Journal of Computer Science 1 (3) : 363-368, 2005
ISSN 1549-3636
© Science Publications, 2005

Towardsa Scalable File System on Computer Clusters Using Declustering

Vu Anh Nguyen, Samuel Pierre and Dougoukolo Konaré
Department of Computer Engineering, Ecole Polytephende Montreal
C.P. 6079, succ. Centre-ville, Montreal, Quebed;337 Canada

Abstract : This study addresses the scalability issues inmglfile systems as critical components of
computer clusters, especially for commercial agpiims. Given that wide striping is an effective
means of achieving scalability as it warrants gématl balancing and allows node cooperation, we
choose to implement a new data distribution schemarder to achieve the scalability of computer
clusters. We suggest combining both wide stripimgl @eplication techniques using a new data
distribution technique based on “chained declustgri Thus, we suggest a complete architecture,
using a cluster of clusters, whose performanceidimited by the network and can be adjusted with
one-node precision. In addition, update costs iangeld as it is not necessary to redistribute data
the existing nodes every time the system is exphndde simulations indicate that our data
distribution technique and our read algorithm bed¢athe load equally amongst all the nodes of the
original cluster and the additional ones. Therefdine scalability of the system is close to thealde
scenario: once the size of the original clustevedl defined, the total number of nodes in the esysts

no longer limited, and the performance increagesalily.

Key words: Computer Cluster, Scalability, File System

INTRODUCTION serve an increasing number of clients. For a fikten,

different cases of scalability exist: scalability e
Large-scale telecommunication and the Internehumber of clients simultaneously accessing an
consistently require enhanced processing capacitiegicreasing quantity of data; scalability of the ity of
Parallel systems have been used for a long time tdata accessed by the same number of clients; diglab
respond to this challenge. Internet proxy serveesaa of the number of clients simultaneously accesshey t
crucial part of the Web infrastructure as they abso same quantity of data. Cases where the serviceitgpa
some of the growth of the demand by caching data. lof the file system must be expanded are the most
this context, the performance scalability of theaflal complex, whereas increasing storage capacity igreas
system used is very important: such systems mudince this operation consists simply of adding sligk
support an increasing number of requests while theach node.
number of clients increases as well. Such systems require redundancy in order to ovezcom
Most of the prior parallel system research addsesseailures and they also need scalability in orderetuce
scientific applications, thus, complete scalability service time. In order to improve scalability thgbuthe
theories and metrics such i@ms-speed or iso-efficiency use of a new data distribution scheme for computer
have already been defined [1, 2]. However, theselusters, we chose to work with the Parallel Vittiide
pioneer studies are mainly focus on the algorithmicSystem (PVFS) a file access mechanism, developed at
aspects of scalability. Recent research has addtéle Clemson University [4].
architecture of scalable parallel systems [3]. hist This Linux distributed file system implements wide
context, data storage and access are critical &#ed o striping and it has been used extensively in RAID
limit scalability. architecture [5]. As shown in Fig. 1, it breaks dow
This study specifically addresses distributed filefiles into small blocks of data (PVFS has a default
systems for computer clusters. A file systemblock size of 64 KB) and distributes these blocks
performance can be measured by its maximunthroughout a disk array. When accessing a file ofll
bandwidth while clients access files. Dependingl® the disks cooperate to provide a better level of
application used, there is a minimum level of gqyadf performance than a single disk operating on its.own
service for each client. For applications suchideor The difference can be observed within a computer
on-demand, real-time constraints are critical: eayst cluster. The data is transmitted through a localvaek
performance is measured by the number of clients whand wide striping is implemented at the softwakele
can be served simultaneously. Blocks are distributed sequentially on the dislapand

the load is thus implicitly balanced. This property
File System Characteristics: Internet proxy servers or allows the wide striping architecture to achieve
multimedia file servers must be scalable in order t respectable performance scalability [3]. Howeveahe

363

J. Computer i, 1 (3) : 363-368, 2005

time a disk is added to the array, all of the datest be ACHIEVING SCALABILTY WITH
redistributed. Secondly, although this is a very DECLUSTERING TECHNIQUES

important aspect for file systems dedicated to a

commercial environment, PVFS has yet to provide éDouble Declustering: A few years ago, the
redundancy or fault-tolerance mechanism. This studyerformance of a file system composed of a cluster
attempts to overcome the redundancy mechanism argpmputers would have been limited by the network
enhance the scalability of a computer cluster bythroughput. Nowadays, with the increasing speed of

introducing a new data distribution scheme. networks such as gigabit Ethernet, the file system
likely to be the bottleneck. On the other hand,eoth

Physical Data Layo types of networks (wireless networks using node

Virtual Disk mobility) such as PAN (Personnal Area Network) or
s | L] tode 0 I Hiode- T hode 2 [sripe MANET (Mobile Ad- hoc Network), tend to onfirm
Segmentoor | i ‘n I that the network is the bottleneck Indeed, sudivaok
segment 003 | LI g0 I[—stockcooa— | [siookcos._] Sripe throughputs are defined in terms of megabits wien t
node mobility is low and kilobits when the mobility
. “ | siookoos || || eiooor || || siockoos | high. The objective of this study is to overcomie fi
. [oo]| [dockowo]| [etookon] _sys'gem_scalability in any type_of network whenltbmad
p— is high in read mode such as internet proxies. Kiineés
Segment 017 [mokorz || |[sookos || |[sockora | of applications targeted are the ones that satutete

file system and the networks for a long periodiofet
_) o Some examples of applications are heavy multimedia
Fig. 1: Wide Striping applications, and high client loads such as thethae
can shut down a web server in response to too many
In a computer cluster using PVFS, nodes can haeeth requests from clients.
different functions: as shown in Fig. 2, a givemla@an To achieve these goals, we suggest the use of wide
be an 1/0 node, the management daemon or a cliestriping and replication in the same file systeranis

node. An I/O node is actually a node which storatmd t0 declustering techniques. In order to remaintia t
blocks. “linear scalability” area of the computer clustemear

scalability occurs when the addition of new cluster
i nodes does not affect file system performance. The
MNG Daemon

concept of declustering regroups the techniquedatd
] block distribution through a disk array. These

VO Node distributions are traditionally used to provide tbet
* fault tolerance or to improve the quality of seevi®,
7]. It has already been shown that wide stripinfgref
limited scalability [8]. We thus aim to use dechratg
techniques to enhance scalability by using clustérs
JODaemon VO Node clusters. Thus, our system is based on double
declustering: one for data redundancy and one for
scalability. The combination of these two featuigs
Fig. 2: File Access Mechanisms very important in systems such as Internet proxies.
The only solution to increase the performance of th
stem is to add new nodes to the original clugteit
the performance of the system starts to plummet wit
more demanding requests. With simple wide striping,

future version of PVFS aims to permit multiple the addition of new nodes causes a complete

td i th luster. i d {edistribution of the data blocks in order to kebp
management daemons In th€ same CIUSIer, In Order 18,54 pajanced. We plan to replicate the existinta da

avoid the bottleneck of a unique management daemogy,cks on new nodes in the same cluster whileniigi
and provide redundancy within the system. Althoughzgnsiderable load balancing among all of the nodes.
client nodes are the entities which access the, filey The resulting system contains two kinds of nodes:
are not necessarily the end clients. For exampéeend initial nodes and additional nodes from the initial
client could be the portal through which a customercluster. The siz&l of the initial cluster is determined by
accesses data. Each physical node of the computére performance of the network. The numiér of
cluster can actually perform more than one of thesadditional nodes ranges from 1 Xb Additional nodes
functions. For the purpose of this investigatiosjrgle ~ are added to a network that is independent of the
function is assigned to each node. original cluster.

/O Daemon

A,

Client > <

§

(-

A single management daemon node is dedicated
storing the file system metadata (physical locatidn
files, number of nodes, etc). One of the objectivka

364

J. Computer i, 1 (3) : 363-368, 2005

When the number of additional nodes equals thé& X denotes a block of primary data located in d&o

number of nodes in the initial cluster, the nodes a of the original cluster.
separated by type to form a distinct cluster, ag Y denotes a block of redundant data located in a
illustrated in Fig. 3. Finally, the complete areluiture is node of the original cluster.

redesigned, using a cluster of clusters, so thevatkt * U denotes a block of primary data located in an
does not limit the performance anymore and load additional node.
balancing is achieved. Hence, every time the syséem * V denotes a block of redundant data located in an
separated into two independent clusters, the ragult additional node.
performance equals the sum of the performances of
each independent cluster. Thus, the size of eaddter] These distributions are transparent to the us#reofile
is limited so that it remains within the “linear system who accesses a virtual disk. On this virdigl,
scalability” area. In addition, an algorithm that a data block exists only once and it is identifigdthe
dispatches the clients to each distinct cluster idetterk:
developed in order to balance the load.

* Xk (Yk, Uk, Vk respectively) denotes the

— Complete coordinates of the block numbleiof type X (Y, U,
N (0H < H4) additional V respectively). Blocks are read from left to right
Original (LS H(5) clusters ar
Cluster 6 z S (independent) and top to bottom within the same cluster. k
(=) represents the block number of the same cluster.
VAN * X(i,j) (y(i,)) respectively) denotes the block of type
&'L X (Y respectively) which is located on stripand
OzM nodej from the original cluster;
Additional (1) g *u(i,j) (v(i,j) respectively) denotes the block of type
,,,,,,,,, g 2 U (V respectively) which is located on stripand
— the additional nodg

Fig. 3: System Architecture Using these notations, we have:

Description of the Data Distribution: The — X(.) =x(X,) = (i,) =X, ,with0 <i and 0<j<(N-1)
declustering technique used to provide fault toleea) .
an extension of the chained declustering technjgye W€ can now analytically formulate the declustering
is called “multi-chained declustering”. This tecme techniques used in our file systeMis the number of
strives to equally distribute the redundancy blooks N°des in the original cluster arM is the number of

one node to all of the other nodes. Thus, if aagert additional nodes. _ . .

node becomes unavailable, all of the remaining sode@Ur declustering technique, combined with a read
support their load without any load imbalance. @a t @lgorithm based on the previous equations, guagante
other hand, redundancy schemes such as chaind@t the average _numbers of blpcks read are the sam
declustering do not warranty good load balancing if for each node. Since network links have all the esam
node becomes unavailable. Our second declustering@imum capacity, this system provides a theorigfica
technique seeks to keep the load balanced when neRgrfect load balancing of each groug\gN+M) blocks.
nodes are added to the cluster. The principle is télote some of its simple and static qualities: tinéy o
replicate on the additional node the same number dfarameters are the number of nodes in the original
data blocks from each node of the initial cluster. clusterN and the number of additional nodes The

A data block can be located in the cluster by itssimplicity of this algorithm warranties good scaliy
coordinatesi(j) of whichi is the node number ajdhe and easy implementation. Once provided with thetblo
stripe number. Nodes from the original cluster arenumber to be accessed by the virtual diskthis
numbered from O tdl-1, and additional nodes from 0 to algorithm decides to retrieve a type X or U blotke
M-1. In our system, a maximum of four copies of theamount of blocks to be read in order to have aalide
same data block can exist within a cluster. Toload balancing is not a constraint since the nunafer
differentiate between the different types of blgck® data blocks in a file system is very high compat@d
use the following notations: this threshold.

365

J. Computer ci., 1(3) :

Table 1: Data Distribution Formula

363-368, 2005

Type X Data Blocks (Original Cluster Nodes, PrimBiata)

Type Y Data Blocks (Original Cluster Nodegdundant Data)

_(k-KIN]
xk_[. ,k[N]]

X(i, j)=X(Xk)=k=ixN+ |

E

y(i.)=

Type U Data Blocks (Additional Nodes, Primary Data)

U, =["‘k[N] {k{N]—[@j{N]}[N])

N
{ k=ixN-+j+[NJif j<N-i[N]-1
u(i, j)=u(Ui)=

<

k=ixN+j+H[N]-Nif j=N=i[N] if

k - K[N]

,{k[N] +(k_::[N])[N -1 +1}[N]J

k=ixN+j—([N-1]+1)if j2i[N-1]+1

yMy=y .
k=ixN+j—(i[N-1]+1)+Nif j<i[N-1]

Type V Data Blocks (Additional Nodes, Redundanta)a

k :[—k‘,ﬁ[“‘] ,<{k[N1—[—k‘E””][NJ}[N]+[—k‘t[N]][N -1 +1>[NJ]

k=ixN+j-+[N]([N-L]+1)
i[N-1]+1-i[N] < j < N+i[N-1] =i[N]

k=ixN+ j+[N]-([N-L]+1+N)

if

i[N -1 +1+ N —i[N] £ j < 2N +i[N 1] —i[N]

k=ixN+ j+H[N]+(N-1)~(i[N-L]+1)

if

i[N 1] - (N -12) —i[N] < j <i[N —1] =i[N]

k=ixN+ j+H[N]-(i[N-1]+1)

if

i[N-1]+1-i[N] < j < N +i[N -1] —i[N]

Stripe 0 0 1 2 3 Stripe 0' 0 1 2 3
Stripe 1 4 5] 6 7 Stripe 1' 5 6 7 4
Stripe 2 8 9 10 11 Stripe 2' 10 1 8 9
Stripe 3 12 13 14 15 Stripe 3' 15 12 13 14
Stripe 4 16 17 18 19 Stripe 4' 16 17 18 19
Stripe 5 20 21 22 23 Stripe 5' 21 22 23 20
Stripe 6 24 25 26 27 Stripe 6 26 27 24 25

U blocks

X blocks
(Additional nodes)

(Original cluster)

Fig. 4: Extended Multi-chained Declustering of Four
Nodes

SIMULATION AND VALIDATION

In order to validate our file system, we simulat& o
model using the C-SIM library [9] and the resultsre
compared to other distributed file systems whidbval
for redundancy and scalability.

Simulation Results: Figure 5 shows the scalability of
an 8-node cluster when the number of additionaksod

almost identical to the original one and providke t
same redundancy schemes (multi-chained declusjering

100%

0%

G0%

F0%

BO%

0%

40%

Bandwidth increase

30%

20%

Simulator
10%

0% =
5 1 2 &

4 5

Nurnber of additional nodes

Fig. 5: Scalability of an 8-node Cluster System

Since the number of nodes in a cluster can douhée,
size of the original cluster must be selected jiodisly
according to the performance of the network. Asaxgho
in Fig. 6, if the original cluster is too large etBystem
will not remain within the “linear scalability aredue
to network congestion. In the configuration usedhis
experiment, the optimal size for the original chust
turned out to be four nodes. If the size of thegiosl

varies from 0 to 8. The maximum bandwidth deliveredcluster is small, more clusters are necessary iid bu
was measured by the file system and compared to tharge system and cluster load balancing reduces

original cluster. The results show that the perfomoe
is close to the ideal case: the degradation rateires

performance.

below 1%. Once the number of additional nodes isUpdate Costs: One of the goals of this file system aims

equal to the number of nodes in the original clugte

to allow for scalability without service interrupti and

size doubles and the system can be split into twaquith limited perturbation during system updates.awh
independent clusters: due to our data distributiora node is added to the system, it must retrievedéta

technique, the cluster formed of additional nodgs i

blocks which are stored locally. Since additionades

366

J. Computer ci., 1(3) :

Bandwidth Increase
& 8
®®

=]
®

=)
#

0% - Bimulator

Ideal

%% +

5 g 10
Mumber of additional nodes

12

Fig. 6: Scalability of a 16-node Cluster System

also store redundant data, the number of blocKkseto
retrieved equals the quantity of blocks within an
original node. Such a declustering technique dhigtes
this load amongst all of the cluster nodes, ingigdhe
additional nodes that are already online. A syste
upgrade was simulated in order to measure th
perturbation caused by the introduction of new sode
We simulated the addition of the first two nodesain
10-node cluster with the following parameters:

*

Twenty-five clients always read 20 MB files
simultaneously.
The file system contains 1500 files of 20 MB (30

363-368, 2005

Once the data is updated and the node appearseonlin
the performance of the whole system increases
proportionally to the number of clusters of nodeéss
possible to reduce the perturbation caused by the
update: there is a trade-off between the time fooae

to update its data and the bandwidth used to cdanduc
this operation.

CONCLUSION

This study addressed the scalability issues of file
systems for computer clusters. Using the C-SIMalilpr
a parallel file system was modeled and a data
distribution technique with declustering was sinbedh
Our primary analysis shows that wide striping is an
efficient way to achieve scalability as it warragtsod
load balancing and allows nodes to cooperate. ©nlik
PVES, which requires a redistribution of the ddtacks

nfimong all the nodes (a very costly operation,

glappropriate for continuous service) when a nedeno
added, this data distribution technique simply
warranties considerable load balancing amongsbfall
the nodes.
Since the cluster size is limited by the networld an
sometimes 10 node maximum capacity, a cluster of
clusters was used, where each cluster remainsein th
“linear scalability” area. Traditionally used togpide

GB in total). Each node stores 3 GB of data. Thefault tolerance, declustering techniques regroupsvia

size of the data blocks is 64 KB.

The first and second additional nodes are added aleclustering

distribute redundancy blocks in a file system. pstfi
technique called “multi-chained

t=100 s and t=1500 s. Thus, the second node igeclustering” is used to provide data redundanay an
added after the first finishes its update and ispetter load balancing when a node is down. In @it
online. Each node has to update 6 GB of datg, second declustering level can be performed iaramd

(about 93,750 blocks).
To update blocks which are stored locally, the

additional nodes behave as clients: they have th

same priority in FIFO queues as regular clients.

Figure 7 presents the simulation results of thénacio.

combine wide striping and replication and providalr
calability. Called “extended multi-chained
eclustering”, a particular declustering techniquas

developed to take advantage of both techniquess Thi

solution allows for the addition of nodes to thatsyn

We notice that the update of an additional nodewithout reconfiguring existing nodes while keepthg
consumes a bandwidth which is equivalent to that ofoad balanced. In this study, the two declustering

one client in the system.
140

o
=]

(=)
=

=

Sggregated bendicth (MBi)
=]
o

fi=]
=

Client
— Total

oo
=

2000 250 3000 350
Time (=)

00 1000 1500

[

Fig. 7: Additional Online Node Update Scenario

367

techniques used were formalized.

Using our declustering techniques, nodes can beddd
one by one to the original cluster while the perfance
borders the ideal case scenario. As soon as théerum
of additional nodes equals the size of the original
cluster, additional nodes are separated from therst
to form a new independent cluster. A previous
simulator was used to implement and validate this
architecture. Simulation results indicate that skistem
has a linear scalability once the number of noddase
original cluster is defined according to the netkor
performance. Finally, simulation scenarios wereluse
show that scaling costs are inexpensive: when & ®od
added to the cluster, no redistribution of the ddteks

J. Computer i, 1 (3) : 363-368, 2005

on the existing nodes is needed to keep the load.

balanced.

Future works involve studying the write performande
our file system. It could be interesting to invgate

different causes of failure and the optimizatiomatth

4,

could be performed for each case. Thus, it could be

interesting for further studies to implement a ptgpe

of the developed architecture. Other optimizationsd.
could also be tested such as the use of caches or

dynamic load balancing algorithms, especially ié th
way data is accessed has known characteristics [10]

ACKNOWLEDGMENTS

This study was supported in part by Ericsson Rekear

Canada and the Natural Sciences and Engineering

Research Council (NSERC) of Canada.
REFERENCES

1. Grama, A, A. Gupta and V. Kumar,
Isoefficiency Function: A Scalability Metric for
Parallel Algorithms and Architectures, IEEE
Parallel and Distributed TechnologSpecial Issue

on Parallel and Distributed Systems: From Theory

to Practice, 1: 12-21.
2. Li, K. and X. Sun, 1998. Average-Case Analydis o

Isospeed Scalability of Parallel Computations on

Multiprocessors. State University of New York at
New Paltz,
Computer Science, Technical Report pp: 98-108

368

Department of Mathematics and

6.

8
1993.

Striping Doesn't

Buyya, R. (ed.), 1999. High Performance Cluster
Computing: Architectures and Systems. Prentice
Hall PTR

Carns, P. H., W. B. Ligon lll, R. B. Ross and R.
Thakur, 2000. PVFS: A Parallel File System For
Linux Clusters. Proceedings of the 4th Annual
Linux Showcase and Conference, 317-327.
Massiglia, P., 2000. RAID for Enterprise
Computing. A Technology White Paper from
VERITAS Software Corporation

Arpaci-Dusseau, R. H., E. Anderson, N. Treuhaft,
D. E. Culler, J. M. Hellerstein, D. A. Pattersordan
K. Yelick 1999. Cluster 1/0 with River: Making
the Fast Case Common, Sixth Workshop on I/O in
Parallel and Distributed Systems

Hsiao, H., D. J. Dewitt, 1990. Chained
Declustering: A new availability strategy for
multiprocessor database machines. Proceedings of
the 8" Intl Conf. Data Engineering, 456-465.

Chou, C., L. Golubchik and J.C.S. Lui, 1999.
Scale: How to Achieve
Scalability. Technical Report, CS-TR-1999-03,
University of Maryland

Mesquite CSIM 18 - A Development Toolkit for
Simulation and Modeling.
http://www.mesquite.com/csim18page.htm

10. Reisslein, M., F. Hartanto, and K. W. Ross,9199

Interactive video streaming with proxy servers,
Technical Report, GMD FOKUS Institute
Eurecomhttp://www.fokus.gmd.de/ust/reisslein

