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Abstract: This paper presents the design, simulation and analysis of a novel 

LQG and LQG/LTR control algorithm for the pitch angle of a sounding 

rocket. These improved LQG and LQG/LTR control algorithms stem from 

the fact that a Riccati Differential Equation (RDE) rather than the popular 

Algebraic Riccati Equation (ARE) is used to obtaining the Kalman gain in the 

observer of the traditional Linear Quadratic Gaussian (LQG) control 
algorithm. Thus, eight (8) different controllers were design, simulated and 

analysed, three (3) of such controllers are novel and two out of these novel 

controllers were able to recover completely the robustness lost in the traditional 

LQG controller. All controllers synthesized were analysed using time response 

characteristics of closed-loop system and compared with the LQR and LQG 

control system. Using the LQR controller as the benchmark for best 

performance and the LQG as the worst. This study shows an application option 

that demonstrates optimal control system design in MATLAB/Simulink® and 

the approach put forward here proves to be very effective. 

 

Keywords: Rocket, LQG Control, LQG/LTR Control, Differential Riccatti 
Equation 

 

Introduction 

Classical control system design is generally a trial-

and error process in which various methods of analysis 

are used iteratively to determine the design parameters of 

an “acceptable” system. Acceptable performance is 

genrally defined in terms of time and frequency domain 

criteria such as rise time, settling time, peak overshoot, 

gain and phase margin, and band width. To meet the 

demands of modern technology, different performance 

criteria must be satisfied, in a complex multiple-input 

multiple-out systems requirement. For example, the 

design of a spacecraft attitude control system that 

minimizes fuel expenditure is not amenable to solution 

by classical methods. A new and direct approach to the 

synthesis of these complex systems, called optimal 

control theory, has been made feasible by the 

development of digital computer.  

The objective of the optimal control theory is to 

determine the control signals that will cause a process to 

satisfy the physical constraints and at the same time 

minimize (or maximize) some performance criterion. In 

certain cases, the problem statement may clearly indicate 

what to select for a performance measure (Kirk, 1998). 

A lot of work has been done in the area of optimal 

controller design for aerospace vehicles (Jianqiao et al., 

2011; Das and Halder, 2014; Moshen Ahmed et al., 

2011; Liu, 2017; Zhang et al., 2016; Nair and 

Harikumar, 2015) but non derives it Kalman gain from a 

diffferential reccati equation as we will demonstrate in 

this study. Also, in previous works, the synthesied 

LQG/LTR (Barzanooni, 2015; Barbosa et al., 2016; 

Ishihara and Zheng, 2017) did not restore completely the 

robustenses of the LQR or that of the Kalman filter. 
The first stage of any control system theory is to 

obtain or formulate the system dynamics. There refers to 

modeling in terms of dynamical equations such as 

differential or difference equations. With such equations, 

the system is called the plant. This aspect has been 

addressed fully in Chapter One. In this Chapter, the 

realized plant will be used to design and analyse Optimal 

control algorithms (Brian and Moore, 1989) in 

MATLAB/Simulink®. 

This chapter is divided into five sections. Section two 

presents the adotped mathematical model. In section 
three, stability analysis was done for the rocket 

mathematical model. Optimal Control theory was 

introduced in section four hence, the design of LQR, 

LQG and their two novel variants. Also, LQG/LTR was 
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indroduced here with a design for a novel variant of it. 

Results were discussed in section five before the 

conclusion section.  

Rocket Model 

The modern control theory concerned with Multiple 

Inputs and Multiple Outputs (MIMO) is based on state 

variable representation in terms of a set of first order 

differential (or difference) equations. Here, the system 

(plant) is characterized by state variables, say, in linear, 

time invariant form as: 
 

     

     

x t Ax t Bu t

y t Cx t Du t

 

 
  (1) 

 
where, dot denotes differentiation with respect to (w.r.t.) 

t, x(t), u(t) and y(t) are n, r and m dimensional state, 

control and output vectors respectively and A is nn 

state, B is nr input, Cis mn output and Dis mr 

transfer matrices. For the rocket system in this study, it 

can be shown to be represented mathematically as: 
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   
      

  (2) 

 
where, θ is the pitch angle, q is the pitch rate and w is the 
velocity in z-axis. 

Stability Analysis 

After developing a model for the rocket as given in 

(2), it is imparetive to investigate the system properties 

as it relates to certain characteristics of control system 

design. First, we want to view the trajectorry of the 

system without a controller associated with it. This is 

called the open-loop response.  

Open-loop Response of a Plant 

Typically, this is done by stimulating the system with 

a step, impulse or sine signal. 
 

 
 

 
Fig. 1: Opem-loop step response 

The open-loop step response for the rocket system as 

described in (2) was simulated in MATLAB/Simulink. All 

the state of the system were view but only that of the 

pitch angle is presented. This was due to the fact that 

we are majorly interested in the control of the pitch 
angle of the rocket only. 

The open-loop step response from Fig. 1 was 

obtained by the following code in MATLAB®: 

 

sys=ss(A,B,C,D); 

step(sys,1) 

 

From Fig. 1, pitch angle keeps increasing with 

increase in time. This suggest instability, though we need 

to further investigates its eigenvalues. 

Eigenvalues of a Plant 

The eigenvalurs of a matrix are its roots. To further 

validate that the rocket system is unstable, we computed 

its eigenvalues. This was done easily in MATLAB® with 

the command: 
 

eig(A) 
 

The above command gave S1,2,3 = [3.0383, -3.8517, -

0.1122]T, because only one real root is negative the 

rocket is unstable. Now that we are certain that the 

system as described in (2), it unstable we need to 

establish the fact that our mathematical model for the 

rocket is controllable-meaning, the formulated 

mathematical equation for the rocket is suitable for 

Optimal Control theory synthesis.  

Controllability of a Plant 

The concept of controllability was introduced by 

Kalman (1960) and plays an important role in the control 

of multivariable systems. Considering a system as 

described by (1), the system is said to be controllable if a 

control vector u(t) exist that will transfer the system from 

any initial state x(t0) to some final state x(t) in a finite time 

interval. Sufficient condition for complete state 

controllability is defined by (3) such that M is of the rank n: 
 

1[ : :...: ]nM B AB A B  (3)  

 
The following MATLAB code was used to determine 

wether (2) is controllable: 
 
Co = ctrb(A,B) 

 r=rank(Co) 

 l=length(A) 

 unco = length(A) - rank(Co) 
 

The result of the above code gave, the rank of (2) to 

be 3 and the number of uncontrollable states as 0. Hence, 

(2) is controllable and the controllability matrix is: 
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0 0 3.5 14.8 0 0.2

3.5 14.8 0 0.2 51.5 218.5 .

20.4 94.9 0.9 26.7 351.6 1494.3

Co

 
 


 
    

 (4) 

 

Optimal Control Theory 

In modern control theory, the optimal control 

problem is to find a control which causes the dynamical 

system to reach a target or follow a state variable (or 

trajectory) and at the same time extremize a performance 

index (Naidu, 2003). Thus, the design is usually with 

respect to a performance index-this is Optimization in its 
general form.  

The control u(t) and state x(t) vectors are either 

unconstrained or constrained depending upon the 

physical situation. The unconstrainedproblem is less 

involved and gives rise to some elegant results. From 

thephysical considerations, often we have the controls and 

states, such as currents and voltages in an electrical circuit, 

speed of a motor, thrust of a rocket, constrained as: 
 

   ,  and  ,u u t u x x t x        (5) 

 
where, +, and - indicate the maximum and minimum 

values the variables can attain. 

Hence we can state that the optimal control problemis 

about finding the optimal control u*(t) which causes the 

linear time-invariant plant to give the trajectory x*(t) that 

optimizes or extremizes (minimizes or maximizes) a 

performance indexwith some constraints on the control 

variables u(t) and/or the state variables x(t). This is 

summarized in Fig. 2. Thus, the Optimal control 

problembasically interested in finding the control u*(t) 

which when applied to the plant described, gives an 

optimal performance index J*. A lot of control 
algorithms fall in this class, starting with the Linear 

Quadratic Regulator. 

Linear Quadratic Control (LQR) 

Linear Quadratic Regulator seeks to minimize a cost 

function, in general terms, the optimal control problem is 

to find u which causes the system: 
 

    , ,x g x t u t t  (6) 

 

To follow an optimal trajectory that minimizes the 

performance criterion (Burns, 2001), or cost function: 

 

1

0

( ( ), ( ), )
t

J h x t u t t dt
t

   (7)  

 

The Hamilton-Jacobi equation is usually solved for 
the case of linear time-invariant plant with quadratic 

performance criterion (called the performance), which 

takes the form of the matrix Riccati equation. Thus, 

producing an optimal control law as a linear function of 

the state vector components which is stable provided the 

system is controllable. 

Define a cost function of the form: 
 

1

0

( , ) min ( , )
u

t
f x t h x u dt

t
   (8) 

 
where, over the time interval t0 to t1:  

For a linear, time invariant plant, (7) becomes: 
 

0

1

( , ) ( (0))

( , ) 0

f x t f x

f x t




 (9) 

  
And if (7) is a quadratic performance index, then: 

 

1

0

( )T Tt
J x Qx u Ru dt

t
   (10) 

 
where, Q is an ll symmetric positive-definite matrix and 

R an mm symmetric positive-definite matrix. A first 

selection for the matrices Q and R is given by Bryson’s 

rule as: 
 

 

 

2

2

1
     1,2,...

maximum acceptable value of 

1
     1,2,...

maximum acceptable value of 

ii

i

jj

i

Q i l
x

R j m
u

 

 

 (11) 

 
Bryson’s rule scales the variables that appear in (10) 

so that the maximum acceptable value for each term is 

one. Bryson’s rule sometimes gives good results, often it is 

just the starting point to a trail-and-error iterative design 

procedure aimed at obtaining desirable properties for the 

closed-loop system (Franklin et al., 2006; Williams and 

Lawrence, 2007; Anderso and Moore, 1989). For this study, 

a combination of Bryson’s rule with simulation was used to 

obtain the following values area used: 

 

0.0007 0 0

0 0.0007 0 ,

0 0 0.0000105

0.35.

Q

R

 
 


 
  



 (12) 

 

The optimal control law can be shown to be given as: 
 

1 ,T

opt
R B Pxu
   (13) 

 
Or: 
 

,opt LQRu K x   (14) 

 

Where: 

 
1 T

LQR LQRK R B P  (15) 
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Fig. 2: LQR control schematic 
 

Note that P is the stabilizing solotion of Algebriac 

Riccati Equation (ARE) in (16): 

 
1 0T T

LQR LQR LQR LQRP A A P Q P BR B P     (16)  

 
The MATLAB in-built function [KLQR, PLQR, ELQR] = 

lqr (sys, Q, R) was used to compute PLQR, of the 

associated algebraic Riccati equation as stated in (16), 

the state feedback gain matrix KLQR, as given in (15) and 

E = eig (A - BKLQR), the closed-loop eigenvalues (User’s 

Guide, 2014) for the associated rocket. These computed 

values are: 

 

3.9623

3.7222

0.2428

LQRE

 
 

 
 
  

 (17) 

 

The LQR controller as dipicted in Fig. 2 was 

implemented in Simulink® was designed for a tracking 
scenario of a reference signal of r = [0.053 0 0]T and a 

system initial condition of x0= [0 0 0]T: 
 

  8.4765  2.2055  0.0056LQRK   (18) 

 

3.3257 0.8509 0.0000

0.8509 0.2197  0.0003

0.0000 0.0003 0.0000

LQRP

 
 


 
  

 (19) 

 

The state feedback controller with (18) as the 

feedback gain, was design and simulated in Simulink 

and the simulation result is given in Fig. 3. 

It is clearly seen from Fig. 3 that the LQR has 

appreciable step-response characteristics and very good 

tracking of the pitch angle.LQR formulation has the 

drawback that all states must be available for feedback. 

This assumption is not realistic, hence the need for an 

observer to measure all or some of the state is inevitable. 
It is impractical to expect in real-world applications 

that all state variables are measurable hence, the ability 

to implement a state feedback control law is in jeopardy. 

 
 
Fig. 3: Set-point tracking LQR control of the rocket 

 

This brings in the need for an estimate of the state vector 

derived from measurements of the input and output. 

Before an estimator is design the plant must be checked 

for observeberbility. 

Observability of a Plant 

An obsever in its simplest term is an algorithm that 

eatimate and predicts the state of a dynamic system. One 

of the most popular observer with wide range of 

application is Kalman Filter. A necessary condition for 

the Kalman Filter to work correctly is that the system for 

which the states are to be estimated, is observable. 

Therefore, you should check for observability before 

applying the Kalman Filter. (There may still be other 

problems that prevent the Kalman Filter from producing 

accurate state estimates, as a faulty or inaccurate 

mathematical model). 
The system described by (2) is completely observable 

if the matrix N as given in (20) is of the rank n: 

 
1[ : :...: ( ) ]T T T T n TN C A C A C  (20) 

 

Also, we use MATLAB® to compute (20) and 

compred its rank with the system nn matrix: 

 

Ob = obsv(A,C) 

r=rank(Ob) 

l=length(A) 

unob = length(A)-rank(Ob) 

r 

0                  0.5                   1                   1.5                   2                   2.5                   3 

Time (s) 

0.06 

 
0.04 

 
0.02 

 
0 

θ
 (

ra
d

) 

+ 

- 

u 
B 

x  
 C y 

A 

KLQR 

Tracking signal 
 

LQR control 

X: 1.817 
[ 

Y: 0.053 X: 0.86 
 

Y: 0.04502 

+ 

+ 

x 



Aliyu Bhar Kisabo et al. / Journal of Aircraft and Spacecraft Technology 2019, Volume 3: 24.37 

DOI: 10.3844/jastsp.2019.24.37 

 

28 

1 0 0

0 1 0

0 1 0

14.7805 0 0.002

14.7805 0 0.002

0.1975 14.7825 0.0002

ob

 
 
 
 

  
 
 
 
   

 (21) 

 

If the determinant of Nis zero, the system is non-

observable. Non-observability has several concequences: 
 

 The transfer function from the input variable y to the 

output variabley has an order that is less than the 

number of state variables (n) 

 There are state variables or linear combinations of 

state variables that do not show any response 

 The steady-state value of the Kalman Filter gain cannot 

be computed. This gain is used to update the state 

estimates from measurements of the (real) system 

 

Linear Kaman Filter 

In real world system there would be noise 

(disturbance) on these measurements, and in order to 

analyse this problem realistically noise need to be 

added to the model. In general the output y is affected 

by measurement noise and the process dynamics are 

also affected by disturbance, specifically turbulence 

of atmosphere.  

In light of this, a more reasonable model for the plant 

as given in (1) is: 
 

 

 

x Ax Bu Gw t

y Cx v t

  

 
 (22) 

 
where, w(t) and v(t) are zero-mean Gaussian noise 

processes (uncorrelated from each other) with power 
spectrum: 
 

( ) , ( ) ,w N v NS Q S R      

 
QN is the process noise covarian and RN is the 

measurement noise covariance matrix. The following 

process (QN) and measurement (RN) covariance matrices 

hold namely: 
 

     

   

     

, .

T

N

T

T

N

Ev t v s R t s

Ev t w s N t s

Ew t w s Q t s





 


 
  

 (23) 

 
A linear state observer is an n-dimensional linear 

state equation that accepts u and y as input and whose 
state represents the estimate of x. Suppose we construct 

the estimate x̂  by replacing the process dynamics in 

(23) to be: 

ˆ ˆx Ax Bu   (24) 
 

To see if this would generate a good estimate for x, 

we can define the state estimation error in (24) and study 

its dynamics by: 
 

ˆe x x   (25) 
 

From (22) and (24), we can conclude that: 
 

ˆe Ax Ax Ae    (26) 
 

This shows that when the matrix A is asymptotically 

stable the error e converges to zero for any input u, 

which is good news because it means that x̂  eventually 

converges to x as t  . However, when A is not stable 

e is unbounded and x̂ grow further and further apart 

from x as t  . To avoid this, one includes a correction 

term in (24) which yields: 
 

 ˆ ˆ ˆ ˆ ˆ,       .LQEx Ax Bu K y y y Cx      (27) 

 
where, ŷ  should be viewed as an estimate of y and KLQE 

a given nk matrix. When x̂ is equal (or very close) to x, 

then ŷ  will be equal (or very close) to y and the 

correction term  ˆ
LQEK y y  plays no role. However, 

when x̂ grows away from x, this term will (hopefully) 

correct the error. To see how this can be done, we re-

write the estimation error dynamics for (22) and (24) as: 
 

   ˆ ˆ
LQE LQEe Ax Ax K Cx Cx A K C e       (28) 

 
Now e converges to zero as long as A - KLQE C is 

asymptotically stable. It turns out that, even when A is 

unstable, in general we will be able to select KLQE so that 

A – KLQE C is asymptotically stable. The system in (27) 

can be re-written as: 
 

 ˆ ˆ
LQE LQEx A K C x Bu yK     (29) 

 
Now (29) is called a full-order observer for the 

process. Full-order observers have two inputs- the 

process’ control input u and its measured output y (via 

sensors) - and a single output-the state estimate x̂ . 

Schematically, the full-order observe is represented as 

shown in Fig. 4: 

Any choice of KLQE in (29) for which A- KLQE C is 

asymptotically stable will make the estimated state 

vector to converge to the actual state vector. 
The Kalman gain, KLQE, for the optimal observer can 

be shown to be as given in (30), where PLQE is the 

stabilizing solution PLQE of Algebriac Riccati Equation 

(ARE) given as (31): 
 

1T

LQE LQE NK P C Q    (30)  
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Fig. 4: Full-order observer diagram 

 
1 0T T T

LQE LQE N LQE N LQEP A A P G Q G P C R CP     (31) 

 

For this study, the following values were used for the 

LQG design: 
 

  0.002 0.002 0.002NR diag  (32) 

 

  0.0326 0.0326 0.0326NQ diag  (33) 

 

  0 0.0000625 0.0000625 0.0000625P diag  (34) 

 

0.1 0 0

0  2.1846 -14.0201

0 -14.0201 89.9760

T

NG GVG

 
 

 
 
  

 (35) 

 
With these values decleared in a MATLAB m-file, 

the comamd [KLQE, PLQE, ELQE] = lqe(A,GN,C,QN,RN,P0) 

was used to compute the kalman gain KLQE for our 

observer and was used to estimate the pitch angle of the 

rocket which gave the result in Fig. 5. The Kalman filter 

design has properties as given in (36), (37) and (38): 
 

 0.3155 -0.0026 -0.2413

 -0.0026 9.0765 -56.5430

-0.2413 -56.5430 363.2142

LQEK

 
 


 
  

 (36) 

 
6

6

 0.0006 -5.18 10 -0.0005

 -5.18 10 0.0180 -0.1122

  -0.0005 -0.1122 0.7208

LQEP





 
 

  
 
 

 (37) 

  
 
Fig. 5: Kalman filter estimate of the pitch angle of the rocket 

 

-372.13 + 0.0000i

-0.30316 + 0.95107i

-0.30316 - 0.95107i

LQEE

 
 


 
  

 (38) 

 

The closer to zero, the elemets of the diagonal matrix 

of PLQE (covariance matrix) is, suggests that the error is 

minimal. Hence, the value of 0.0006 in (38) is associated 

with the kalman filter estimate of the pitch angle. Thus, 

it validates the result displayed in Fig. 6 (kalman filter 

estimate of the pitch angle is very close to the actual 

trajectory). The eigenvalues as displayed in (38) are all 

nagative, this suggests a stable observer.  

LQG Control Design 

Basically, the LQG approach addresses the 

problem where we consider a system dynamic model 

perturbed by a dynamical noise w and a state 

observation corrupted by measurement noise  affecting 

the sensors data acquisition. It is essentially a combination 

of  LQR  and  a  Kalman  based  estimator  (Aliyu, 2011). 
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Fig. 6: LQG control schematic 

 

The estimator or observer addresses the short fall of the 

LQR’s assumption that all states are available for 

feedback (via sensors). Here, all the required states will 

be estimated by the renowned kalman filter.  
From Fig. 6, z is the controlled system output and 

KLQR is the controller feedback gain in our case is the 

LQR gain. Consequently, the LQG control law is: 
 

ˆ.u kx   (39) 
 
where, x̂  the estimated state by Kalman filter. 

The designed LQG controller in MATLAB/simulink 

was simulated to track a pitch angle of 3 degrees (0.053 

radians) and the result is dipicted in Fig. 7. 

To check the stability of the LQG system, it is more 

convenient to consider the dynamics of the estimation error. 

In matrix form, the related equation can be shown as: 
 

,
0

LQR LQR

LQE

A BK BKx x

A K Ce e

    
         

 (40) 

 
For the LQG designed in this study, the eigenvalues 

of (40) are as given in (41). Notice that (34) is a 

combination of the roots of the LQR controller and those 

of the Kalman as earlier designed in (17) and (38): 
 

-3.9476

-3.7392

-0.24116 

-372.13

-0.30312 + 0.95106i

-0.30312 - 0.95106i

rootsLQG

 
 
 
 

  
 
 
 
  

 (41) 

 

Improved LQG Control Design (LQGi,1) 

Base on the dual principle, (16) is the algebriac 

riccatti equation for the LQR controller and (31) is its 

counterpart for the kalman filter. Hence, we can write 

(42) as the non-steady form of (31). This is a riccati 

differential equation (Aliyu et al., 2012): 

 
1T T T

LQE LQE LQE N LQE N LQEP P A A P G Q G P CR C P      (42) 

 
 
Fig. 7: Set-point tracking LQG control of the rocket 

 

We propose an improved LQG controll design base 

on the solution of (42). This Riccati Differential 

Equation (RDE) is an initial value differential problem 

with initial conditon P0 = [6.25  105 6.25  105 6.25  

105]T. Thus, we put forward an observer gain as given in 

(43). This kalman gain values change all through the 

regime of flight: 

 

  1T

LQE LQE NK t P C R  (43) 

 

State estimation was done using (43) as our Kalman 

gain and the result for pitch angle estimation is shown in 

Fig. 8a (zoom of Fig. 8b). Notice that the actual and 

estimated state is exactly the same, this is why both plots 

are super-imposed on each other as seen in Fig. 8b. 

In MATLAB/Simulink®, (43) as observer gain was 

combined with the LQR control designed earlier for the 

rocket to form the first improved LQG controller (LQGi,1). 

Simualation result of such controller is dipicted in Fig. 9. 

Kalman gain for simulation in Fig. 9 gave is 916 
values of Kalman gain which were updated throughout 

the simulation time of 5 sec.  

Improved LQG Control Design (LQGi,2) 

To establish a fare comparison with the traditional 

LQG design, we decided to take the 916th value of the 

Kalman gain from the solution of (43) as given in (44) 

was used to designed an estimator which was able to 

estimate the pitch angle of the rocket as shown in Fig. 10. 

The estimator has properties as given in (45) and (46): 
 

916

 6.3336 -0.11602 -3.1046

  -0.11602 5.8228 -32.458

 -3.1046 -32.458 210.93

LQEK

 
 


 
  

 (44) 

 

139

 0.01267 -0.0002322 -0.00621

 -0.0002322 0.01165 -0.06492

-0.00621 -0.06492 0.4219

RDEP

 
 


 
  

 (45) 
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-214.67

-7.6623

-0.85508

RDEE
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 (46) 

0                                      5                                      10                                    15 

Time (s) 

0.06 

 
0.04 

 
0.02 

θ
 (

ra
d

) 

X: 0.466 
[ 
Y: 0.04518 

X: 8.473 
 

Y: 0.053 

KLQR Kalman 
Filter 

Plant 
u 

z 

y 

x  

v w 

Tracking signal 
 

LQG 



Aliyu Bhar Kisabo et al. / Journal of Aircraft and Spacecraft Technology 2019, Volume 3: 24.37 

DOI: 10.3844/jastsp.2019.24.37 

 

31 

 
(a)  

 

 
 (b) 

 
Fig. 8: Pitch angle estimation using RDE to obtain kalman gain 

 

 
 

Fig. 9: Set-point tracking LQGi,1 control of the rocket with Kalamn gains from differential ricatti equation 

 

 
 

Fig. 10: Pitch angle estimation using the 916th value of kalman gain from the solution of a RDE 

 

From the eigenvalues in (46), the estimator is 

stable (nagative eigenvalues). Comparing the P11 

element in (45) with that of (37), one could clearly 

say that the latter will give a better estimate of the 

pitch angle compared to the former. This fact is 

validated with Fig. 10, it can be seen that the 

algorithm poorly estimated the actual state for about 

0.8 sec. When this variant of the Kalman gain was 

used as an observerto realise our second novel LQG 

algorithm (LQGi,2), simulation result (Fig. 11) gave us 

a controller with better time response characteristics 

than the traditional LQG. 
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Fig. 11: Set-point tracking control of pitch angle with LQGi,2 

 

 
 

Fig. 12: Breaking the LQG loop at plant output 
 

Our quest for a better controller will lead us to 

designing LQG/LTR hoping we can get one with better 

properties than that of LQGi,2. Hence, we proceed with 
the traditional LQG/LTR design. 

LQG/LTR Control Design 

Based on the LQR solution of the above nominal 

optimal control, we can design a Linear Quadratic 

Gaussian (LQG) with Loop Transfer Recovery (LTR) 

controller. The LQG/LTR method is rooted in optimal 

control theory and in spite of systematic design 

procedure, shows some useful properties of robustness 

and good performance. In this method, the desired time 

response characteristics of the closed-loop system 

(plant and controller) must be designed in an LQG 

problem and then these time response characteristics 

are recovered at the input or output of the real plant 

by successive tuning of a gain in an LQR problem or 

reduction of the measurement noise as the case may 

be. Hence, there are two main methods for LQG/LTR 

design (Kulcsar, 2000), these are: 

 

 LQG/LTR at input of the plant by tuning the kalman 

gain matrix KLQE 

 LQG/LTR at output of the plant by tuning gain 

matrix KLQR 

LQG/LTR Design at Plant Output 

Now, breaking the LQG loop at the plant output as 

shown in Fig. 12, the return ratio at the output of the 

plant is: 

 

     ,LQGL s G s L s    (47) 

 

The associated sensitivity function of plant is defined as: 

 

      
1

.LQGS s I G s L s



   (48) 

 

Investigation the effect of decreasing the intensity Q 

of the LQR problem. Suppose: 

  

0 ,LQRQ Q M   (49)  

 

where, M is a fixed symmetric positive-definite 

weighting matrix and 𝜌 a positive number. Investigating 
the asymptotic behaviour of the closed-loop system as 

𝜌↓0. Also we assume that the plant in this case is 

minimum-phase. The feedback gain for the LQ problem 

is given by: 

 
1 T
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where, Plqr ≥ 0 is the maximal solution of the control 

Algebriac Ricatti Equation (CARE): 

 
1 0.T T

LQR LQR LQR LQRA P P A Q P BR B P     (51) 

 

Examining the situation while 𝜌 → ∞: 

 
1

0lim 0,

T T

LQR LQR LQR LQRA P P A P BR B PQ
M

    





  
     

  

 (52) 

 

And considering the fact that: 

 

lim 0.
LQRP

 
  (53) 

 

Then (52) reduces to: 

 
1

0,

T
LQR LQRP BR B P

M




   (54) 

 
Thus: 

 
1 ,T

LQR LQRM P BR B P   (55) 

 

Multiplying both sides of (55) with the power of ½ 

gives, we can write: 

 

 
1 2 1 2 1 2 1 2 2 1 2 1 2 2 1 2 ,T T

LQR LQR LQRM P P B B R P B B R     (56) 

 

Multiplying both sides of (56) with BT/2B-1/2R-1/2 

gives: 

 
1 2 1 2 1 2 1 2 2 1,T T

LQRR M B B P B R    (57) 

 

 1 2 1 2 1 2 1 2 2 1 2 2lim lim ,T TF R M D D B B
 

 

 
  (58) 

 
Choosing M = I, the open loop transfer function 

becomes: 

 

 
  

 

   

1
1

lim lim

lim = .

LQR LQR
LQG

LQE

LQG LQR

K s K B
L s

K C s B

L s K s C

 








 



 
  

  
 
 



  (59) 

 
From (59) it is inferred that with a q very high we can 

approach the return ratio of the Kalman filter. Also, 

during Loop Transfer Recovery, the poles of: 

 

   The zeros of the plant  ,LQGL s C s K


   (60) 

and the zeros of: 
 

   The zeros of the plant  ,LQGL s C s B


   (61) 

 
Thus, the design procedure is: 

 
 First, we design a Kalman filter whose transfer 

function CΦ(s) KLQE is desirable. By choosing the 

power spectral density matrices w and  so that the 

minimum singular value of CΦ(s) KLQE is large 

enough at low frequencies for good performance and 

its maximum singular value is small enough at high 

frequencies for robust stability; 

 When the singular values of CΦ(s) KLQE are thought 

to be satisfactory, loop transfer recovery is achieved 

by designing KLQR in an LQR problem with B=C in 
(59), Q = Q0 + ρM, where ρ is a scalar. 

 

LQG/LTR Design at Plant Input 

Loop Tranfer Recovery at input of the plant (as 

shown in Fig. 13) is achieved by primarilily tuning the 

kalman gain matrix KLQE,its return ratio isgiven in (62). 

Notice that (62) is just a form of (47) being casted for 

LQG/LTR design at Plant input. Thus, extending the dual 

principle of the LQG problem to the LTR definition: 
  

     ,LQRL s G s L s    (62) 

 
Since the KLQR controller is ready, we only need to 

design the Kalman filter which can help recover the 

robustness of LQR controller. Notice, we are simply 

taking the converse steps of LQG/LTR at the plant 

output design as earler outlined. The Loop Transfer 

Recovery design is done by increasing the spectral 

density Sw of the plant noise w(t). This method is popular 

in the research community (Ishihara et al., 2005): 
 

 
1

lim ,LQR LQEK K sI A B





   (63) 

  
We choose different values of Sw to design the 

Kalman filter and compare the results to the LQR results. 
We choose different values of Sw by doing: 

 

,NN NQ Q I   (64) 
 
where, I is an identity matrix and we want to find the 

KLQE feedback while ρ → ∞.  

The approach suggested in (64) is similar to that 

expressed in (49). Here, we were able to prove with 

simulation that the same approach can be implemented 

for LTR at plant input.  

The Kalman filter gain for the LQG/LTR at the plant 
input for this study is obtained with MATLAB® command 

[KLQE,PLQE,ELQE] = lqe(A,GQnG,C,QNN,RN,P0). Next we 

show the system response of LQG/LTR control set-point 

tracking response for different values of ρ in Fig. 14. 
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Fig. 13: Breaking the LQG loop at plant output 
 

 
 (a)  
 

 
 (b) 
  

 
 (c)  
 

 
 (d) 
 

Fig. 14: LQG/LTR set-point tracking control of pitch angle 

0               0.5               1               1.5               2               2.5              3 

Time (s) 

0.06 

 
0.04 

 
0.02 

θ
 (

ra
d

) 

X: 0.6675 
 

Y: 0.045 

X: 2.579 
 

Y: 0.05289 

X: 1.325 
 

Y: 0.05199 

Tracking signal 
 

LQG/LTR (  = 10) 

Plant 

Observer KLQE 

u 
z 

y 

x  

- 

0                      1                       2                     3                   4                          5 
Time (s) 

0.06 

 
0.04 

 
0.02 

θ
 (

ra
d

) 

X: 0.4985 
 

Y: 0.04388 

X: 3.987 
 

Y: 0.05261 

X: 1.63 
 

Y: 0.0533 

Tracking signal 
 

LQG/LTR (  = 1) 

0              1             2              3              4             5              6             7 
Time (s) 

0.06 

 
0.04 

 
0.02 

θ
 (

ra
d
) 

X: 0.6603 
 

Y: 0.05401 

X: 5.963 
 

Y: 0.05358 

X: 4.148 
 

Y: 0.05018 

Tracking signal 
 

LQG/LTR (  = 0.1) 

0              1              2              3              4              5               6              7 

Time (s) 

0.06 

 
0.04 

 
0.02 

θ
 (

ra
d
) Tracking signal 

 

LQG/LTR (  = 10) 

LQG/LTR (  =1) 

LQG/LTR (  = 0.1) 

 



Aliyu Bhar Kisabo et al. / Journal of Aircraft and Spacecraft Technology 2019, Volume 3: 24.37 

DOI: 10.3844/jastsp.2019.24.37 

 

35 

 
 (a) 
 

 
 (b) 
 

 
 (c)  
 

 
 (d) 

 
Fig. 15: Novel LQG/LTRi set-point tracking control of pitch angle 

 
Table 1: Time response characteristics of controllers (rise time, tr, settling time ts, percentage overshoot Po and steady-state-error, SSE) 

S/N Controllers ts (s) tr (s) Po (%) SSE (rad)  

1 LQR 1.82 0.86 0 0.000 
2 LQG 8.47 0.47 0.9 0.0001 
3 LQGi,1 1.81 0.62 0 0.0002 
4 LQGi,2 1.35 0.68 0 0.0001 
5 LQG/LTR (ρ = 10) 1.33 0.67 0 0.0002 
6 LQG/LTR (ρ = 1) 1.63 0.49 0.2 0.0004 
7 LQG/LTR (ρ = 0.1) 4.15 0.66 0.7 0.0006 

8 LQG/LTRi (ρ = 0.1) 1.2 0.68 0 0.00 
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Next we will design LQG/LTR using (44), as the 
Kalman gain for the observed. Remember this Kalman 
gain was harvested from a DRE. Simulation result for 
such design are presented in Fig. 15. We call this 
controller LQG/LTRi. 

Discussion of Results 

It can be clearly seen from Table 1, that the LQR 
controller has appreciable time ressponse characteristics 

with zero steady-state-error (see Fig. 4). This is viewed 

as an ideal situation and its position is well supported in 

literature (Aschepkov, 2016; ViorelBadescu, 2017; 

Zhang et al., 2016). The combination of LQR controller 

with Kalman filter as an observer caused some of the 

fine properties of both the LQR controller and kalman 

filter to be lost. The result is a closed-loop system with 

an overshoot (0.9%) as shown in Fig. 8. This result is 

also in line with popular litereture position (Wang Jian, 

2016; Zhu et al., 2017). Our first novel controller, 
LQGi,1, used updated values of kalman gain all through 

the regime of simulation to arrive at the result dipicted in 

Fig. 9 and Table 1. Notice that this controller was 

capable of restoring almost all the robustness of the of 

the LQR. In practical terms, LQGi,1 might be challenging 

to implement oweing to the fact that if the rocket will fly 

for a long time, Kalman gain values might increase 

beyond the 916steps that we have here for a simulation 

time of 5 second. This means large memory alocation on 

a hardware and at the same time prolonged computation 

throughout the regime of flight. Hence, we introduced 

the second novel controller LQGi,2 as a practical 
substitute to LQGi,1. Here we used the last integrated 

value of Kalman gain as our preferred values of 

estimator gain to design the novel LQGi,2 controller. The 

simulation result of LQGi,2 are as dipicted in Table 1 and 

Fig. 11. This controller is also very promising in the 

sense that it was also capable of restoring the robustness 

of the LQR controller with even a better settling time 

than that of the LQR. The traditional LQG/LTR at plant 

input was designed, and the results for three scenerio are 

dipicted Fig. 14. The tunned Kalman gain with the 

largest value of ρ = 10 (Fig. 14a) was able to restore all 
the robustnes and is comparable with the LQR, LQGi,1 

and LQGi,2 controllers. For LQG/LTR with ρ = 0.1, in 

Fig. 15c, this controller is comparable with the LQG and 

LQG/LTR with ρ = 1 in Fig. 14b has better time 

response characteristics than the LQG but less, compared 

to LQR, LQGi,1 and LQGi,2. For close perusal of the 

three LQG/LTR controllers synthesied, Fig. 14d is 

perspective. The novel LQG/LTR at plant input was 

designed using the Kalman gain from the solution of 

RDE and simulation results are as dipicted in Fig. 15. 

Notice, that LQG/LTRi with ρ = 0.1in Fig. 15a was able 

to restore all the robustness needed and has better time 
response characteristics compares to LQGi,1 and LQGi,2 

as shown in Table 1. We tried to improve on this 

controller by making ρ = 1 and ρ = 10 but got the same 

result (Fig. 15b and 15c). Notice, for this 3 LQG/LTRi 

controllers to be shown to have the same time response 

characteristics, Fig. 15d was plotted. Hence, we consider 
all the controllers in Fig. 15d to be just one- LQG/LTRi. 

Conclusion 

To design an optimal controller for a rocket, a 

mathematical model was developed and simulated in 

MATLAB/Simulink®. The cascade combination of a 

matthematical model and a control algorithm (with 
feedback) gives a closed-loop control system 

(controller). Thus, eight controllers were designed in this 

study: LQR, LQG, LQGi,1, LQGi,2, LQG/LTR (ρ = 10), 

LQG/LTR (ρ = 1), LQG/LTR (ρ = 0.1) and LQG/LTRi. 

Simulation for all controllers were carried out in 

MATLAB/Simulink®. Results of all controllers were 

compared based on time response characteristics and the 

LQR controller was used as the bench mark, LQGi,1, LQGi,2 

and LQG/LTRi are novel in nature based on the origin of 

the Kalman gain used the observer design. LQG/LTRi 

outperformed the other two coontrollers in terms of time 

response characteristics (better than the LQR). 

Future Work 

It is imparative to formulation an analytic 

mathematical proof for the simulation concept and result 

of the LQG/LTR control presented in this study.  

Acknowledgement 

Authors wish to acknowledge the relentless effort of 
staff memebers at CSTP working with the instrumentation 
and control unit.  

Ethics 

Authors declare that there are no ethical issues that 

may arise after the publication of this manuscript. This 

article is original and contains unpublished material.  

References 

Aliyu, B.K., 2011. Expendable Launch Vehicle Flight 
Control; Design and Simulation with 
MATLAB/Simulink, 2011. LAP LAMBERT 
Academic Publishing Germany,  

 ISBN-13: 978-3844327290. 

Aliyu, B.K., C.A. Osheku, L.M.A. Adetoro and A.A. 
Funmilayo, 2012. Optimal solution to matrix riccati 

equation-for Kalman filter implementation. 

MATLAB - A Fundamental Tool for Scientific 

Computing and Engineering Applications - Volume 

3, INTECH.  



Aliyu Bhar Kisabo et al. / Journal of Aircraft and Spacecraft Technology 2019, Volume 3: 24.37 

DOI: 10.3844/jastsp.2019.24.37 

 

37 

Anderso, B.O. and J.B. Moore, 1989. Optimal Control. 

Linear Quadratic Methods. Prentice-Hall 

International, Inc., USA. ISBN-10: 0-13-638651-2 

Aschepkov, 2016. Optimal Control. Springer 

International Publishing.  
 ISBN-10: 978-3-319-49781-5 

Barbosa, F.S., G.P. das Neves and B.A. Angélico, 2016. 

Discrete LQG/LTR control augmented by 

integrators applied to a 2-DOF helicopter. 

Proceedings of the IEEE Conference on Control 

Applications (CCA), Sept. 19-22, IEEE Xplore 

press, Argentina. DOI: 10.1109/CCA.2016.7587976 

Barzanooni, E., 2015. Attitude flight control system 

design of UAV using LQG\LTR multivariable 

control with noise and disturbance. Proceedings of 

the 3rd RSI International Conference on Robotics 
and Mechatronics (ICROM). 

Brian, D.O. and J.B. Moore, 1989. Optimal Control: 

Linear Quadratic Methods. Prentice-Hall 

International, New Jersey. ISBN-10: 0-13-638651-2 

Burns, R.S., 2001. Advanced Control Engineering. 

Butterworth Heinemann Boston.  

 ISBN-10: 0750651008 

Das, S. and K. Halder, 2014. Missile attitude controlvia a 

hybrid LQG-LTRLQIcontrol scheme with optimum 

weight selection. Proceedings of the 1st 

International Conference on Automation, Control, 

Energy and Systems (ACES).  
 DOI: 10.1109/ACES.2014.6807996 

Franklin, G.F., J.D. Powell and A. Emami-Naeini, 2006. 

Feedback Control of Dynamic Systems. 5th Edn., 

NJ, Prentice Hall. 

Ishihara, T. and L.A. Zheng, 2017. LQG/LTR procedure 

using reduced-order Kalman filters. Int. J. Control. 

DOI: 10.1080/00207179.2017.1359673 

Ishihara, T., H.J. Guo and H. Takeda, 2005. Integral 

controller design based on disturbance cancellation: 

Partial LTR approach for non-minimum phase 

plants. Automatica, 41: 2083-2089. 
Jianqiao, Y.U., L.U.O. Guanchen and M.E.I. Yuesong, 

2011. Surface-to-air missile autopilot design using 

LQG/LTR gain scheduling method. ELSEVIER, 

Chinese J. Aeronautics, 24: 279-286. 

Kirk, D.E., 1998. Optimal Control Theory: An 

Introduction. Prentice-Hall, Inc., New Jersy, 

  ISBN-10: 0-486-43484-2 

Kulcsar, B., 2000. LQG/LTR controller design for an 

aircraft model. Periodica Polytechnica SER. Transp. 

Eng., 28: 131-142.  
 
 

 

 

 

Liu, X., 2017. Fuel-optimal rocket landing with 

aerodynamic controls. Proceedings of the AIAA 

Guidance, Navigation and Control Conference, 

AIAA SciTech Forum, (AIAA 2017-1732), Beijing 

Institute of Technology, China, pp: 1-15.  
 DOI: 10.2514/6.2017-1732 

Moshen Ahmed, W.A.E.L. and Q.U.A.N. Quan, 2011. 

Robust hybrid control for ballistic missile 

longitudinal autopilot. ELSEVIER, Chinese J. 

Aeronautics, 24: 777-788. 

Naidu, D.S., 2003. Optimal Control. CRC Press LLC, 

New York. ISBN-10: 0-8493-0892-5 

Nair, M.P. and R. Harikumar, 2015. Longitudinal 

dynamics control of UAV. Proceedings of the 

International Conference on Control 

Communication and Computing India (ICCC). Nov. 
19-21, IEEE Xplore press, India.  

 DOI: 10.1109/ICCC.2015.7432865 

User’s Guide, 2014. Control System ToolboxTM. 

Revised for Version 9.7 (Release 2014a). The 

MathWorks, Inc. 

ViorelBadescu, 2017. Optimal Control in Thermal 

Engineering. Springer, ISBN-10: 9783319529684 

Wang Jian, 2016. The optimal guidance of rocket fixed-

attitude and fixed-point orbit injection. Proceedings 

of the Chinese Control and Decision Conference, 

May 28-30, IEEE Xplore press, China.  

 DOI: 10.1109/CCDC.2016.7531741 
Williams, R.L. and D.A. Lawrence, 2007. Linear State-

space Control Systems. 

Zhang, Y.J., A.A. Malikopoulos and C.G. Cassandras, 

2016. Optimal control and coordination of 

connected and Automated vehicles at urban traffic 

intersections. Proceedings of the American Control 

Conference (ACC) Boston Marriott Copley Place, 

Jul. 6-8, Boston, MA, USA, pp: 6227-6232.  

Zhang, Y.J., A.A. Malikopoulos and C.G. Cassandras, 

2016. Optimal control and coordination of 

connected and automated vehicles at urban traffic 
intersections. Proceedings of the American Control 

Conference, Jul. 6-8, IEEE Xplore press, USA. DOI: 

10.1109/ACC.2016.7526648 

Zhu, J., E. Trélat and M. Cerf, 2017. Geometric optimal 

control and applications to aerospace. Pacific J. 

Mathematics Industry.  

 DOI: 10.1186/s40736-017-0033-4 


