at DI0..DIN. When the computation is achieved,
the control token is transmitted on CFOUT1 (or
CFOUT2 if the UC is of type IF-ELSE and Select
receives the value false) and results on Ret and
DO0..DON. All incompatibility of data will force
the UC to produce an exception that consists in
transmitting the token on the CFEX which is
connected to a UC that calls a method to handle
the exception.

 At the genome level, there is no direct control
flow. But an indirect control flow can be forced by
control genes. At any moment, we have two pools:
active genes pool and passive genes pool. An active
gene passes from the active pool to the passive pool
when the assigned action is achieved (unless keep
active clause is present). A gene passes from the

J. Computer Sci., 1 (4): 530-537, 2005

 535

passive pool to the active pool when a control gene sets
its activation state to Activated. The execution system
picks randomly a gene in the active pool and if its
triggering condition evaluates to true, it executes the
assigned action, then put it in the passive pool (in the
active pool, if keep active is used).

Segmentation of chromosomes: Since modeling the
ontogenesis is a complex task, the genome is
decomposed in segments (not shown in the previous
example) corresponding to classes. The whole software
system is considered as a class that contains component
classes and in turn those classes may contain other
classes and so on. Chromosomes that create a class C1
are associated with the class containing C1.
Chromosomes achieving tasks that crosscut many
classes C1, C2, …, Cn, are associated with the class
containing C1, C2, …, Cn.

Unanticipated changes: Most unanticipated changes
are dealt with by adding genes to the genome (not by
deleting them). This is easy to understand since when
we want to delete a UC we must add genes that delete it
not deleting the genes that have created it, which has no
effect on the current phenotype. But in the case of a
functional gene that periodically triggers a method; we
need also to delete it.
 Any change that will affect the software system is
first analyzed then coded in the form of genes and
added to the genome. At least one of the control genes
added must be active to ensure that the needed change
will be achieved.

Implementation issues: Recall that our approach uses
two computational models and hence any
implementation must deal with them both. The first
implementation was achieved using AspectJ[16].
Broadly speaking, aspects in AspectJ are used to model
the genome. Since aspects can not be added
dynamically to a program, this approach deals only
with anticipated changes. First the genome is analyzed
to determine all possible classes and properties and then
a corresponding AspectJ program is created. After that
structures, called markers, are added to indicate for
each class or property if it can be used in the current
state of the execution of the phenotype. Markers are
handled by aspects according to the triggering
conditions[13].
 The second implementation approach is based on
Java and its virtual machine. The main concepts used
are proxies and class loaders. In this approach we have
added an environment that considers genes as
commands and executes them by handling object
proxies and class loaders[17].
 Other approaches are possible such as creating
two virtual machines, one for the phenotype and one

for the genome. While each implements one
computational model, they interact in various ways
since genome must perceive stimuli and affect the
phenotype. Finally, notice that genes can lock or unlock
objects to allow a coherent handling of the phenotype,
however their use is in charge of the programmer.

RELATED WORK

Databases: Evolution in databases can affect the
schema or the instances of the database. There are
many approaches that deal with evolution in databases
such as triggers and management of versions[18].
However the evolution is considered as a sporadic
phenomenon where specific environment helps the
database users to evolve the database and its schema. In
a nutshell, there is no modeling of the change process.

Artificial life: Evolution, autonomy and adaptability to
the environment are key concepts in artificial life
research domain[4]. However, we note a strong
tendency toward an evolutionist approach where the
phenotype of an individual is directly coded in the
genome. Therefore ontogenegesis is not considered.
We found in[9] an interesting approach to generate
autonomous agents using both phylogenesis and
ontogenesis. Unfortunately, the developed agents are
too simple and far from any practical use in software
engineering. Our approach is comparable since it
partially shares the same goal; but in the current state of
our research we are concerned only by ontogenesis of
practical systems. In our approach, the genome is not a
direct mapping of the phenotype and the use of the UC
allowed us to reduce the gap between the classical
binary encoding of the genome and the phenotype
functionalities. Thus, we let some extent to the
emergence of functionalities when using phylogenesis.
In[19], we found the description of a project whose goal
is to create hardware platforms that can develop and
support evolutionist systems. Concretely speaking, the
project is about self-reproducing and self-healing
integrated circuits. It has a low-level approach that is
not confronted to the same problems than our approach.
Indeed, the phenotype of the obtained circuits has
limited functionalities that are far from what we can get
when using the UC.

Separation of concerns: Separation of concerns
approaches share the same principle, that of separating
aspects such as synchronization, optimization and
security from the software functionalities[16]. In this
work, we consider ontogenesis as an aspect and we
describe it separately. Even if there is strong
dependency between the genome and the
phenotype, the separation is clear when considering
the dedicated

J. Computer Sci., 1 (4): 530-537, 2005

 536

Chromosome C (genes 1 to 6)
1 Activated True Activate D[1..4], D[8..11], C[2]
2 Deactivated Exists Account Activate C[3..4]
3 Deactivated Exists balance & Dedit & Credit Activate D[5..7]
4 Deactivated Exists Debit Activate C[5]
5 Deactivated Exists Cmp & Ch & Su & As Activate D[12..15], C[6]
6 Deactivated Deactivated D[12..15] Activate D[16..23]

Chromosome D (genes 1 to 23)
1 Deactivated True CreateUC Type Class, Name Account
2 Deactivated True CreateUC Type Real, Name Balance
3 Deactivated True CreateUC Type Method, Name Debit
4 Deactivated True CreateUC Type Method, Name Credit
5 Deactivated True IntegrateUC Balance In Account
6 Deactivated True IntegrateUC Debit In Account
7 Deactivated True IntegrateUC Credit In Account
8 Deactivated True CreateUC Type <=, Name Cmp
9 Deactivated True CreateUC Type If-Else, Name Ch
10 Deactivated True CreateUC Type Sub, Name Su
11 Deactivated True CreateUC Type Assign, Name As
12 Deactivated True IntegrateUC Cmp In Debit
13 Deactivated True IntegrateUC Ch In Debit
14 Deactivated True IntegrateUC Su In Debit
15 Deactivated True IntegrateUC As In Debit
16 Deactivated True Connect Debit CFIN with Cmp.CFIN
17 Deactivated True Connect Cmp.CFOUT1 with Ch.CFIN
18 Deactivated True Connect Ch.CFOUT1 with Su.CFIN
19 Deactivated True Connect Ch.CFOUT2 with Debit.CFOUT1
20 Deactivated True Connect Su.CFOUT1 with As.CFIN
21 Deactivated True Connect As.CFOUT1 with Debit.CFOUT1
22 Deactivated True Connect Debit.Select with Cmp.Select
23 Deactivated True Connect Cmp.Ret with Ch.Select

concepts and computational model. We use a stimuli
model that is richer than the join point model of
aspectJ[16]. Another feature of separation of concerns
approaches is their reflective capability which preserves
information about the source program and makes it
available during execution[20]. Our approach cannot be
implemented without using such capability.

Dynamic updating: Updating a software system
during its execution is now becoming an attractive
research area[11,21]. Dynamic updating approaches are
dedicates mainly to unanticipated changes. Although
they use various dynamic linking mechanisms, they
don’t consider the modeling of ontogenesis as an
objective.

Component based approaches: Those approaches aim
at providing suitable solutions to problems such as
reuse, component deployment, interoperability and so
on[22,23]. Our model doesn't have the same goal;
however the universal component is partially inspired
by the Fractal component model[23], where component
can be recursively composed. The UC abstracts the
software system entities and gives them a uniform
appearance. To this purpose, the UC is universal,
simple or complex and freely composed and
connected.

CONCLUSION

 In this study, we proposed a new model where a
software system includes the structural, behavioral and
ontogenetic dimensions. Inspired by the biological
development, our approach proposes a radical view of
the change process and its modeling. To enforce this
point of view, we have considered that, initially, the
phenotype does not exist, but begins to exist as a result
of a continuous activity of the genome. The phenotype
is uniformly described using the universal component
while the genome is described using three types of
genes, each with a specific role. In addition to its
naturalness, our approach deals uniformly with
anticipated and unanticipated changes.
 Modeling ontogenesis remains a challenging task
for which proposing suitable concepts is important but
not sufficient to master all the subtle problems
involved. Indeed our experience with the object
model shows us that the methodological issues,
such as those dealt with in UML, are very
important. For example, how to analyze the future of a
real world domain? How to extract changes that must
be achieved on a giving software system? ... Before
investigating such methodological issues we will first
consider future work such as finding ontogenesis
patterns.

J. Computer Sci., 1 (4): 530-537, 2005

 537

REFERENCES

1. Gilbert, S.F., 2003. Developmental Biology.

Seventh Edn. Sinauer Associates Inc. Publishers.
2. Lewin, B., 1999. Genes VII. Oxford University

Press.
3. Ridley, M., 1996. Evolution. Second Edn.

Blackwell Scientific Publications Ltd. Oxford.
4. Adami, C., 1998. Introduction to Artificial Life.

Springer-Verlag, New York, Inc.
5. Forrest, S., 1996. Genetic algorithms. ACM

Computing Surveys, 28: 77-80.
6. Mätzel, K.U. and W.R. Bischofberger, 1997.

Designing Object Systems for Evolution. Theory
and Practice of Object Systems, 3: 265-283.

7. Kistler, T. and M. Franz, 2003. Continuous
program optimization: A case study. ACM Trans.
Programming Languages and Systems, 25: 500-
548.

8. Shultz, U.P. et al., 2003. Automatic Program
Specialization for Java. ACM Trans. Programming
Languages and Systems, 25: 452-499.

9. Dellaert,F. and R.D. Beer, 1996. A Developmental
Model for the Evolution of Complete Autonomous
Agents. In P. Maes, M. Mataric, J. Meyer, J.
Pollack and S. Wilson (Eds.), From Animals to
Animals 4: Proc. Fourth Intl. Conf. Simulation of
Adaptive Behavior, pp: 393-406.

10. Calvary, G. et al., 2001. Supporting Context
Changes for Plastic User Interfaces: A Process and
A Mechanism. Proc. HCI-IHM, Blandford, A.,
Vanderdonckt, J., Gray, P. Eds, BCS Conf. Series,
Springer Publications, pp: 349-363.

11. Bierman, G. et al., 2003. Formalising Dynamic
Software Updating. Second Intl. Workshop on
Unanticipated Software Evolution, Warsaw,
Poland http://joint.org/use/2003/

12. Ronström, M., 2000. On-line Schema Update for a
Telecom Database. Proc. 16th Intl. Conf. Data
Eng., pp: 329.

13. Meslati, D. et al., 2003. L’Auto-Evolution par

MAGE: Une Approche Génétique Orientée
Aspects, ISPS’2003. 6th Intl. Symp. Programming
and Systems, Algiers (in French).

14. Honitriniela, R. and I. Bertrand 200. Seamless
Integration of Control Flow and Data Flow. 16th
Intl. Conf. Computers and Their Applications
(CATA- 2001), Washington USA, pp: 28-30.

15. Ozsoyoglu, G. and R.T. Snodgrass, 1995.
Temporal and Real-Time Databases: A survey.
IEEE Trans. Knowledge and Data Eng..

16. Kiczales, G. et al., 1997. Aspect-Oriented
Programming. In Proc. ECOOP’97, Eur. Conf.
Object-Oriented Programming, Springer-verlag.

17. Boutbicha, M.R. and M.A. Bouzidi, 2004. JVM:
Implementation of Mage using Java. Master
Project, University of Annaba.

18. Li, X., 1999. A Survey of Schema Evolution in
Object-Oriented Databases. Proc. 31st Intl. Conf.
Technol. of Object-Oriented Language and
Systems, pp: 362-371.

19. Tempesti, G. et al., 2002. A POEtic Architecture
for Bio-Inspired Hardware. Proc. 8th Intl. Conf.
Simulation and Synthesis of Living Systems
(Artificial Life VIII), Sydney, Australia.

20. Cazzola, W. et al., 2000. Reflection and Software
Engineering, LNCS 1826, Springer-verlag.

21. Vandewoude, Y. and Y. Berbers, 2002. An
Overview and Assessment of Dynamic Update
Methods for Component-oriented Embedded
Systems. In Proc. Intl. Conf. Software
Engineering Research and Practice, Las Vegas,
USA.

22. Brereton, P. and D. Budgen, 2000. Component-
Based Systems: A Classification of Issues.
Computer, 33: 54-62.

23. The objectWeb Consortium,
http://fractal.objectweb.org

