
Journal of Computer Science 1 (3) : 363-368, 2005 
ISSN 1549-3636 
© Science Publications, 2005 

363 

 

Towards a Scalable File System on Computer Clusters  Using Declustering 
 

Vu Anh Nguyen, Samuel Pierre and Dougoukolo Konaré 
Department of Computer Engineering, Ecole Polytechnique de Montreal 

C.P. 6079, succ. Centre-ville, Montreal, Quebec, H3C 3A7  Canada 
 

Abstract : This study addresses the scalability issues involving file systems as critical components of 
computer clusters, especially for commercial applications. Given that wide striping is an effective 
means of achieving scalability as it warrants good load balancing and allows node cooperation, we 
choose to implement a new data distribution scheme in order to achieve the scalability of computer 
clusters. We suggest combining both wide striping and replication techniques using a new data 
distribution technique based on “chained declustering”. Thus, we suggest a complete architecture, 
using a cluster of clusters, whose performance is not limited by the network and can be adjusted with 
one-node precision. In addition, update costs are limited as it is not necessary to redistribute data on 
the existing nodes every time the system is expanded. The simulations indicate that our data 
distribution technique and our read algorithm balance the load equally amongst all the nodes of the 
original cluster and the additional ones. Therefore, the scalability of the system is close to the ideal 
scenario: once the size of the original cluster is well defined, the total number of nodes in the system is 
no longer limited, and the performance increases linearly.   
 
Key words: Computer Cluster, Scalability, File System 

 
INTRODUCTION 

 
Large-scale telecommunication and the Internet 
consistently require enhanced processing capacities. 
Parallel systems have been used for a long time to 
respond to this challenge. Internet proxy servers are a 
crucial part of the Web infrastructure as they absorb 
some of the growth of the demand by caching data. In 
this context, the performance scalability of the parallel 
system used is very important: such systems must 
support an increasing number of requests while the 
number of clients increases as well.  
Most of the prior parallel system research addresses 
scientific applications, thus, complete scalability 
theories and metrics such as iso-speed or iso-efficiency 
have already been defined [1, 2]. However, these 
pioneer studies are mainly focus on the algorithmic 
aspects of scalability. Recent research has addressed the 
architecture of scalable parallel systems [3]. In this 
context, data storage and access are critical and often 
limit scalability.   
This study specifically addresses distributed file 
systems for computer clusters. A file system 
performance can be measured by its maximum 
bandwidth while clients access files. Depending on the 
application used, there is a minimum level of quality of 
service for each client. For applications such as video-
on-demand, real-time constraints are critical: system 
performance is measured by the number of clients who 
can be served simultaneously. 
 
File System Characteristics: Internet proxy servers or 
multimedia file servers must be scalable in order to 

serve an increasing number of clients. For a file system, 
different cases of scalability exist: scalability of the 
number of clients simultaneously accessing an 
increasing quantity of data; scalability of the quantity of 
data accessed by the same number of clients; scalability 
of the number of clients simultaneously accessing the 
same quantity of data. Cases where the service capacity 
of the file system must be expanded are the most 
complex, whereas increasing storage capacity is easier 
since this operation consists simply of adding disks to 
each node.  
Such systems require redundancy in order to overcome 
failures and they also need scalability in order to reduce 
service time. In order to improve scalability through the 
use of a new data distribution scheme for computer 
clusters, we chose to work with the Parallel Virtual File 
System (PVFS) a file access mechanism, developed at 
Clemson University [4]. 
This Linux distributed file system implements wide 
striping and it has been used extensively in RAID 
architecture [5]. As shown in Fig. 1, it breaks down 
files into small blocks of data (PVFS has a default 
block size of 64 KB) and distributes these blocks 
throughout a disk array. When accessing a file, all of 
the disks cooperate to provide a better level of 
performance than a single disk operating on its own. 
The difference can be observed within a computer 
cluster. The data is transmitted through a local network 
and wide striping is implemented at the software level. 
Blocks are distributed sequentially on the disk array and 
the load is thus implicitly balanced. This property 
allows the wide striping architecture to achieve 
respectable performance scalability [3]. However, each 



J. Computer Sci., 1 (3) : 363-368, 2005 

 364  

time a disk is added to the array, all of the data must be 
redistributed. Secondly, although this is a very 
important aspect for file systems dedicated to a 
commercial environment, PVFS has yet to provide a 
redundancy or fault-tolerance mechanism. This study 
attempts to overcome the redundancy mechanism and 
enhance the scalability of a computer cluster by 
introducing a new data distribution scheme. 
 

Physical Data Layout 

Virtual Disk 

Segment 000 

Segment 001 

Segment 003 

 
● 
● 
● 
 

Segment 016 

Segment 017 

Node 0 
Block 000 

 
Block 003 

 
Block 006 

 
Block 009 

 
Block 012 

 

Node 1 
Block 001 

 
Block 004 

 
Block 007 

 
Block 010 

 
Block 013 

 

Node 2 
Block 002 

 
Block 005 

 
Block 008 

 
Block 011 

 
Block 014 

 

Stripe 
0 
Stripe 
1 

 
 

Fig. 1: Wide Striping 
 
In a computer cluster using PVFS, nodes can have three 
different functions: as shown in Fig. 2, a given node can 
be an I/O node, the management daemon or a client 
node. An I/O node is actually a node which stores data 
blocks.  
 

MNG Daemon

Client

I/O Daemon
I/O Node

#0

I/O Daemon
I/O Node

#N

...
...

...
..

...
...

...
..

 
 

Fig. 2: File Access Mechanisms 
 
A single management daemon node is dedicated to 
storing the file system metadata (physical location of 
files, number of nodes, etc). One of the objectives of a 
future version of PVFS aims to permit multiple 
management daemons in the same cluster, in order to 
avoid the bottleneck of a unique management daemon 
and provide redundancy within the system. Although 
client nodes are the entities which access the files, they 
are not necessarily the end clients. For example, the end 
client could be the portal through which a customer 
accesses data. Each physical node of the computer 
cluster can actually perform more than one of these 
functions. For the purpose of this investigation, a single 
function is assigned to each node. 
 
 
 

ACHIEVING SCALABILTY WITH 
DECLUSTERING TECHNIQUES 

 
Double Declustering: A few years ago, the 
performance of a file system composed of a cluster of 
computers would have been limited by the network 
throughput. Nowadays, with the increasing speed of 
networks such as gigabit Ethernet, the file system is 
likely to be the bottleneck. On the other hand, other 
types of networks  (wireless networks using node  
mobility) such as PAN (Personnal Area Network) or 
 MANET (Mobile Ad- hoc  Network), tend to onfirm 
that the network is the  bottleneck Indeed, such network 
throughputs are defined in terms of megabits when the 
node mobility is low and kilobits when the mobility is 
high. The objective of this study is to overcome file 
system scalability in any type of network when the load 
is high in read mode such as internet proxies. The kinds 
of applications targeted are the ones that saturate the 
file system and the networks for a long period of time. 
Some examples of applications are heavy multimedia 
applications, and high client loads such as the one that 
can shut down a web server in response to too many 
requests from clients. 
To achieve these goals, we suggest the use of wide 
striping and replication in the same file system thanks 
to declustering techniques. In order to remain in the 
“linear scalability” area of the computer cluster. Linear 
scalability occurs when the addition of new cluster 
nodes does not affect file system performance. The 
concept of declustering regroups the techniques of data 
block distribution through a disk array. These 
distributions are traditionally used to provide better 
fault tolerance or to improve the quality of service [6, 
7]. It has already been shown that wide striping offers 
limited scalability [8]. We thus aim to use declustering 
techniques to enhance scalability by using clusters of 
clusters. Thus, our system is based on double 
declustering: one for data redundancy and one for 
scalability. The combination of these two features is 
very important in systems such as Internet proxies. 
The only solution to increase the performance of this 
system is to add new nodes to the original cluster until 
the performance of the system starts to plummet with 
more demanding requests. With simple wide striping, 
the addition of new nodes causes a complete 
redistribution of the data blocks in order to keep the 
load balanced. We plan to replicate the existing data 
blocks on new nodes in the same cluster while retaining 
considerable load balancing among all of the nodes. 
The resulting system contains two kinds of nodes: 
initial nodes and additional nodes from the initial 
cluster. The size N of the initial cluster is determined by 
the performance of the network. The number M of 
additional nodes ranges from 1 to N. Additional nodes 
are added to a network that is independent of the 
original cluster.  
 
 
 



J. Computer Sci., 1 (3) : 363-368, 2005 

 365  

When the number of additional nodes equals the 
number of nodes in the initial cluster, the nodes are 
separated by type to form a distinct cluster, as 
illustrated in Fig. 3. Finally, the complete architecture is 
redesigned, using a cluster of clusters, so the network 
does not limit the performance anymore and load 
balancing is achieved. Hence, every time the system is 
separated into two independent clusters, the resulting 
performance equals the sum of the performances of 
each independent cluster. Thus, the size of each cluster 
is limited so that it remains within the “linear 
scalability” area. In addition, an algorithm that 
dispatches the clients to each distinct cluster is 
developed in order to balance the load. 
 

N
e

tw
o

rk
 0 

1 

2 

3 

4 

5 

6 

7 

Original 
Cluster 

N
et

w
or

k 0’ 

1’ 

2’ 

3’ 

4’ 
Additional 

Nodes 

R
és

ea
u 0 

1 

2 

3 

4 

5 

6 

7 R
és

ea
u 0 

1 

2 

3 

4 

5 

6 

7 N
e

tw
o

rk
 0 

1 

2 

3 

4 

5 

6 

7 

Complete 
additional 
clusters 

(independent) 

 
 

Fig. 3: System Architecture 
 
Description of the Data Distribution: The 
declustering technique used to provide fault tolerance, 
an extension of the chained declustering technique [6], 
is called “multi-chained declustering”. This technique 
strives to equally distribute the redundancy blocks of 
one node to all of the other nodes. Thus, if a certain 
node becomes unavailable, all of the remaining nodes 
support their load without any load imbalance. On the 
other hand, redundancy schemes such as chained 
declustering do not warranty good load balancing if a 
node becomes unavailable. Our second declustering 
technique seeks to keep the load balanced when new 
nodes are added to the cluster. The principle is to 
replicate on the additional node the same number of 
data blocks from each node of the initial cluster.  
A data block can be located in the cluster by its 
coordinates (i,j) of which i is the node number and j the 
stripe number. Nodes from the original cluster are 
numbered from 0 to N-1, and additional nodes from 0 to 
M-1. In our system, a maximum of four copies of the 
same data block can exist within a cluster. To 
differentiate between the different types of blocks, we 
use the following notations: 
 

* X denotes a block of primary data located in a node 
of the original cluster. 

* Y denotes a block of redundant data located in a 
node of the original cluster. 

* U denotes a block of primary data located in an 
additional node. 

* V denotes a block of redundant data located in an 
additional node. 

 
These distributions are transparent to the user of the file 
system who accesses a virtual disk. On this virtual disk, 
a data block exists only once and it is identified by the 
letter k:  
 
* Xk (Yk, Uk, Vk respectively) denotes the 

coordinates of the block number k of type X (Y, U, 
V respectively). Blocks are read from left to right 
and top to bottom within the same cluster. k 
represents the block number of the same cluster. 

* x(i,j) (y(i,j) respectively) denotes the block of type 
X (Y respectively) which is located on stripe i and 
node j from the original cluster; 

* u(i,j) (v(i,j) respectively) denotes the block of type 
U (V respectively) which is located on stripe i and 
the additional node j. 

 
Using these notations, we have: 
 

k kx(i, j) x(X ) (i, j) X , with 0 i and 0 j (N 1)= ⇔ = ≤ ≤ ≤ −
 
We can now analytically formulate the declustering 
techniques used in our file system. N is the number of 
nodes in the original cluster and M is the number of 
additional nodes. 
Our declustering technique, combined with a read 
algorithm based on the previous equations, guarantees 
that the average numbers of blocks read are the same 
for each node. Since network links have all the same 
maximum capacity, this system provides a theoretically 
perfect load balancing of each group of N(N+M) blocks. 
Note some of its simple and static qualities: the only 
parameters are the number of nodes in the original 
cluster N and the number of additional nodes M. The 
simplicity of this algorithm warranties good scalability 
and easy implementation. Once provided with the block 
number to be accessed by the virtual disk k, this 
algorithm decides to retrieve a type X or U block. The 
amount of blocks to be read in order to have an ideal 
load balancing is not a constraint since the number of 
data blocks in a file system is very high compared to 
this threshold. 

 
 
 



J. Computer Sci., 1 (3) : 363-368, 2005 

 366  

Table 1: Data Distribution Formula 
Type X Data Blocks (Original Cluster Nodes, Primary Data) Type Y Data Blocks (Original Cluster Nodes, Redundant Data) 








 −= ][,
][

Nk
N

Nkk
X k

 

jNikXxjix k +×=⇒= )(),(  

















 +−







 −+−= ][1]1[
][

][,
][

NN
k

Nkk
Nk

N

Nkk
Yk

 

( )
( )





−≤++−−+×=

+−≥+−−+×=
⇒=

]1[1]1[

1]1[1]1[
)(),(

NijifNNijNik

NijifNijNik
Yyjiy k  

Type U Data Blocks (Additional Nodes, Primary Data) Type V Data Blocks (Additional Nodes, Redundant Data) 



























 −−−= ][][
][

][,
][

NN
k

Nkk
Nk

N

Nkk
U k

 













+−







 −+















 −−−= ][1]1[
][

][][
][

][,
][

NN
k

Nkk
NN

k

Nkk
Nk

N

Nkk
Vk

 







−≥−++×=

−−≤++×=
⇒=

][][

1][][
)(),(

NiNjifNNijNik

NiNjifNijNik
Uujiu k

 )1]1[(][ +−−++×= NiNijNik  

][]1[][1]1[ NiNiNjNiNiif −−+≤≤−+−  

 

)1]1[(][ NNiNijNik ++−−++×=  

][]1[2][1]1[ NiNiNjNiNNiif −−+≤≤−++−  

)1]1[()1(][ +−−−+++×= NiNNijNik  

][]1[][)1(]1[ NiNijNiNNiif −−≤≤−−−−  

)1]1[(][ +−−++×= NiNijNik  

][]1[][1]1[ NiNiNjNiNiif −−+≤≤−+−  

 

0 321

4 765

8 11109

12 151413

16 191817

20 232221

24 272625

Stripe 0

Stripe 1

Stripe 2

Stripe 3

Stripe 4

Stripe 5

Stripe 6

N NNN
0 31 2

X blocks
(Original cluster)

Stripe 0'

Stripe 1'

Stripe 2'

Stripe 3'

Stripe 4'

Stripe 5'

Stripe 6'

0 321

5 476

10 9811

15 141312

16 191817

21 202322

26 252427

N NNN
0 31 2

U blocks
(Additional nodes)  

 
Fig. 4: Extended Multi-chained Declustering of Four 

Nodes 
 

SIMULATION AND VALIDATION 
 
In order to validate our file system, we simulate our 
model using the C-SIM library [9] and the results were 
compared to other distributed file systems which allow 
for redundancy and scalability. 
  
Simulation Results : Figure 5 shows the scalability of 
an 8-node cluster when the number of additional nodes 
varies from 0 to 8. The maximum bandwidth delivered 
was measured by the file system and compared to the 
original cluster. The results show that the performance 
is close to the ideal case: the degradation rate remains 
below 1%. Once the number of additional nodes is 
equal to the number of nodes in the original cluster, the 
size doubles and the system can be split into two 
independent clusters: due to our data distribution 
technique, the cluster formed of additional nodes is 

almost identical to the original one and provides the 
same redundancy schemes (multi-chained declustering). 
 
 

 

Fig. 5: Scalability of an 8-node Cluster System 
 
Since the number of nodes in a cluster can double, the 
size of the original cluster must be selected judiciously 
according to the performance of the network. As shown 
in Fig. 6, if the original cluster is too large, the system 
will not remain within the “linear scalability area” due 
to network congestion. In the configuration used in this 
experiment, the optimal size for the original cluster 
turned out to be four nodes. If the size of the original 
cluster is small, more clusters are necessary to build a 
large system and cluster load balancing reduces 
performance. 
 
Update Costs: One of the goals of this file system aims 
to allow for scalability without service interruption and 
with limited perturbation during system updates. When 
a node is added to the system, it must retrieve the data 
blocks which are stored locally. Since additional nodes  



J. Computer Sci., 1 (3) : 363-368, 2005 

 367  

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: Scalability of a 16-node Cluster System 
 
also store redundant data, the number of blocks to be 
retrieved equals the quantity of blocks within an 
original node. Such a declustering technique distributes 
this load amongst all of the cluster nodes, including the 
additional nodes that are already online. A system 
upgrade was simulated in order to measure the 
perturbation caused by the introduction of new nodes. 
We simulated the addition of the first two nodes in a 
10-node cluster with the following parameters: 
 
* Twenty-five clients always read 20 MB files 

simultaneously. 
* The file system contains 1500 files of 20 MB (30 

GB in total). Each node stores 3 GB of data. The 
size of the data blocks is 64 KB. 

* The first and second additional nodes are added at 
t=100 s and t=1500 s. Thus, the second node is 
added after the first finishes its update and is 
online. Each node has to update 6 GB of data 
(about 93,750 blocks). 

* To update blocks which are stored locally, the 
additional nodes behave as clients: they have the 
same priority in FIFO queues as regular clients. 

 
Figure 7 presents the simulation results of this scenario. 
We notice that the update of an additional node 
consumes a bandwidth which is equivalent to that of 
one client in the system.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: Additional Online Node Update Scenario 

Once the data is updated and the node appears online, 
the performance of the whole system increases 
proportionally to the number of clusters of nodes. It is 
possible to reduce the perturbation caused by the 
update: there is a trade-off between the time for a node 
to update its data and the bandwidth used to conduct 
this operation. 
 

CONCLUSION 
 
This study addressed the scalability issues of file 
systems for computer clusters. Using the C-SIM library, 
a parallel file system was modeled and a data 
distribution technique with declustering was simulated. 
Our primary analysis shows that wide striping is an 
efficient way to achieve scalability as it warrants good 
load balancing and allows nodes to cooperate. Unlike 
PVFS, which requires a redistribution of the data blocks 
among all the nodes (a very costly operation, 
inappropriate for continuous service) when a new node 
is added, this data distribution technique simply 
warranties considerable load balancing amongst all of 
the nodes.  
Since the cluster size is limited by the network and 
sometimes IO node maximum capacity, a cluster of 
clusters was used, where each cluster remains in the 
“linear scalability” area. Traditionally used to provide 
fault tolerance, declustering techniques regroup ways to 
distribute redundancy blocks in a file system. A first 
declustering technique called “multi-chained 
declustering” is used to provide data redundancy and 
better load balancing when a node is down. In addition, 
a second declustering level can be performed in order to 
combine wide striping and replication and provide real 
scalability. Called “extended multi-chained 
declustering”, a particular declustering technique was 
developed to take advantage of both techniques. This 
solution allows for the addition of nodes to the system 
without reconfiguring existing nodes while keeping the 
load balanced. In this study, the two declustering 
techniques used were formalized.  
Using our declustering techniques, nodes can be added 
one by one to the original cluster while the performance 
borders the ideal case scenario. As soon as the number 
of additional nodes equals the size of the original 
cluster, additional nodes are separated from the others 
to form a new independent cluster. A previous 
simulator was used to implement and validate this 
architecture. Simulation results indicate that the system 
has a linear scalability once the number of nodes in the 
original cluster is defined according to the network 
performance. Finally, simulation scenarios were used to 
show that scaling costs are inexpensive: when a node is 
added to the cluster, no redistribution of the data blocks 

 

 



J. Computer Sci., 1 (3) : 363-368, 2005 

 368  

on the existing nodes is needed to keep the load 
balanced. 
Future works involve studying the write performance of 
our file system. It could be interesting to investigate 
different causes of failure and the optimization that 
could be performed for each case. Thus, it could be 
interesting for further studies to implement a prototype 
of the developed architecture. Other optimizations 
could also be tested such as the use of caches or 
dynamic load balancing algorithms, especially if the 
way data is accessed has known characteristics [10].  
 

ACKNOWLEDGMENTS 
 
This study was supported in part by Ericsson Research 
Canada and the Natural Sciences and Engineering 
Research Council (NSERC) of Canada. 
 

REFERENCES 
 
1. Grama, A., A. Gupta and V. Kumar, 1993. 

Isoefficiency Function: A Scalability Metric for 
Parallel Algorithms and Architectures, IEEE 
Parallel and Distributed Technology. Special Issue 
on Parallel and Distributed Systems: From Theory 
to Practice, 1: 12-21. 

2. Li, K. and X. Sun, 1998. Average-Case Analysis of 
Isospeed Scalability of Parallel Computations on 
Multiprocessors. State University of New York at 
New Paltz, Department of Mathematics and 
Computer Science, Technical Report pp: 98-108 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Buyya, R. (ed.), 1999. High Performance Cluster 
Computing: Architectures and Systems. Prentice 
Hall PTR  

4. Carns, P. H., W. B. Ligon III, R. B. Ross and R. 
Thakur, 2000. PVFS: A Parallel File System For 
Linux Clusters. Proceedings of the 4th Annual 
Linux Showcase and Conference, 317-327. 

5. Massiglia, P., 2000. RAID for Enterprise 
Computing. A Technology White Paper from 
VERITAS Software Corporation 

6. Arpaci-Dusseau, R. H., E. Anderson, N. Treuhaft, 
D. E. Culler, J. M. Hellerstein, D. A. Patterson and 
K. Yelick 1999. Cluster I/O with River: Making 
the Fast Case Common, Sixth Workshop on I/O in 
Parallel and Distributed Systems 

7. Hsiao, H., D. J. Dewitt, 1990. Chained 
Declustering: A new availability strategy for 
multiprocessor database machines. Proceedings of 
the 6th Intl Conf. Data Engineering, 456-465. 

 8. Chou, C., L. Golubchik and J.C.S. Lui, 1999. 
Striping Doesn't Scale: How to Achieve 
Scalability. Technical Report, CS-TR-1999-03, 
University of Maryland 

9. Mesquite CSIM 18 - A Development Toolkit for 
Simulation and Modeling. 
http://www.mesquite.com/csim18page.htm 

10. Reisslein, M., F. Hartanto, and K. W. Ross, 1999. 
Interactive video streaming with proxy servers, 
Technical Report, GMD FOKUS Institute 
Eurecom. http://www.fokus.gmd.de/usr/reisslein  


