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Abstract: In the present study, we have carried out extensive non-linear 
Quantitative-Structure Activity Relationship (QSAR) analysis to correlate 
in vitro anti-malarial activity against multi drug resistant strain of 
Plasmodium falciparum. Forty-three synthetic prodiginines with different 
structural features were used for their potential antimalarial activity. Linear, 
bilinear, biexponential and parabolic equations were developed. These 
equations were compared to determine the optimum values of descriptors 
for very useful and easily interpretable descriptors. The optimum values of 
these descriptors could be helpful in finding and optimizing a good lead 
compound. Obtained correlations reveal that various factors like 
lipophilicity, molecular weight and number of bonds have non-linear 
relation with the anti-malarial activity. 
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Introduction 

Malaria, a dreadful vector-borne protozoal disease is 
responsible for more than two million deaths every year 
(WHO, 2012; http://www.who.int/malaria/en/). Developing 
a potent antimalarial compound is still a major challenge for 
the  medicinal  chemists (Biamonte et al., 2013). The 
situation is worsening with the  rapid  spread  of multi  drug  
resistant  strains of causative agent (Biamonte et al., 
2013; Mahajan et al., 2012; 2013; Mara et al., 2013; 
Masand et al., 2013b; Murugesan et al., 2013; Ojha and 
Roy, 2012; Papireddy et al., 2011). Therefore, there is 
essential need to curb this deadly disease either by 
modifying the existing marketed drugs or developing 
new therapeutic molecules. Different compounds like 
xanthones, artemisinins, prodiginines have been 
synthesized and tested to develop new potential remedies 
for malaria (Biamonte et al., 2013; Mahajan et al., 2012; 
2013; Mara et al., 2013; Masand et al., 2013b; 
Murugesan et al., 2013; Ojha and Roy, 2012; 
Papireddy et al., 2011). 

Prodiginines (Mahajan et al., 2012; 2013; Masand et al., 

2013b; Papireddy et al., 2011), the oligopyrrole derivatives 

with a characteristic conjugated system, are promising anti-

malarial agents (Fig. 1). These compounds have the ability 

to inhibit Plasmodium falciparum (P. falciparum) at very 

low concentrations. They show marked clearance of the 

protozoa parasite and can be effectively administered orally. 

Despite these advantages, search for a potent prodiginines 

with good Absorption, Distribution, Metabolism, Excretion 

and Toxicity (ADMET) profile and improved ease of 

synthesis has resulted in limited success (Mahajan et al., 

2012; 2013; Masand et al., 2013b; Papireddy et al., 

2011). The progress can be expedited using the 

contemporary method of drug designing like QSAR, 

Molecular docking and Pharmacophore modelling. Of the 

above mentioned methods, QSAR is an established 

technique with good success in last few decades and is 

utilized in our research (Huang and Fan, 2011;  Myint and 
Xie, 2010; Scior et al., 2009; Tropsha, 2010).
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Fig. 1. Synthetic prodiginines used in present study 

 

A typical QSAR study involves establishment of 

correlation between structure and activity (Mahajan et al., 

2012; 2013; Masand et al., 2012a; Masand et al., 2013a; 

2012b; 2013b; Rastija et al., 2013). Different characteristics 

or attributes of chemical structure are expressed in terms of 

numerical entities termed as molecular descriptors (also 

known as parameters or features). One or more molecular 

descriptors are used to build statistically robust linear 

regression equation. A properly validated QSAR equation is 

considered more useful if it is derived using descriptors that 

represent maximum useful information with minimum 

overlap and are interpretable in terms of structural features 

(Chirico and Gramatica, 2011; 2012; Chirico et al., 

2012; Gramatica, 2013; Gramatica et al., 2012; 2013; 

Martin et al., 2012; Mitra et al., 2010;  Roy and Mitra, 
2012;  Saha and Roy, 2012; Tropsha, 2010). 

Unfortunately, limited number of validated QSAR 

equations with the ability to guide for the development of 

new drugs or modification of existing drugs are utilized, 

due to the following reasons (Chirico and Gramatica, 2011; 

2012; Chirico et al., 2012; Doweyko, 2008; Gramatica, 

2013; Gramatica et al., 2012; 2013; Martin et al., 2012; 

Mitra et al., 2010;  Roy and Mitra, 2012;  Saha and Roy, 
2012; Tropsha, 2010) (i) Difficulty in interpretation of 

QSAR equation in terms of structural features; (ii) The 

calculation or estimation of descriptors is very complex or 

resource consuming; (iii) computational facilities/resources 

like advanced and specific softwares may not be available 

to organic chemist to calculate descriptors that are 

mentioned in QSAR equation. (iv) The organic chemist 

may not be well skilled or trained in QSAR; (v) In addition, 

important descriptors having good correlation with activity 

might get missed in QSAR equations due to some reasons. 
To overcome the difficulties, many researchers use 

inverse-QSAR (i-QSAR). In i-QSAR, the molecules are 
optimised using a set of physico-chemical properties or 
theoretical descriptors, which are obtained or derived using 

a well known marketed drug as ‘reference’ (Brown et al., 
2006; Faulon et al., 2005). This approach has certain 
limitations like (i) proper selection of drug is an exigent and 
tricky process (ii) the drug should have similarity in 
structural or shape with the molecules of data set in hand 
(iii) For some diseases, no marketed drugs are available 
whereas for some diseases, a lot of marketed drugs are 
available. (iv) The physico-chemical properties or 
theoretical descriptors which are associated with one 
chemo-type of drug may not be possible to calculate or 
estimate for other chemo-type of molecule. (iv) The 
physico-chemical properties or theoretical descriptors 
associated with one chemo-type of drug may not be 
possible to calculate or estimate for other chemo-type 
molecules. After determining the values of different 
descriptors, the problem then lies in constructing a viable 
molecule from these descriptors. This is the real limiting 
factor of most inverse-QSAR methods, because most of 
the descriptors are not reversible. 

 A good solution is to determine the optimum value 

of useful and information rich descriptors, during the 

QSAR equation development. The most striking 

advantage in determining optimal values of different 

descriptors is that the ‘most active’ compound in the 

given data set may or may not fit to optimum values of 

all the descriptors. This optimization is not based on 

single ‘reference’ drug as in i-QSAR. In this case a data 

set is used to derive a set of physico-chemical properties 

or theoretical descriptors to optimize the molecules. 

Thereby, increasing the chances of finding better 

alternatives to visible ‘most active’ and potential 

compounds outside the present data set. This approach 

can be viewed as ‘Hybrid-inverse QSAR’. It could 

significantly accelerate the discovery of novel small 

molecules with specified chemical properties. 

Literature survey reveals (Buchwald and Yamashita, 

2014; Gidskehaug et al., 2008; Hansch et al., 2004; Jager 

and Kooijman, 2009; Kubinyi, 2002) that a well 

established method to determine the optimum value of 

any descriptor is to derive non-linear equation, 

especially bilinear or biexponential or parabolic 

equation. These functions assume that the relationship 

between descriptor and the activity is non-linear with 

the vertex of curve representing the optimum value. 

In our previous work, we successfully performed 
CoMSIA, GUSAR and QSAR analyses for antimalarial 
activity of synthetic prodiginines. The objectives of the 
present study are (i) to determine optimum value of 
easily interpretable descriptors used in the QSAR 
equation (ii) to determine optimum value of some other 
useful descriptors having good correlation with activity 
but not included in the reported QSAR equations and 
(iii) to compare the performance and ability of linear, 
parabolic, bilinear and biexponential QSAR models to 
determine the optimum values of descriptors.  
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Methodology 

Data Set 

The experimental in vitro Inhibitory Concentrations 

(IC50) expressed in nanomolar units of forty three 

synthetic prodiginines against the Chloroquine (CQ) 

resistant strain Dd2 are selected from a recent 

publication (Papireddy et al., 2011). The data set 

includes prodiginines with different substituents like 

varying length of alkyl chain, substituents at different 

positions of benzene ring etc. Table 1, provides the 

experimental data. The values were converted into the 

logarithm units, (-log 10 IC50 = pIC50) for molecular 

modelling purpose. 

The structures were drawn using ACD Chemsketch 

12 freeware and were converted into 3D structures. This 

was followed by geometry optimization using a molecular 

mechanics method implemented in the program VegaZZ, 

using Gasteiger partial charges and Tripos force field 

(Mahajan et al., 2012; 2013; Masand et al., 2013b). The 

optimized structures (β-isomer) were uploaded onto the e-

DRAGON server to calculate myriad number of 1D-, 2D- 

and 3D- molecular descriptors (Fig. 2). Before QSAR 

model development, descriptors with constant or nearly 

constant (for 80% molecules) values were discarded. 

Genetic Algorithm (GA) available in QSARINS (Chirico 

and Gramatica, 2011; 2012; Chirico et al., 2012; 2013; 

Chirico and Gramatica, 2011; 2012; Chirico et al., 2012; 

2013) was used to select optimum number and set of 

descriptors to build statistically sound multi linear 

regression equation. Matlab and BuildQSAR were 

used to build bilinear, biexponential and parabolic 

equations. In addition, Microsoft excel was used for 

different statistical functions. 

A good number of statistical parameters like R, R
2
, 

R
2

adj, S and F were calculated along with R
2

cv (R
2

LOO) 

for internal validation and to check the robustness of 

the model.

 

 
 

Fig. 2. Tautomeric forms of synthetic prodiginines (β-isomer) used in present study 
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Table 1. Different synthetic prodiginines along with experimental data IC50 (nM) and pIC50 

S. No. R1 R2 R3 IC50(nM) Dd2 pIC50 expt. 

1 2-pyrolyl n-C4H9 H 1590.0 5.799 

2 2-pyrolyl n-C6H13 H 450.0 6.347 

3 2-pyrolyl n-C8H17 H 130.0 6.886 

4 2-pyrolyl n-C16H33 H 400.0 6.398 

5 2-pyrolyl H CH2CH(CH3)2 230.0 6.638 

6 2-pyrolyl H n-C4H9 18.0 7.745 

7 2-pyrolyl H n-C6H13 7.0 8.155 

8 2-pyrolyl H n-C8H17 1.8 8.745 

9 2-pyrolyl H n-C10H21 10.0 8.000a 

10 2-pyrolyl H C6H5CH2 86.0 7.066 

11 2-pyrolyl H 4-OCH3C6H4CH2 156.0 6.807 

12 2-pyrolyl H 4-ClC6H4CH2 81.0 7.092 

13 2-pyrolyl H 4-BrC6H4CH2 108.0 6.967 

14 2-pyrolyl CH3 CH3 8130.0 5.090 

15 2-pyrolyl n-C6H13 n-C3H7 4.0 8.398 

16 2-pyrolyl n-C8H17 n-C3H7 2.7 8.569 

17 2-pyrolyl n-C3H7  1.3 8.886 

18 2-pyrolyl n-C6H13 n-C6H13 1.1 8.959 

19 2-pyrolyl n-C7H15 n-C6H13 1.2 8.921 

20 2-pyrolyl n-C6H13 n-C8H17 2.0 8.699 

21 2-pyrolyl n-C7H15 n-C8H17 2.9 8.538 

22 2-pyrolyl n-C8H17 n-C8H17 129.0 6.889 

23 2-pyrolyl   3.5 8.456 

24 2-pyrolyl C2H5 4-ClC6H4CH2 6.2 8.208 

25 2-pyrolyl n-C3H7 4-ClC6H4CH2 2.6 8.585 

26 2-pyrolyl n-C6H13 4-ClC6H4CH2 1.8 8.745 

27 2-pyrolyl n-C7H15 4-ClC6H4CH2 2.2 8.658 

28 2-pyrolyl n-C8H17 4-ClC6H4CH2 12.0 7.921 

29 2-pyrolyl 4-ClC6H4CH2  2.9 8.538 

30 2-pyrolyl n-C6H13 4-FC6H4CH2 0.9 9.046 

31 2-pyrolyl n-C8H17 4-FC6H4CH2 1.2 8.921 

32 2-pyrolyl n-C6H13 4-BrC6H4CH2 2.8 8.553 

33 2-pyrolyl n-C8H17 4-BrC6H4CH2 2.9 8.538 

34 2-pyrolyl 4-ClC6H4CH2 4-ClC6H4CH2 4.8 8.319 

35 2-pyrolyl 4-FC6H4CH2 4-FC6H4CH2 5.7 8.244 

36 2-pyrolyl 4-BrC6H4CH2 4-BrC6H4CH2 11.0 7.959 

37 2-pyrolyl 4-FC6H4CH2 4-ClC6H4CH2 6.1 8.215 

38 2-pyrolyl 4-BrC6H4CH2 4-ClC6H4CH2 7.7 8.114 

39 2-pyrolyl 4-BrC6H4CH2 4-FC6H4CH2 5.1 8.292 

40 2-pyrolyl 2,4-Cl2C6H3CH2 2,4-Cl2C6H3CH2 11.0 7.959 

41 2-pyrolyl 2,4-F2C6H3CH2 2,4-F2C6H3CH2 18.3 7.738 

42 2-pyrolyl 3-FC6H4CH2 3-FC6H4CH2 6.7 8.174 

43 2-pyrolyl 2-ClC6H4CH2 2-ClC6H4CH2 4.9 8.310 

 

Results and Discussion 

In the present study, we derived and compared the 

linear, biexponential, bilinear (two equations) and 

parabolic equations. These equations are listed in Table 2 

and 3. The equations provide useful correlation between 

activity and many easily interpretable useful descriptors 

like Sv (Sum of atomic van der Waal’s volumes), Sp 

(Sum of atomic polarizabilities), X1v (first order valence 

connectivity index, to represent the steric factor), 

ALOGP (Ghose-Crippen Octanol-water coefficient) and 

nAT (number of atoms). 

The linear model cannot be used for the 

determination of optimum value of any descriptor. The 

general form of the parabolic, bilinear Equation 1 

(proposed by Kubinyi), bilinear Equation 2 and 

biexponential model is as following: 
 
Y = aX + bX

2
 + c (1) 

 

Y = aX + b log(cX + 1) + d (2) 
 
Y = aX + b Log(β 10

X
 + 1) + c (3) 

 
Y = -b (log((e

(-c(x-a)/b)
)+(e

(e(x-a)/b))
)) + d (4) 
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Comparison of Different Models  

For some descriptors viz. nAT, Sv, Sp and ALOGP, 

non-linear models are either superior or equivalent to the 

linear model. Whereas, for rest of the descriptors, the 

fitting of the non-linear models is better than the linear 

model. This indicates that the relation between the activity 

and the selected descriptors is non-linear in nature. In 

other words, non-linear model can better explain the 

variation of activity. Among non-linear models, bilinear 

Equation 1 (based on Kubinyi formula) fits better than the 

rest, with biexponential models being least fit in nature for 

many descriptors. None of the model satisfies the 

recommended threshold value (>0.85) of CCC, though for 

some models, it is close to it. 
In the above models, the symbols have their usual 

meanings. Increasing the number of congeneric 
compounds in the data set as well as the range of 
biological data might result in better statistical fitting. 

In many cases, the substantial fitting of the equation 

(R
2
>0.60), though not outstanding, is satisfactory. This 

proves that there prevails the optimum value of 

lipophilicity, number of atoms, number of bonds and X1v 

(to represent steric factor). Thus, the selected descriptors, 

for which the optimum values are determined, represent 

the overall descriptor space. 

A comparison of values of descriptors for four most 

active (highlighted as bold and italic) and four least 

active (highlighted as bold and italic) compounds justify 

the importance of optimum values of descriptors (Table 

3). The value for selected descriptors for four most 

active molecules selected as representatives are close to 

optimum values whereas reverse is true for the four least 

active molecules. Thus, the optimum values of these 

descriptors could be helpful in finding a good “lead 

prodiginine” for anti-malarial activity. 

Interestingly, the values of descriptors for the ‘most 

active’ compound 30 in the present data set are close to 

optimum values of many descriptors. However, it does 

not match with the optimum values of all the descriptors. 

This confirms that the appropriate lead/drug optimization 

using only most active or single drug    as   ‘reference’  

is not a perfect method.
 
Table 2. Different linear and non-linear equations along with their statistical parameters 

 Statistical   Bilinear Bilinear 
Descriptor parameter Linear Parabolic Equation 1 Equation 2 Biexponential 

nAT R2 0.242 0.685 0.640 0.664 0.242 
 R2

adj 0.224 0.669 0.612 0.638 0.162 
 RMSE 0.800 0.516 0.565 0.533 0.800 
 SSE 27.517 11.442 13.073 12.211 27.517 
 F 13.099 43.465 23.105 25.349 3.035 
 CCC 0.389 0.813 0.781 0.796 0.390 
nBT R2 0.267 0.676 0.657 0.654 0.713 
 R2

adj 0.249 0.660 0.631 0.628 0.683 
 RMSE 0.786 0.523 0.565 0.540 0.492 
 SSE 26.613 11.758 12.443 12.548 10.407 
 F 14.935 41.756 24.933 24.354 23.629 
 CCC 0.421 0.807 0.793 0.790 0.833 
Sv R2 0.331 0.633 0.673 0.612 0.331 
 R2

adj 0.314 0.614 0.648 0.582 0.260 
 RMSE 0.752 0.557 0.551 0.573 0.752 
 SSE 24.302 13.339 11.857 14.093 24.302 
 F 20.254 34.438 26.808 20.279 4.693 
 CCC 0.497 0.775 0.805 0.758 0.497 
Sp R2 0.320 0.647 0.679 0.624 0.320 
 R2

adj 0.304 0.629 0.654 0.596 0.249 
 RMSE 0.758 0.546 0.547 0.563 0.758 
 SSE 24.679 12.819 11.652 13.639 24.679 
 F 19.317 36.648 27.508 21.377 4.475 
 CCC 0.485 0.786 0.809 0.767 0.485 
X1v R2 0.329 0.625 0.641 0.605    NC 
 R2

adj 0.313 0.607 0.614 0.574  NC 
 RMSE 0.752 0.562 0.578 0.578 NC 
 SSE 24.336 13.601 13.022 14.351 NC 
 F 20.169 33.388 23.245 19.717 NC 
 CCC 0.496 0.769 0.782 0.753 NC 
ALOGP R2 0.323 0.683 0.711 0.650           0.232 
 R2

adj 0.307 0.667 0.688 0.623 0.151 
 RMSE 0.756 0.517 0.519 0.543 0.805 
 SSE 24.573 11.506 10.511 12.701 27.875 
 F 19.579 43.112 31.906 23.576 9.349 
 CCC 0.488 0.812 0.831 0.786 0.065 

SSE- Sum of Squared Errors, RMSE-Root Mean Square Error, CCC- Concordance Correlation Coefficient 
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In present case, a plausible reason for this could be the 
ability of the molecules (prodiginines in present case) to 
attain different conformations and tautomeric forms. 
Prodiginines possess azafulvene-pyrrole tautomerism due 
to the three pyrrole rings joined by -CH= link. As 
prodiginines can form four different tautomeric forms, the 
tautomeric form, which is energetically favoured in 
solution, may not be the ‘bioactive tautomeric form’ 
which shows interaction with the specific receptor and is 
responsible for the pharmacologic activity of this group. 

Prodiginine may interact with different receptors in 

different tautomeric forms. In addition, prodiginines can 

exist in two conformations viz. α and β isomer, which 

have been discussed in our previous work (Reference). 

Another possible reason is satisfactory fitting (R
2
~0.60) 

for most of the developed models. 

Variation of Activity with Various Parameters 

Herein, the activities of some more active and less 

active molecules from the dataset in terms of various 

descriptors like lipophilicity/hydrophobicity, number of 

rotatable bonds, steric factor etc. for which the optimum 

value, determined using bilinear Equation 2, has been 

derived and discussed. For optimum value determination, 

parabolic and bilinear Equation 1 can also be use, but, 

these have some serious drawbacks, like (1) the parabolic 

approach forces the data into a symmetrical parabola, 

resulting in deviations between the experimental and 

parabola-calculated data. (2) The ascending slope is 

curved and conflicts with the observed linear data. (3) The 

bilinear equation provides better optimum value only if 

the dataset is large in size with wide spread variation in 

activity value. The bilinear Equation 2 does not confined 

to such limitations. Therefore, in the present work, it has 

been used for optimum value determination. 

We here clarify that we have though discussed the 

effect of individual descriptor, but the combined or 

converse effect of other factors/descriptors do have 

additional influence on the activity profile of these 

compounds. 

nBT (Number of Bonds) 

The optimum value for the number of bonds from the 

bilinear equation (Table 2) is 66.076. This suggests that 

the compounds that have number of bonds closer to this 

value should have good activity compared tothe rest of 

the compounds. This observation is supported by the 

lower activity of the following compounds which 

possess either very low or very high nBT: 1 (nBT = 45, 

IC50 = 1590 nM), 2 (nBT = 51, IC50 = 450 nM), 4 (nBT = 

81, IC50 = 400 nM), 11 (nBT = 51, IC50 = 156 nM), 14 

(nBT = 39, IC50 = 8130 nM) and 22 (nBT = 81, IC50 = 

129 nM). A comparison of following pairs of 

compounds further confirms this observation: 15 (nBT = 

60, IC50 = 4.0 nM) with 16 (nBT = 66, IC50 = 2.7 nM), 6 

(nBT = 45, IC50 = 18 nM) with 7 (nBT = 51, IC50 = 7 

nM) with 8 (nBT = 57, IC50 = 1.8 nM). Though, 

compound number 10 possess nBT = 63 (close to 

optimum value) but its activity is very low with IC50 = 

129 nM. This could be attributed to high value of 

F10[C-C], which has negative contribution towards the 

activity profile. Another examples are 20 (nBT = 75, IC50 

= 2.0 nM), 21 (nBT = 78, IC50 = 2.9 nM) and 22 (nBT = 

81, IC50 = 129 nM). In addition, similar trend is observed 

for 24 (nBT = 53, IC50 = 6.2 nM), 25 (nBT = 56, IC50 = 2.6 

nM), 26 (nBT = 65, IC50 = 1.8 nM), 27 (nBT = 68, IC50 = 

2.2 nM) and 28 (nBT = 71, IC50 = 12.0 nM). The most 

active compound 30 (IC50 = 0.9 nM) is with nBT= 65, 

which is very close to optimum value. 

Sv (Sum of Atomic Van Der Waal’s Volumes) 

The optimum value for Sv is 41.753. The two most 

active and two least active compounds 30 (IC50 = 0.9 

nM), 31(IC50 = 1.2 nM), 1(IC50 = 1590 nM) and 2 (IC50 

= 450 nM) have Sv = 38.97, 42.17, 26.87 and 30.07, 

respectively. For the active compounds the value of Sv is 

close to the optimum value, while reverse is true for the 

least active molecules. This observation is further supported 

by low activity of 14 (Sv = 23.68, IC50 = 8130 nM), 4 (Sv = 

46.05, IC50 = 400 nM), 22 (Sv = 46.05, IC50 = 129 nM) and 

5 (Sv = 26.87, IC50 = 230 nM). 

Sp (Sum of Atomic Polarizabilities) 

For this descriptor Sp, the optimum value obtained 

from the bi-linear equation is 44.281. The most active 

compounds 30 (IC50 = 0.9 nM), 31(IC50 = 1.2 nM) and 

the least active compounds 1(IC50 = 1590 nM) and 2 

(IC50 = 450 nM) have Sp = 41.07, 44.59, 28.32 and 

31.85, respectively. In addition, compounds4 and 14 

have Sp = 49.46 and 24.80 with IC50 = 400 and 8130 

nM, respectively. 

X1v (First Order Valence Connectivity Index, to 
Represent the Steric Factor) 

For X1v, the optimum value obtained from the bi-

linear equation is 11.790. The most active compounds 30 

(IC50 = 0.9 nM), 31(IC50 = 1.2 nM) and the least active 

compounds 1(IC50 = 1590 nM) and 2 (IC50 = 450 nM) 

have X1v = 11.314, 12.314, 7.680 and 8.680, respectively. 

In addition, compound 4 and 14 possess X1v = 13.680 and 

6.536 with IC50 = 400 and 8130 nM, respectively.  

Lipophilicity/Hydrophobicity (in Terms of ALOGP) 

In modern drug designing, lipophilicity is considered 

as one of the most important factors. For the present data 

set, the optimum value of ALOGP is 7.112 from a 

parabolic equation. Similar to other descriptors, the most 

active compounds 30 (IC50 = 0.9 nM), 31(IC50 = 1.2 nM) 

and the least active compounds 1(IC50 = 1590 nM) and 2 
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(IC50 = 450 nM) have ALOGP = 6.970, 7.882, 3.878 and 

4.790, respectively. In addition, compound 4 and 14 

have ALOGP = 9.352 and 2.785 with IC50 = 400 and 

8130 nM, respectively. This means, the compounds that 

posses number of bonds closer to this value should have 

good activity than the rest of the compounds. This 

observation is supported by the lower activity of 

following compounds which possess either very low or 

very high ALOGP: 11 (ALOGP = 4.111, IC50 = 156 nM) 

and 22 (ALOGP = 9.382, IC50 = 129 nM). A 

comparison of following pairs of compounds further 

confirms this observation: 15 (ALOGP = 6.189, IC50 = 

4.0 nM) with 16 (ALOGP = 7.101, IC50 = 2.7 nM), 6 

(ALOGP = 4.008, IC50 = 18 nM) with 7 (ALOGP = 

4.920, IC50 = 7 nM) with 8 (ALOGP = 5.832, IC50 = 1.8 

nM). Another example is 3 (ALOGP = 5.702, IC50 = 

130 nM), 16 (ALOGP = 7.101, IC50 = 2.7 nM) and 22 

(ALOGP = 9.382, IC50 = 129 nM). In addition, similar 

trend is observed for 24 (ALOGP = 5.604, IC50 = 6.2 

nM), 25 (ALOGP = 6.060, IC50 = 2.6 nM), 26 (ALOGP 

= 7.429, IC50 = 1.8 nM), 27 (ALOGP = 7.885, IC50 = 

2.2 nM) and 28 (ALOGP = 8.341, IC50 = 12.0 nM). 

nAT (Number of Atoms) 

Similar to nBT, this is a very easily interpretable and 

a useful descriptor for synthetic chemists. From 

parabolic equation, the optimum value obtained is 

63.031. The active molecules possess nAT close to the 

optimum value, whereas opposite is true for the less 

active molecules. Examples are 1 (nAT = 43, IC50 = 1590 

nM), 2 (nAT = 49, IC50 = 450 nM), 4 (nAT = 79, IC50 = 

400 nM), 11 (nAT = 48, IC50 = 156 nM), 14 (nAT = 37, 

IC50 = 8130 nM) and 22 (nAT = 79, IC50 = 129 nM). A 

comparison of following pairs of compounds further 

confirms this observation: 15 (nAT = 58, IC50 = 4.0 nM) 

with 16 (nAT = 64, IC50 = 2.7 nM), 6 (nAT = 44, IC50 = 18 

nM) with 7 (nAT = 49, IC50 = 7 nM) with 8 (nAT = 55, 

IC50 = 1.8 nM). Other examples are 20 (nAT = 73, IC50 = 

2.0 nM), 21 (nAT = 76, IC50 = 2.9 nM) and 22 (nAT = 79, 

IC50 = 129 nM). In addition, similar trend is observed for 

24 (nAT = 50, IC50 = 6.2 nM), 25 (nAT = 53, IC50 = 2.6 

nM), 26 (nAT = 62, IC50 = 1.8 nM), 27 (nAT = 65, IC50 = 

2.2 nM) and 28 (nAT = 68, IC50 = 12.0 nM). To add 

further, the most active compound 30 (IC50 = 0.9 nM) is 

with nAT= 62, which is very close to the optimum value. 

Conclusion 

In summary, the present study reveals that the non-
linear models should be developed to determine 
optimum values of the descriptors. A good lead 
compound (prodiginine in the present work) can be 
identified and optimized if the optimum value of 
lipophilicity, sum of atomic van der Waal’s volumes, 
sum of atomic polarizabilities, first order valence 
connectivity index, number of atoms, number of 

benzene-like rings and number of rotatable bond are 
used correctly and efficiently. The “ready to use” 
optimum/desirability values will be useful to the 
medicinal chemists in developing novel prodiginines 
with good anti-malarial activity profile. 
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