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ABSTRACT 

Traumatic Spinal Cord Injury (SCI) results in both focal and diffuse spinal cord pathologies that are exacerbated 

by an inflammatory response after the initial injury. Resident and infiltrating immune cells contribute 

significantly to the growth-refractory environment near the lesion and can intensify damage to spared tissue, 

resulting in impaired spontaneous functional recovery. Numerous studies have demonstrated that several 

immunomodulatory therapies administered after experimental SCI may be beneficial in promoting functional 

recovery. In this review, we focus on the therapeutic potential of the most abundant immune-based therapies e.g., 

rolipram, liposomal clodronate and TNF- based therapy including etanercept, thalidomide and adenosine A1 

receptor therapy their contribution to eliminating secondary damage and promoting recovery after SCI. 
 
Keywords: Spinal Cord Injury, Immunomodulatory Therapy, Neuroprotection, Rolipram, Liposomal 
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1. INTRODUCTION 

 Traumatic SCI causes severe and often permanent 

neurological deficits due to the loss of descending motor 

and ascending sensory axonal pathways and subsequent 

demyelination (Bunge et al., 1993). The initial primary 

mechanical insult to the spinal cord includes 

compression, contusion, shearing and laceration and is 

followed by a series of destructive cellular processes, 

known as secondary injury, that accentuate tissue 

damage at and beyond the original site of trauma (Tator 

and Fehlings, 1991; Young, 1993; Schwab and 

Bartholdi, 1996; Sekhon and Fehlings, 2001; Jacobs and 

Fehlings, 2003; Stys, 2004) (Fig. 1).   
 The cascade of secondary injury events is primarily 
mediated by a robust cellular inflammatory response 
(Dusart and Schwab, 1994; Popovich et al., 1997;   
Keane et al., 2006) that involves macrophage and 
microglial activation (Blight, 1992; Popovich et al., 
1999) and chemokine and cytokine production. 
Neutrophils are the first circulating leukocytes to 
infiltrate sites of SCI (~2 h-3 days post-SCI) (Carlson et al., 
1998; Fleming et al., 2006; Kigerl et al., 2006;     

Nguyen et al., 2008; Stirling and Yong, 2008). 
Monocyte-derived macrophages infiltrate~2 days after 
neutrophils and help clear apoptotic neutrophils from the 
lesion (Savill et al., 1989; Stirling and Yong, 2008). This 
custodial function of macrophages may be necessary for 
inducing a subset of functions that include release of 
resolvins and protectins to suppress further neutrophil 
recruitment (Nathan, 2006). Unlike neutrophils, 
macrophages persist in human and mouse SCI lesions as 
long as any study has examined, months in mice and 
years in humans (Popovich et al., 2003; Fleming et al., 
2006; Kigerl et al., 2006; Chang, 2007). The nonspecific 
microbicidal activity of neutrophils and 
monocytes/macrophages can be destructive to host tissue 
after SCI; both cell types release proteases (e.g., matrix 
metalloproteases) and oxidative metabolites that can 
damage cells and compromise the blood-spinal cord 
barrier (Noble et al., 2002; Scholz et al., 2007).  
 Indeed, SCI pathology is reduced and spontaneous 
recovery of neurological function (motor, sensory and 
autonomic) is improved when the activation of blood-
derived leukocytes is restricted (Giulian and Robertson, 
1990; Blight, 1994; Taoka et al., 1997; Popovich et al., 
1999; Gris et al., 2004).  
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Fig. 1.  Acute Spinal Cord Injury (SCI) involves both primary and secondary injuries. Schematic representation of SCI 

pathophysiology consisting of primary and secondary mechanisms of damage. After the initial mechanical insult, a collection 

of vascular, biochemical and cellular events occur that not only initiate a secondary set of injury cascades but also induce 

additional tissue loss and dysfunction that extends beyond the original trauma site 

 

 
  (A) (B) (C) 
 

 
  (D) (E) 

 
Fig. 2. Chemical structures of immune-based therapeutics discussed including: (A)  Rolipram, (B) Liposomal Clodronate, (C) 

Etanercept, (D) Thalidomide and (E) Theophylline 

 
T and B lymphocytes also infiltrate the injured 

mammalian spinal cord, although in fewer numbers and 

at later times post-injury than monocytes (Popovich et al., 

1997; Sroga et al., 2003; Ankeny et al., 2006). The 

functional significance of T and B cells in the injured 

spinal cord remains a point of controversy (Popovich and 

Longbrake, 2008; Ankeny and Popovich, 2009). 

 The spatial extent of secondary injury events spreads 

both radially and longitudinally along the spinal cord in a 

rostral-to-caudal manner. The end result is cavitation of 
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central gray matter along with partial or complete loss of 

adjacent white matter tracts (Tator, 1998; Norenberg et al., 

2004).  Cell death following SCI occurs by necrosis and 

apoptosis. While necrosis predominates immediately 

following the primary traumatic episode, delayed stages 

of subacute spinal cord pathology induce apoptosis 

predominantly of oligodendrocytes and to lesser extent 

neurons (Casha et al., 2001).  Each event within the 

secondary injury represents an important therapeutic 

target for SCI.  By focusing on immune-based therapies, 

injuries including severed and/or demyelinated axons, 

inflammatory cells and proinflammatory cytokines and 

glial scar components. Also, considering the multi-

faceted nature of secondary pathologic events attributed 

to SCI, drug cocktails with diverse modes of 

neuroprotection will likely be useful in preventing or 

limiting secondary injury progression.   
 Numerous studies examining the effects of several 
immunomodulatory drugs, including rolipram, 
thalidomide, liposomal clodronate, IL-10, etanercept, 
interferon-β, immunoglobulin G, minocycline and 
Lipitor support the notion that immunomodulatory 
therapies after experimental SCI may be beneficial in 
promoting functional recovery (Iannotti et al., 2011; 
Beaumont et al., 2009; Koopmans et al., 2009;   
Whitaker et al., 2008; Pannu et al., 2007; Gok et al., 
2007; Genovese et al., 2006; Stirling et al., 2004). 
 The purpose of this review is to focus on the 
therapeutic potential of the most abundant immune-based 
therapies in SCI e.g. rolipram, liposomal clodronate and 
TNF- based therapy including etanercept, thalidomide 
and adenosine A1 receptor therapy (Fig. 2). 

1.1. Phosphodiesterase Inhibitors (Rolipram) 

 The intensity and duration of the inflammatory 
response directly relates to the intracellular concentration 
of cAMP (Bruno et al., 2004), a second messenger that 
controls many cellular processes (Beavo and Brunton, 
2002). Increased intracellular cAMP contributes to 
inhibition of proinflammatory cellular functions such as 
chemotaxis, degranulation, superoxide anion generation, 
release of IL-8 and phagocytosis in neutrophils 
(Ottonello et al., 1995; Rossi et al., 1998; Pryzwansky 
and Madden, 2003; Pearse et al., 2004). Furthermore, 
monocyte adhesion and migration are inhibited by high 
cAMP levels, as are phagocytosis and nitric oxide 
production in macrophages (Rossi et al., 1998; Zhu et al., 
2001; Aronoff et al., 2005). Increased cAMP reduces 
adhesion molecule (CD11b/CD18/L-selectin) expression 
on leukocytes, leukocyte adhesion to other cells and 
disrupts chemokine induced chemotaxis (Harvath et al., 
1991; Derian et al., 1995). 

 Rolipram is a well studied Phosphodiesterase type 4 

(PDE4) inhibitor and has been shown to inhibit 

leukocyte functions, including leukotriene production by 

monocytes and to have anti-inflammatory effects in vivo 

that include inhibition of neutrophil migration   

(Griswold et al., 1993). These findings indirectly 

demonstrate a role for PDE4 in several functions of 

monocytes and neutrophils. Furthermore, the PDE4B 

subtype has been identified in activated microglia of the 

injured spinal cord (Whitaker et al., 2008). Targeted 

inhibition of the PDE4, is a potentially powerful tool 

(Houslay and Adams, 2003) as PDE4 inhibitors suppress 

the production of TNF-, the generation of reactive 

oxides and the migration of neutrophils (Torphy, 1998; 

Giembycz, 2000). Rolipram has been shown to decrease 

the production of TNF-  in homogenates of the injured 

spinal cord and in activated human mononuclear cells 

(Semmler et al., 1993; Pearse et al., 2004). 

 Rolipram delivery in the first 72 h after SCI in rats 

has neuroprotective effects, sparing oligodendrocytes 

from death at 27 h post-injury, an effect that may have 

involved abrogation of local inflammation (Whitaker et al., 

2008). Rolipram has been used also in combination with 

cellular transplant yielding cellular sparing and improved 

motor outcomes (Pearse et al., 2004; Koopmans et al., 

2009; Beaumont et al., 2009; Bretzner et al., 2010). 

Moreover, Iannotti et al. (2011) mentioned the ability of 

rolipram in combination with liposomal-encapsulated 

clodronate to enhance myelinated tissue sparing and 

improve hindlimb functional recovery at 4 weeks post-

injury. Additionally, histological assessment revealed 

substantial axonal sparing and/or sprouting from several 

brainstem motor nuclei and hindlimb motor cortex, a 

significant reduction in lesion volume (51%) and lesion 

area at the injury epicenter (45%) and a significant 

increase in the extent of myelinated tissue sparing 

(Iannotti et al., 2011). Together, these studies suggest a 

neuroprotective effect of the early administration of this 

PDE4 inhibitor.  

 Others have demonstrated the effectiveness of 
rolipram in promoting regeneration after spinal cord 
injury due to its effectiveness in blocking growth cone 
collapse (Nikulina et al., 2004; Pearse et al., 2004). 

Kajana and Goshgarian (2008) shown that rolipram can 
increase phrenic nerve output ipsilateral to an 
experimental C2 hemisection lesion. Additionally, 
intravenous rolipram restored respiratory-related activity 
to the phrenic nerve ipsilateral to the injury and 
significantly enhanced phrenic nerve inspiratory burst 

activity in both normal and C2 hemisected animals. 
These results provided evidence that PDE inhibitors can 
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strengthen spared ineffective synaptic connections at the 
level of the phrenic nucleus and may enhance phrenic nerve 

output and restore respiratory related phrenic nerve function 
after high cervical SCI (Kajana and Goshgarian, 2008).  
 These findings emphasize the usefulness of PDE4 

inhibitors in promoting axonal regeneration following 

experimental SCI, particularly in combination with 

cellular implants (Qiu et al., 2002; Nikulina et al., 2004; 

Pearse et al., 2004; Kajana and Goshgarian, 2008; 

Bretzner et al., 2010) and in exerting neuroprotective 

effects like cellular sparing, myelination, improving 

neurotransmission through the ventrolateral funiculus 

and functional recovery (Pearse et al., 2004; Whitaker et al., 

2008; Beaumont et al., 2009; Iannotti et al., 2011). 

 Rolipram is a “readily-available” drug and its 

clinical efficacy has been assessed in the treatment of 

several disorders including depression, systemic lupus 

erythematosus, rheumatoid arthritis, asthma, chronic 

obstructive pulmonary disease and multiple sclerosis 

(Dyke and Montana, 2002). While recent clinical 

evaluation of rolipram has been hampered by side effects 

of nausea and vomiting, a new generation of PDE4 

inhibitors with a less adverse side effect profile is under 

evaluation (Dastidar et al., 2009; Davis et al., 2009).  

1.2. Macrophage Depletion (Liposome-

Encapsulated Clodronate)  

 The effect of macrophage infiltration in SCI injury 

is highly controversial.  Several studies have reported 

both beneficial and harmful effects of macrophages 

and/or microglia after injury (Prewitt et al., 1997; 

Rapalino et al., 1998; Fitch et al., 1999; Popovich et al., 

1999; Schwartz et al., 1999; Bomstein et al., 2003;     

Yin et al., 2003; McPhail et al., 2004; Horn et al., 2008; 

Iannotti et al., 2011).  Activated microglia and extra-

vasated blood monocytes constitute the majority of 

inflammatory cells present at the site of a SCI (Blight, 

1985; Dusart and Schwab, 1994; Popovich et al., 1996; 

Carlson et al., 1998). Whether these cells act in a 

coordinated fashion to resolve the injury site or whether 

they adopt distinct functional repertoires is unclear. 

However, the contribution and functional status of one 

macrophage subset relative to the other is likely to be 

influenced by several factors including: (i) the nature of 

the primary insult (e.g., transection, infection, blunt 

trauma, ischemia); (ii) interactions with resident and 

infiltrating cells; (iii) distance from the site of the 

injurious stimulus, related to blood–brain barrier damage 

and chemotactic gradients; and (iv) exposure to humoral 

factors or substrates of non-CNS origin (e.g., 

complement protein, peripheral nervous system 

components, or drugs). These variables will affect 

microglial/macrophage activation and whether secondary 

damage or repair occurs (Popovich et al., 1999). 

 After SCI, the onset of repair precedes 

hematogenous macrophage infiltration but not the 

activation of resident microglia. Therefore, interventions 

that alter the kinetics or nature of the inflammatory 

response to trauma might affect later stages of repair, 

including axon regeneration. Since the matrix that forms 

after injury is not sufficient to maintain axonal growth, it 

is possible that infiltrating macrophages antagonize the 

efforts of resident cells to repair the injury site. Fitch and 

Silver (1997) support the concept that the inefficient 

progression of endogenous repair and the formation of an 

axon restrictive growth environment are mediated by 

blood-brain barrier damage, acute infiltration of blood 

monocytes and the accumulation of inhibitory 

extracellular matrix molecules.  Acute macrophage 

depletion limits chondroitin sulfate proteoglycan 

deposition and reduces the phagocytosis-coupled release of 

antibacterial agents (e.g., superoxide, hydrogen peroxide, 

hypochlorous acid), quinolinic acid, or proteolytic enzymes. 

These latter compounds, although innocuous in the 

regenerative tissues of the periphery, could cause inefficient 

repair, progressive necrosis/apoptosis and destruction of 

healthy tissues and neural/glial progenitors within the CNS 

(Popovich et al., 1999). 

 Clodronate is a first-generation bisphosphonate drug 

which, when encapsulated by liposomes, induces the 

selective apoptotic cell death of monocytes and 

phagocytic macrophages (Van Rooijen and Sanders, 

1994; Selander et al., 1996). Horn et al. (2008) show that 

activated macrophages and microglia can induce long-

distance retraction of dystrophic axons both in vitro and 

in vivo after dorsal spinal cord hemisection and that 

macrophage depletion with liposomal clodronate is 

capable of attenuating axonal “die-back” following 

dorsal column lesioning. Moreover, Iannotti et al. (2011) 

reported that an intra-peritoneal  injection of liposomal 

clodronate immediately after injury and on days 1, 3 and 

6 post-injury improved myelinated tissue sparing, 

reduced ED-1+ macrophage infiltration and enhanced 

locomotor recovery.  Additional studies support the 

notion that depletion or neutralization of neutrophils and 

macrophages resulted in reduced lesion volume, 

increased neuronal survival and improved functional 

recovery (Giulian and Robertson, 1990; Blight, 1994; 

Rabchevsky and Streit, 1997; Popovich et al., 1999; Van 

Rooijen and Kesteren-Hendrikx, 2002; Gok et al., 2007; 

Iannotti et al., 2011).  
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 All of these recent studies strongly suggest that the 

activated macrophages infiltrating to the injury site act as 

a regenerative barrier and contradict earlier studies that 

have described the beneficial effects of macrophage 

transplants into the injured spinal cord (Rapalino et al., 

1998; Bomstein et al., 2003). The dual nature of the 

effects of macrophages after SCI is complicated 

(Popovich and Longbrake, 2008) and suggests that the 

best approach for treatment following spinal cord injury 

may be to modify the state of macrophage activation 

rather than deplete the macrophages altogether (Blight, 

1992; Jones et al., 2005; Hohlfeld et al., 2007). 

1.3. TNF- Therapy 

 The pathophysiology of spinal cord injury includes 

an initial mechanical injury that is followed by a cascade 

of secondary degenerative cellular and molecular 

processes.  The secondary damage is initiated by 

considerable disruptions in blood supply, breakdown of 

the blood-spinal cord barrier, a significant release of 

inflammatory mediators, chemokines, cytokines and 

neurotoxins within the area; leading to further tissue 

deterioration (Tyor et al., 2002; Chi et al., 2008; Sharma, 

2011). Amongst the proinflammatory cytokines 

expressed, expression of tumor necrosis factor-alpha 

(TNF-) has been identified as being rapidly upregulated 

at the lesion site after SCI (Wang et al., 1996; Streit et al., 

1998; Bethea et al., 1999; Hayashi et al., 2000; Yan et al., 

2001; Wang et al., 2002; Yune et al., 2003).  

 TNF- influences immunity, inflammation, cell 

proliferation, differentiation and apoptosis and is found 

as either a transmembrane protein or soluble cytokine 

(Bayrakli et al., 2012).  Within the CNS, TNF- is 

generated by astrocytes, microglia and various neuronal 

populations (McCoy and Tansey, 2008; Caminero et al., 

2011).  Binding to either of the two distinct TNF 

receptors, TNFR1 and TNFR2, activates separate 

pathways that either elicits pro-inflammatory or 

apoptotic signaling or pro-inflammatory and survival 

signaling, respectively (Bayrakli et al., 2012).  Both 

stress and injury induce the release of TNF- and 

additional cytokines (Ferguson et al., 2008).   

 Data has shown that TNF- protein levels are 

significantly increased within 1 h post-SCI and decline 

between 8 and 20 h after lesion production (Wang et al., 

1996). Notably, TNF- is released more rapidly when 

compared to other pro-inflammatory cytokines and 

essentially functions to initiate Wallerian degeneration, 

activate Schwann cells and assist with the recruitment of 

macrophage to the injury site (Stoll et al., 2002; Esposito 

and Cuzzocrea, 2011).  Furthermore, it is thought that 

this initial acute phase of TNF- activity at the lesion site 

plays a deleterious role in secondary injury (Wang et al., 

1996; Brewer and Nolan, 2007; Chi et al., 2008).   

 Early studies specifically revealed that TNF- 

enhances the permeability of endothelial cells, damages 

the blood brain barrier, causes apoptosis, activates 

astrocytes, contributes to glial scar formation, initiates 

glutamate mediated cellular death and induces the 

expression of iNOS and NF- B (Selmaj et al., 1990; 

Schobitz et al., 1994; D’Souza et al., 1995; Sipe et al., 

1996; Akassoglou et al., 1998; Bethea et al., 1999;     

Lee et al., 2000; Beattie et al., 2002; Wang et al., 2002; 

Hausmann, 2003; Brewer and Nolan, 2007).  When 

examining tissue damage in chronically injured spinal 

cords, it was noted that TNF- transgenic rats had 

enhanced tissue healing and a persistent baseline level of 

TNF- in comparison to wild-type littermates (Chi et al., 

2008). This chronic data, as well as other studies, suggest 

that TNF- may be destructive in the acute phase of 

injury and beneficial during chronic stages of SCI 

(Bethea et al., 1999; Hausmann, 2003; Brewer and 

Nolan, 2007; Chi et al., 2008).          

 Because TNF- acts as signal to trigger apoptosis in 

the spinal cord following injury, the neutralization of this 

neurodestructive factor at the most optimal time could be 

an essential tool to promote neuroprotection in the cord 

following trauma (Yune et al., 2003; Sharma, 2010).  

Ideally, a therapeutic approach would not only harness 

the benefits of early TNF- inhibition but would also 

take advantage of the potential for contributions to 

functional recovery in chronic SCI conditions by 

maintaining optimal physiological levels.         

1.4. Etanercept 

 Etanercept, a TNF- antagonist, is a genetically 

engineered fusion protein that is comprised of the 

extracellular ligand-binding portion of TNFR2 fused 

to a portion of human IgG1 and functions as a decoy 

receptor that competitively binds TNF- and TNF- 

(Genovese et al., 2006; Kato et al., 2010; Caminero et al., 

2011; Bayrakli et al., 2012).  Overall, the primary 

therapeutic objective of TNF antagonist administration is to 

reduce excessive TNF from circulation and inflammation 

sites (Genovese et al., 2006).  Because etanercept functions 

in vivo as a selective antagonist of TNF, it has been utilized 

as a treatment option for several inflammatory conditions, 

traumatic brain injury and neurodegenerative diseases.  

 The functional significance of etanercept therapy 

post-SCI has been specifically addressed in several 
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studies and has revealed remarkable results.  An early 

immunohistochemical and motor study reported that 

experimental animals treated with etanercept had 

reduced TNF- expression, cell apoptosis, neutrophil 

infiltration and spinal cord damage and improved motor 

function (Genovese et al., 2006).  Another investigation 

examining the outcomes of immediate etanercept therapy 

after a peripheral nerve injury revealed that experimental 

groups had a significant enhancement in axonal 

regeneration when compared to vehicle treated animals 

(Kato et al., 2010).  A recent study examined the 

potential suppression of neuronal and oligodendroglial 

apoptosis by giving etanercept 1 h after thoracic SCI in 

rats.  Data indicate that treated animals had reduced 

tissue damage associated with SCI, improved hindlimb 

locomotor function and myelin regeneration (Chen et al., 

2011). The neuroelectrophysical effectiveness of 

entanercept was investigated under partial SCI 

conditions and results illustrated that the treated groups 

of animals had significant clinical and 

electrophysiological recovery that was not seen in 

controls (Bayrakli et al., 2012).  Lastly, it was postulated 

that the significant motor recovery demonstrated in a 

patient suffering from an initial T7 complete 

paraplegia, who by chance received etanercept prior to 

the accident, was possible because of the considerable 

reduction in post-traumatic spinal cord inflammation 

(Dinomais et al., 2009; Tobinick, 2010).       

 Together, data from these studies strongly imply that 

etanercept treatment significantly lessens the degree of 

inflammation and tissue damage associated with SCI by 

directly reducing the expression of TNF- and TNFR 

during the acute phase of injury. Future studies 

examining the outcomes of etanercept administration on 

motor recovery, regeneration and plasticity are essential 

to not only determine the optimal treatment window but 

to also take advantage of a promising therapy. 

1.5. Thalidomide 

 An alternative pharmacological strategy utilized in 

the reduction of secondary tissue damage after SCI is to 

administer the glutamic acid derivative thalidomide.  

Thalidomide is a psychoactive drug that easily crosses 

the blood brain barrier and elicits an inhibitory effect on 

TNF- in vitro and in vivo studies (Corral et al., 1999). 

Because it induces anti-inflammatory and 

immunomodulatory effects, thalidomide has recently 

been considered as a potential therapeutic in SCI and 

other diseases (Tseng et al., 1996; Esposito and 

Cuzzocrea, 2011).     

 In a mouse model of SCI, experimental animals 

treated with thalidomide had a significant decrease in the 

development of inflammation and secondary tissue 

damage (Genovese et al., 2008; Esposito and Cuzzocrea, 

2011).  Another study evaluated the effects of thalidomide 

on spinal cord ischemia and found that in experimental 

animals, treatment applied before ischemic insult reduced 

TNF- levels and early phase ischemia/reperfusion injury 

of the spinal cord in rabbits (Lee et al., 2007).  Lastly, by 

combining thalidomide with rolipram researches were able 

to demonstrate a significant attenuation of TNF-, 

enhanced sparing of white matter and improved motor 

function (Koopmans et al., 2009).   

 The overall decrease in secondary tissue degeneration 

suggests that utilizing a combinatorial therapy to reduce 

inflammation via different mechanisms compliment one 

another to elicit optimal results and may further improve 

functional output.  Despite the modifications to TNF- 

expression levels and secondary damage induced after SCI, 

additional studies examining the effectiveness and safety of 

thalidomide needs to be conducted. 

1.6. Adenosine A1 Therapy 

 Following CNS trauma, a variety of inhibitory 

substances like adenosine and GABA are released; 

determining their exact contribution or prevention to 

secondary damage is of principal importance 

(Hagberg et al., 1987; Fern et al., 1994).  In order to 

initiate downstream physiological events, adenosine 

must binds to one of its specific receptors, which are 

classified as A1, A2, A3 and A4 (Nantwi and 

Goshgarian, 2002).  Adenosine is recognized as eliciting 

a tonic inhibitory effect on neuronal excitability 

(Gundlfinger et al., 2007) and by acting through its G-

protein coupled receptors can either inhibit (A1 and A3) 

or promote (A2a and A2b) cAMP synthesis (Dunwiddie 

and Masino, 2001; Kajana and Goshgarian, 2008).  

Specifically, activation of the A1 receptor elicits typical 

Gi/o mediated signaling events as well as 

proinflammatory effects on adhesion, migration and 

phagocytosis of neutrophils and monocytes/macrophages 

(Sawynok and Liu, 2003). 
 Early investigations sought to determine if 
adenosine release post-SCI offered a level of 
neuroprotection.  By examining the concentrations of 
both adenosine and neurotoxic amino acids, data 
indicated that the release of endogenous adenosine was 
advantageous to minimizing tissue degeneration 
(McAdoo et al., 2000).  While this study confirmed the idea 
that an increase in adenosine offered no neuroprotection, 
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future investigations focused on the physiological outcome 
of adenosine antagonism after SCI.    
 The specific adenosine A1 and A2 receptor 

antagonist, theophylline, has been shown to 

pharmacologically induce plasticity by restoring 

respiratory muscle function following a spinal cord C2 

hemisection (Nantwi et al., 1996; Nantwi and 

Goshgarian, 1998).  In a multitude of species, adenosine 

receptors are localized to carotid bodies and modulate 

(depress) respiratory activity (McQueen and Ribeiro, 

1983; Watt et al., 1987; Nikodijevic et al., 1991; James 

and Nantwi, 2006).  That being said, application of an 

A1 receptor agonist has been shown to depress 

respiration (Eldridge et al., 1985; Wesberg et al., 1985), 

whereas inhibition of adenosine receptors is the 

foundation of the clinical aspect of theophylline 

treatment for respiratory deficiency (Richmond, 1949; 

Thithapandha et al., 1972; Nantwi and Goshgarian, 

2002). Continuing with the C2 hemisection injury model, 

chronic theophylline treatment was found to elicit results 

that were similar to acute administration of the 

therapeutic and suggest that continuous use may not be 

optimal (Nantwi et al., 2003).  

 Taken together, these results suggest that obtaining a 

more thorough understanding of the molecular basis of 

the theophylline mediated recovery of respiratory 

function post-SCI would most likely guide the 

development of a comprehensive treatment strategy.  

While protective and destructive immunity response 

theories following SCI might appear contradictory, it is 

possible that both are partially correct.  Specifically, 

some aspects of autoimmunity are beneficial and some 

are injurious. The ability to disable certain aspects of the 

immune function while keeping others intact is necessary 

to solve the complex functions of the immune system 

following neurotrauma. As new pharmacological tools 

are developed, the ability to examine these functions will 

improve. Moreover, the effects of combinational therapy 

will be pivotal to increase the ability to effectively 

modulate the immune system and maximize the 

regenerative potential of the CNS. For example, recent 

data has shown that immunomediators were capable of 

controlling the migration, proliferation, quiescence, cell-

fate choices and survival of neural stem cells and their 

progeny and may significantly contribute to the success 

of other therapeutic treatment strategies post-SCI 

(Gonzalez-Perez et al., 2012).  

2. CONCLUSION 

 Spinal cord injury is first induced by a mechanical 

insult supporting secondary biochemical and 

physiological damage that ultimately promotes 

permanent loss of sensory and motor function 

(Pajoohesh-Ganji and Byrnes, 2011).  The secondary 

damage initiates a series of degenerative events that 

results in further tissue destruction, massive cellular 

death, disrupted vasculature, increased permeability of 

the blood-spinal cord barrier, axonal demyelination, 

glial scar formation and neuroinflammation (Fehlings 

and Nguyen, 2010; Pajoohesh-Ganji and Byrnes, 

2011; Jaerve and Muller, 2012). Because the 

secondary damage is so widespread, the prevention or 

a reduction in one or several of these secondary events 

post-SCI could potentially initiate spinal cord tissue 

repair and promote the overall improvement in 

functional outcomes.  

 
Table 1. Comprehensive description of each pharmacological agent that includes the molecular formula, class of drug, mode of 

activity and downstream targets 

Agent Molecular formula Drug class Target Mode of action 

Rolipram C16H21NO3 PDE-4 inhinitor PDE-4 cAMP cAMP Accumulation 

   phosphodiesterase 

Clodronate CH4Cl2O6P2 Bisphosphonate Macrophage Apoptoses induction;  

   and microglia elimination of  

    macrophage 

Etanercept Recombinant dimmer of Tumor necrosis TNF- binds to TNF- and TNF  

 human TNF-R proteins factor blocker 

 bound to human IgG1 

Thalidomide C13H10N2O4 Sedative TNF- Anti-inflammatory;  

    Immunomodulatory; 

    anti-angiogenic 

Theophylline C7H8N4O2 Methylxanthine Adenosine A1 and  

   A2 Receports PDE inhibitor 
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 Indeed, focusing on any one of the cellular 

inflammatory responses as a therapy for SCI is of high 

importance.  Extracellular molecules like cyto- and 

chemokines can be readily targeted by biological agents 

that demonstrate a high degree of specificity (Esposito 

and Cuzzocrea, 2011).  For example, rolipram has been 

shown to prevent the reduction in cAMP levels after 

acute CNS injury as well as promote tissue protection, 

repair and functional recovery (Pearse et al., 2004; 

Atkins et al., 2006; Schaal et al., 2012).  Additionally, a 

recent study described the benefits of utilizing a drug-

eluting microfibrous patch as means to deliver rolipram 

into the injured spinal cord and data indicated significant 

improvements in both functional and anatomical 

recovery (Downing et al., 2012).  Clodronate has been 

shown to induce macrophage apoptosis (Monkkonen et al., 

1994) and microglia elimination (Kumamaru et al., 

2012) in vitro but the overall necessity of completely 

eradicating each is controversial at best.  Focusing on the 

utilization of a TNF- therapy that neutralizes injury-

induced apoptosis and inflammation may be one of the 

most crucial tools to promote neuroprotection in the cord 

following trauma (Yune et al., 2003; Sharma, 2010).  

Lastly, functional support has been addressed by treating 

SCI patients suffering from bradychardia with 

theophylline (Schulz-Stubner, 2005).              

 While the above pharmacological agents offer 

various levels of neuroprotection (Table 1), there are 

disadvantages associated with each therapy. Therefore, it 

is becoming increasingly clear that a prudent process for 

therapy design is not only required but that establishing 

the line between elimination and reduction of secondary 

molecules is critical.  Ideally, this will involve 

thoroughly investigating and harnessing the benefits of 

combinatorial therapies, optimization of the dosage and 

delivery mode and establishment of the best therapeutic 

window so that clinical feasibility can be examined 

(Rabchevsky et al., 2011; Schaal et al., 2012). 
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