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Abstract: Problem statement: First, this study considers how the structure ofmsetry for
probabilities is decomposed into two structureso8dly, this study infers the structure of unknown
probabilities which indicates how the right eyéb&tter (or worse) than the left eye for three kinfls
data on unaided distance vision of (1) women inarj (2) students in an university of Japan and (3
pupils in elementary schools in Tokyo, Japan. Bhigly proposes a hew decomposition of symmetry
model for probabilities and analyzes these visiatadising the decompositioipproach: This study
considers a new decomposition theorem that foptiobabilities the symmetry model (indicates that
the right eye vision is symmetric to the left eysion) holds. Also this study analyzes the visiatad
using this decompositionResults: From the statistical approach, we can see thdb(ljhe vision data

of women, the right eye is better than the left agd the mean of right eye is not equal to the nofan
left eye, (2) for the vision data of students, tiighit eye is worse than the left eye and the méaiglot

eye is not equal to the mean of left eye and (B)He vision data of pupils, the right eye is syrmodo

the left eye and the mean of right eye is equéthéomean of left eyeConclusion: When the symmetry
model fits the data poorly, this new decompositfonseful for seeing which of decomposed two models
influences stronger. We can see the structureyofimetry for vision data in more details.

Key words: Cumulative linear diagonals-parameter symmetry, ey@an, model, square contingency
table, unaided distance vision

INTRODUCTION Table 3 have also been analyzed by Tomizawa (1985)
and Miyamotcet al. (2004).

Consider three sets of data on unaided distance For these vision data, an individual's right eye
vision of (1) 7477 women aged 30-39 employed ingrade is strongly associated with his/her left ggade
Royal Ordnance factories in Britain from 1943-1946pecause many observations concentrate on (or tiesar)
(Table 1), (2) 4746 students aged 18 to about 2¥ain diagonal cells in each table. Therefore, adtef
including about 10% women in Faculty of Science a”qndependence between an individual’s right eye grad
Technology, Science University of Tokyo in Japangng his/her left eye grade, we are interested iather
examined in April 1982 (Table 2) and (3) 3168 psipil , hot an individual's right eye grade is symmetdc
comprising nearly equal ”“”?ber of boys and girle(h_g his/her left eye grade and in how both eyes are
.6'12 at elementary schools in Tokyo, Japan, eX"’“h?mesymmetric or asymmetric, for example, whether ar no
in June 1984 (Table 3). In these data, the rowatiei : .

the mean of right eye grade is equal to the medafof

is the right eye grade and the column variablbdesleft de. In addit it ed | di
eye grade with the categories ordered from the Bgst eye grade. In addition, we are Interésted In seeieg

to the Worst (4). The data in Table 1 have alsmbee®2S0n by considering a decomposition of strucaire
analyzed by many statisticians including Stuarsg)e  Symmetry if there is not the probability structué
Bishop et al. (2007); McCullagh (1978); Goodman Symmetry between the right eye vision and thedgé
(1979); Agresti (1983); Tomizawa (1985; 1993): vision in each table. Many models of symmetry and
Miyamoto et al. (2004); Tomizawzet al. (2006) and asymmetry for probabilities have been proposed by
Tomizawa and Tahata (2007). The data in Table 2 havmany statisticians. Also decompositions of the
been analyzed by Tomizawa (1984; 1985). The data inymmetry model have been given by some statistician
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Table 1: Unaided distance vision of 7477 women a8@®@9 employed in Royal Ordnance factories indmitfrom 1943-1946; from Stuart
(1955). (The parenthesized values are the maxinketihood estimates of expected frequencies urtdeC_DPS model.)

Left eye grade

Right eye grade Best (1) Sec (2) Third (3) Worst (4 Total

Best (1) 1520 266 124 66 1976
(1520.00) (256.31) (132.83) (62.32)

Sec (2) 234 1512 432 78 2256
(244.68) (1512.00) (412.05) (86.69)

Third (3) 117 362 1772 205 2456
(105.99) (383.42) (1772.00) (196.93)

Worst (4) 36 82 179 492 789
(40.56) (71.34) (187.88) (492.00)

Total 1907 2222 2507 841 7477

Table 2: Unaided distance vision of 4746 studegexdal8 to about 25 including about 10% women inufamf Science and Technology,
Science University of Tokyo, Japan, examined inilAp#82; from Tomizawa (1984). (The parenthesizedLies are the maximum
likelihood estimates of expected frequencies uttteiICLDPS model.)

Left eye grade

Right eye grade Best (1) Sec (2) Third (3) Worst (4 Total

Best (1) 1291 130 40 22 1483
(1291.00) (133.38) (44.32) (15.16)

Sec (2) 149 221 114 23 507
(145.93) (221.00) (115.01) (21.19)

Third (3) 64 124 660 185 1033
(59.69) (123.11) (660.00) (201.30)

Worst (4) 20 25 249 1429 1723
(26.40) (26.22) (233.29) (1429.00)

Total 1524 500 1063 1659 4746

Table 3: Unaided distance vision of 3168 pupils posing nearly equal number of boys and girls agei® at elementary schools in Tokyo,
Japan, examined in June 1984; from Tomizawa (198fper and lower parenthesized values are thermanilikelihood estimates of

expected frequencies under the S and ME modefsectsely.)

Left eye grade

Right eye grade Best (1) Sec (2) Third (3) Worst (4 Total
Best (1) 2470 126 21 10 2627
(2470.00) (111.00) (15.50) (11.00)
(2470.00) (120.51) (19.25) (8.80)
Sec (2) 96 138 33 5 272
(111.00) (138.00) (37.50) (6.00)
(100.58) (138.00) (31.56) (4.58)

Third (3) 10 42 75 15 142
(15.50) (37.50) (75.00) (15.50)
(11.00) (44.01) (75.00) (14.35)

Worst (4) 12 7 16 92 127
(11.00) (6.00) (15.50) (92.00)
(13.90) (7.70) (16.76) (92.00)

Total 2588 313 145 122 3168

The purpose of this study is (1) to review some ef®d column of the table (i =1,.R;
and decompositions, (2) to give a new decomposidfon symmetry (S) model is defined by:

i =1,...R). The

symmetry and (3) to analyze three sets of visiota da
using the new decomposition. p,=p, (i=1..,R;j=1,..,R

MATERIALSAND METHODS
Bowker (1948). For the vision data, this indicatieat

Reviews of models and decompositions: Consider an the probability that an individual's right eye gea i

RxR square contingency table with the same row andnd left eye grade is j is equal to the probabilitst

column classifications. Let;pdenote the probability his/her right eye grade is j and the left eye giade

that an observation will fall in the ith row anch it The quasi-symmetry (QS) model is defined by:
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P (i) Yamamotoet al. (2007) gave the following theorem:
P; . .
b9 Theorem 2: The S model holds if and only if both the

i i . LDPS and ME models hold.
Caussinus (1965). A special case of this model {ath an models ho

. o . Let for i<j,
= J}is the S model. Although the detail is omittede th
QS model indicates the symmetry of odds ratios with R .
respect to the main diagonal of a table. G, =>>p.andG=>> p
The marginal homogeneity (MH) model is defined =1 &) =il

by:
For the vision data, (1)Jor i<j indicates that the

p.=p, (i=1....R) cumulative probability that an individual's rightye
grade is i or below and his/her left eye grade(isi) or
o o above and (2) fsfor i<j indicates that the cumulative
wherep. =) _p andp, =) p, (Stuart, 1955). For probability that an individual's left eye grade iisor
the vision data, this indicates that the probabiliat an ~ below and his/her right eye grade is j (> i) oraho
individual's right eye grade is i is equal to the  Miyamotoetal. (2004) considered The Cumulative

probability that his/her left eye grade is i (i 5.14). Quasi-Symmetry (CQS) model defined by:
Caussinus (1965) gave the decomposition of the S
model as follows: G, vV , .
s =y (<)

Theorem 1. The S model holds if and only if both the !
QS and MH models hold.

Each of S, QS and MH models indicates the The CQS model is different from the QS model.
structure of symmetry for the probabilities in Swuare ~ Miyamotoet al. (2004) also considered the cumulative
table as the vision data. As a model which indsae  linear diagonals-parameter symmetry (CLDPS) model
structure of asymmetry (instead of symmetry), thedefined by:
linear diagonals-parameter symmetry (LDPS) model is

given as: &:AH (i <j)

ji

' The CLDPS model is different from the LDPS
model. The CLDPS model is a special case of the CQS
model obtained by putting | = A'}. For the vision
data, the CLDPS model indicates that the probgbilit
that an individual’'s right eye grade is i or beland

Agresti (1983). For the vision data, this indicatkat
the probability that an individual’s right eye gead i
and left eye grade is j (> i) i@ times higher than the
bability that his/her right de is j anft ;
probablity That hISIET rght eye grace 1 J st Bye his/her left eye grade is j (> i) or above,AS times

rade is i. If6>1, then the right eye tends to be better, . Y o :
tghan the left eye. A specialgcasg of the LDPS moderlugher than the probability that an individual'$tleye

with 8 =1 is the S model. Also the LDPS model is agrade Is i or below and his/her right eye gradg(isi)

special case of the QS model obtained by putttg-{ ?r:a%a?l\éelégi;i, then the right eye tends to be better
0'}. ) -

Let X and Y denote the row and column variables,theO\r(:;jlrr:.amOto e a. (2011) gave the following
respectively. For the vision data, X is the righee '

grade and Y is the left eye grade. The mean egualit i )
(ME) of X and Y model is given by: Theorem 3: The S model holds if and only if both the

CQS and MH models hold.
E(X) =E(Y) .
A new decomposition of symmetry model: We can
. . obtain a new decomposition of the S model as fatow
where E(X)=3"ip, and E(Y)=) "ip, . For the

vision data, this indicates that the mean of righé  Theorem 4: The S model holds if and only if both the
vision is equal to the mean of left eye vision. CLDPS and ME models hold.
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Proof: If the S model holds, then both the CLDPS and , R& n;
ME models hold. Conversely, assuming that the G" = 222 n log —-
CLDPS and ME models hold and then we shall show )

that the S model holds. We see: . . o .
where m; is the maximum likelihood estimate of;m

E(X):ZR:ip. under the model. The numbers of d_egrees of freedom
e for the S, CLDPS and ME models in Theorem 4 are
R R R(R-1)/2, (R+1)(R-2)/2 and 1, respectively. Notatth
=22 P the number of degrees of freedom for the S model
e equals the sum of those for the CLDPS and ME models
=2 (1-RY)
s=1 RESULTS
—R- R-1 " ,
= Consider the vision data in Table 1-3. We shall
analyze these data using Theorem 4. Table 4 ghes t
where FX = P(X< i). Similarly we see: values of likelihood ratio test statisti¢ 8r each model.
4 Analysis of vision data of women in Table 1. We see
E(Y):R—ZEY from Table 4 that each of QS, LDPS and CLDPS
i= models fits the vision data of women (Table 1) well
however, each of S, MH, CQS and ME models fits
whereE" = P(Y<i). Thus we see: these data poorly.

Since the S model does not hold for these daga, th

R-1 R-1 probability that a woman'’s right eye grade is i dreat

E(Y)-EX) =2 F -2 F left eye grade is j# i) is not equal to the probability

AP that the woman’s right eye grade is j and her gk

=> G~ .Gl grade is i. Namely, a woman'’s right eye grade is no
=1 = symmetric to her left eye grade.

) The maximum likelihood estimates of parameters

From the ME model, we obtain: {A"} under the CLDPS model afe=1.154, A>=1.332

Re1 - andA® =1.537. Since the CLDPS model holds for these
>.Giu=.Gu, data, the probability that a woman'’s right eye gréli
= = or below and her left eye grade is j (>i) or abdse
estimated to bé’™ times higher than the woman’s left
eye grade is i or below and her right eye gradeois
above. SinceA>1, a woman's right eye grade is
estimated to be better than her left eye grade.
ThusA = 1. Namely the S model holds. The proof Since the ME model does not hold for these data,
the mean of women'’s right eye grades is not equal t
the mean of women'’s left eye grades. Using the &amp
Test of goodness-of-fit of model: Let ny denote the proportions{p, =n,/} , we see that the mean of

qbserved fre.q_uency in the (' )th cell of the Reeile women'’s right eye grades is estimated to be 2.2itb a
(i=1..,Rij=1..,R) withn=37>'n and let g the mean of women'’s left eye is estimated to b€%2.3
denote the corresponding expected frequency. AssuniEherefore a woman’s right eye grade is expecteleto
that {n;} have a multinomial distribution. The better than her left eye grade in the sense ofnien.
maximum likelihood estimates of expected frequescie We see from Theorem 4 that the poor fit of the S
{m;} under each model could be obtained, for examplemodel is caused by the influence of the lack afcttrre
using the Newton-Raphson method to the log-of the ME model rather than the CLDPS model.
likelihood equations. Each model can be tested foNamely the fact that a woman’s right eye gradeos n
goodness-of-fit by e.g., the likelihood ratio chjusred  symmetric to her left eye grade is caused by tloe fa
statistic G with the corresponding degrees of freedom that the mean of women’s right eye grades is nafleq
defined by: to the mean of women’s left eye grades.
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From the CLDPS model, we obtain:

G4 =AG

i+l i+, "

is completed.
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Table 4: Values of likelihood ratio chi-squaredtistic G*for models
applied to the data in Table 1, 2 and 3. (*meagsificant at
the 0.05 level)

Models Degrees of freedom Table 1 Table 2 Table 3
S 6 19.25* 16.95* 9.69
Qs 3 7.27 5.71 2.81
MH 3 11.99* 11.18* 6.87
LDPS 5 7.28 6.95 8.22
CQs 3 8.43* 7.27 1.99
CLDPS 5 8.63 7.90 7.81
ME 1 11.98* 9.94* 1.46

Analysis of vision data of students in Table 2: We

. 37-42, 2012

that the pupil’s right eye grade is j and his/hedt eye
grade is i. Namely, a pupil's right eye grade is
symmetric to his/her left eye grade.

Since the CLDPS model fits these data well, we
shall test the hypothesis AF1(i.e., the hypothesis that
the S model holds) under the assumption that the
CLDPS model holds. It can be tested according ¢o th
difference between the likelihood ratio statistié fGr
the S model and that for the CLDPS model. The
difference is 1.88 with 1 degree of freedom. Thenef
we can accept the hypothesis &flin the CLDPS

see from Table 4 that each of QS, LDPS, CQS anthodel, at the 0.05 significant level.

CLDPS models fits the vision data of students (€&}l
well, however, each of S, MH and ME models fitssthe
data poorly.

Since the ME model fits these data well, we shall
also test the hypothesis that the S model holdsitie
assumption that the ME model holds. The difference

Since the S model does not hold for these daga, thbetween the &value for the S model and that for the

probability that a student’s right eye grade isnda
his/her left eye grade is #(i) is not equal to the
probability that the student’s right eye grade iand

his/her left eye grade is i. Namely, a studentgbtieye

grade is not symmetric to his/her left eye grade.

The maximum likelihood estimates of parameters

{A"} under the CLDPS model afe=0.831, A>=0.691

andA® =0.574. Since the CLDPS model holds for these
data, the probability that a student’s right eyadgris i

or below and his/her left eye grade is j (>i) opad is
estimated to b@/™ times higher than the student’s left
eye grade is i or below and his/her right eye griade
or above. Sinca<1, a student’s right eye grade is
estimated to be worse than his/her left eye grade.

ME model is 8.23 with 5 degrees of freedom. Therefo
we can accept the hypothesis that the S model holds
under the ME model at the 0.05 significant lev&s,

for pupils’ vision data, we prefer the S model tole of

the CLDPS and ME models.

Since the ME model fits these data well, the mean
of pupils’ right eye grades is equal to the mean of
pupils’ left eye grades. Under the ME model, the
maximum likelihood estimates of the mean of pupils’
right (left) eye grades is 1.301. This value isslésan
2.5 being the midpoint of categories. Therefore a
pupil’s right (left) eye grade is expected to besel to
Best (1) or Sec. (2), rather than Third (3) or W¢43.

DISCUSSION

Since the ME model does not hold for these data,

the mean of students’ right eye grades is not etpal
the mean of students’ left eye grades. Using thepta
proportions, we see that the mean of studentst egh

Theorems 1, 2, 3 and 4 may be useful for exploring
the reason for the poor fit when the S model fits t
data poorly. Especially, Theorem 4 would be useful

grades is estimated to be 2.631 and the mean ¢fhen we are interested in the asymmetric strucodre
students’ left eye grades is estimated to be 2.60Zumulative probabilities {3}, i # j and the symmetry

Therefore a student’s right eye grade is expeateuokt
worse than his/her left eye grade in the sensehef t
mean.

We see from Theorem 4 that the poor fit of the S

model is caused by the influence of the lack afcitire

of the ME model rather than the CLDPS model.
Namely the fact that a student’s right eye gradeois
symmetric to his/her left eye grade is caused byféiat
that the mean of students’ right eye grades isenosl

to the mean of students’ left eye grades.

Analysis of vision data of pupilsin Table 3: We see
from Table 4 that all models fit the vision datapoiils
(Table 3) well. Since the S model holds for theatad
the probability that a pupil’s right eye grade isnd
his/her left eye grade is# () is equal to the probability
41

structure of marginal means in the square tablthas
vision data.

CONCLUSION

We have given a new decomposition in Theorem 4
and have analyzed three sets of data on unaidathvis
data using Theorem 4. It has been estimated thdoi(1
the vision data of women, the right eye is bettentthe
left eye and the mean of right eye is not equatht®
mean of left eye, (2) for the vision data of studethe
right eye is worse than the left eye and the mefan o
right eye is not equal to the mean of left eye @j)dor
the vision data of pupils, the right eye is symiigetn
the left eye and the mean of right eye is equah&
mean of left eye which is expected to be closéB&st’
or ‘Second’ rather than "Third’ or "Worst'.
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