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Abstract: Problem statement: The visual analysis of Electroencephalogram (EEG) activity has 
shown useful as a complementary tool in Alzheimer Disease (AD diagnosis) when the diagnosis 
remains uncertain, in addition to be used in some clinical protocols. However, this analysis is subject to 
the inherent equipment imprecision, biological artifact, electrical records, and subjective physician 
interpretation of the visual analysis variation. The Artificial Neural Network (ANN) could be a helpful tool, 
appropriate to address problems such as prediction and pattern recognition. Approach: In this study, it was 
used a new class of ANN, namely the Paraconsistent Artificial Neural Network (PANN), which is capable 
of handling uncertain, inconsistent, and paracomplete information, for recognizing predetermined patterns 
of EEG activity and to assess its value as a possible complementary method for AD diagnosis. Thirty 
three AD patients and thirty four controls patients of EEG records were obtained during relaxed 
wakefulness. It was considered as normal patient pattern, the background EEG activity between 8.0 
Hz and 12.0 Hz (with an average frequency of 10.0 Hz), allowing a range of 0.5 Hz. Results: The 
PANN was able to recognize waves that belonging to their respective bands of clinical use (theta, 
delta, alpha, and beta), leading to an agreement with the clinical diagnosis at 80% of sensitivity and 
at 73% of specificity. Conclusion: Supported by results, the PANN could be a promising tool to 
manipulate EEG analysis, bearing in mind the following considerations: the growing interest of 
specialists in EEG visual analysis and the ability of the PANN to deal in directly imprecise, 
inconsistent and paracomplete data, providing an interesting quantitative and qualitative analysis. 
 
Key words: Electroencephalogram, alzheimer’s disease, pattern recognition, artificial neural 
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visual analysis, paracomplete data, qualitative analysis 
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INTRODUCTION 
 
 Several studies on behavioral and cognitive 
neurology have been conducted to characterize 
dementias through biological and functional markers, 
for instance, the Electro Encephalo Graphic (EEG) 
activity, aimed at understanding the evolution of 
Alzheimer Disease (AD), following its progression, as 
well as leading toward better diagnostic criteria for early 
detection of cognitive impairment (Machado et al., 2010; 
Duffy et al., 2011). At present, there is no method able to 
determine a definitive diagnosis of dementia, where a 
combination of tests would be necessary to obtain a 
probable diagnosis.  
 The EEG activity is a record of brain’s electrical 
activity, providing a space-time representation of 
synchronic postsynaptic potentials. The main 
generating sources of these electrical fields are most 
likely perpendicular in relation to the cortical surface, 
such as in the cortical pyramidal neurons. With regard 
to EEG visual analysis, several studies have shown that 
it is useful in aiding AD diagnosis, being indicated in 
some clinical protocols. During the relaxed awake state, 
normal EEG in adults is predominantly composed by 
the alpha band frequency, which is generated by 
interactions of the slum-cortical and thalamocortical 
systems. Incidentally, the most common finding in EEG 
visual analysis is the slowing of the brain electrical 
activity compounds regarding delta and theta rhythms, 
and the decreasing or absence of the alpha rhythm. 
However, these findings are more common in moderate 
and advanced stages of AD. 
 Most of the theories and techniques available for 
the analysis of quantitative EEG are based on classical 
logic (Puri and Li, 2010) and, therefore, have inherent 
limitations to this logic. Although several theories have 
been developed in order to overcome these limitations, 
e.g. fuzzy set theory, Rough theory, non-monotonic 
reasoning, among others, cannot deal with 
inconsistencies and paracompleteness, at least directely. 
Thus, it is needed a new kind of logic to deal with 
uncertain, inconsistent and paracomplete data (Silva 
Filho et al., 2010). 
 The Artificial Neural Network (ANN) can be 
described as a computational system consisting of a set 
of highly interconnected processing elements, called 
artificial neurons, which process information in response 
to external stimuli. An artificial neuron is a simplistic 
representation that emulates the signal integration and the 
behavior of the firing threshold of biological neurons by 
means of mathematical structures. Artificial neurons, like 

their biological counterparts, are bound together by 
connections that determine the information flow among 
neurons. Stimuli are transmitted from the processing 
element to another one via synapses or interconnections, 
which can be excitatory or inhibitory. Neural networks 
have an advantage over conventional programming 
because they lie in their ability to solve problems that do 
not have an algorithmic solution or where the available 
solution is too complex to be found (Syan and 
Harnarinesingh, 2010). Thus, neural networks are well 
suited to tackle problems that people are good at solving, 
such as prediction and pattern recognition. Moreover, 
ANNs have been applied within the medical domain for 
clinical diagnosis, imaging analysis and interpretation, 
signal analysis and interpretation (Karait et al., 2009; 
Syan and Harnarinesingh, 2010), and drug development. 
Therefore, ANN constitutes an interesting tool for EEG 
qualitative analysis. On the other hand, in EEG analysis 
we are faced with imprecise, inconsistent and 
paracomplete data. In order to manipulate this 
information directly, recently, some interesting theories 
have been proposed: fuzzy sets and rough sets for 
example. 
 In this study, we employed a particular kind of 
ANN based on Paraconsistent Annotated Evidential 
Logic Eτ (Abe and Nakamatsu, 2009), which is capable 
of manipulating imprecise, inconsistent and 
paracomplete data in order to make a first study of the 
recognition of EEG standards with the aim of using it in 
AD diagnosis. In the methodology section, we will 
present this new artificial neural network, the 
Paraconsistent Artificial Neural Networks (PANN) 
(Silva Filho et al., 2010). 
 In this study we aim to continue our previous 
studies (Abe et al., 2011; Lopes et al., 2009), in order to 
improve the performance of PANN on the classification of 
patients with AD likely, using as criterion for classifying 
the slowing of brain activity based on the patients. 
 

MATERIALS AND METHODS 
 
 The atomic formulas of the logic Eτ are of the type 
p (µ, λ ), where (µ, λ) ∈[0, 1]2 and [0, 1] is the real unitary 
interval (p denotes a propositional variable). P (µ, λ) can 
be intuitively read: “It is assumed that p’s favorable 
evidence is µ and contrary evidence is λ Thus: 
 
• p(1.0, 0.0) can be read as a true proposition 
• p(0.0, 1.0) can be read as a false propositio 
• p(1.0, 1.0) can be read as an inconsistent 

proposition 
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• p(0.0, 0.0) can be read as a paracomplete 
(unknown) proposition 

• p(0.5, 0.5) can be read as an indefinite proposition 
 
 We introduce the following concepts (Abe and 
Nakamatsu, 2009) (all considerations are taken with 0≤ 
µ, λ≤1:  
 
• Uncertainty degree (Eq. 1)  
• Certainty degree (Eq. 2) 
• Complementation (Eq. 3) 
 
Gun(µ, λ) = µ + λ -1 (1) 
 
Gce(µ, λ) = µ - λ (2) 
 
Xc(y) = 1 – Y  (3) 
 
 An order relation is defined on [0, 1]2: (µ1, λ1) ≤ 
(µ2, λ2) ⇔ µ1 ≤ µ2 and λ2 ≤ λ1 constituting a lattice that 
will be symbolized by τ. 
 With the uncertainty and certainty degrees we can 
achieve the following 12 output states (Fig. 1): Extreme 
states that are, false, true, inconsistent and 
paracomplete, and non-extreme states (Table 1). 
 Some additional control values are: 
 
• Vcic = maximum value of uncertainty control = Ftct 
• Vcve = maximum value of certainty control = Ftce 
• Vcpa = minimum value of uncertainty control = –

Ftct 
• Vcfa = minimum value of certainty control = –Ftce 
 
 For the discussion in the present paragraph we 
have used: Ftct = Ftce= 0.5. 
 In the PANN the main aim is to ascertain how to 
determine the certainty degree concerning a 
proposition, i.e., if it is false or true. To this end, we 
take into account the certainty degree Gce. The 
uncertainty degree Gun indicates the ‘measure’ of the 
inconsistency or par completeness. If the certainty 
degree is low or the uncertainty degree is high, it 
generates an in definition. 
 Using the concepts of basic Para consistent 
Artificial Neural Cell (PANC-Fig. 2), we can obtain the 
family of PANC considered in this study, as described 
in Table 2. 
 We analyzed 67 EEGs records, 34 normal’s and 33 
probable AD (Table 3), during the awake state at rest 
(i.e., eyes closed). We used electrodes placed according 
to the 10-20 international system and an EEG 32 
channels EMSA device, with 200Hz sample frequency. 

 
 
Fig. 1: The figure displays the output regions of the 

lattice, constituting the decision-making of the 
inputs. In this lattice we have 12 output states: 
extreme and non-extreme states. Table 1 for 
symbology. C1 = Vcve = truth control value; C2 = 
Vcfa = falsity control value; C3 = Vcic = 
inconsistency control value; C4 = Vcpa = 
paracompleteness control value 

 

 
 
Fig. 2: Basic cell of PANN. µ = input of favorable 

evidence; λ = input of contrary evidence; T = 
inconsistent; ⊥ = paracomplete; V = true; F = 
false; Vcve = truth control value; Vcfa = falsity 
control value; Vcic = inconsistency control 
value; Vcpa = paracompleteness control value; 
S2a = output with uncertainty degree Gun; S2b 

= output with certainty degree Gce; S1 = 
output with true (V), false (F) or indefinite 
constant (I) 
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Table 1: Extreme and Non-extreme states 
Extreme states Symbol Non-extreme states Symbol 

True   V Quasi-true tending to inconsistent QV→T 
False  F Quasi-true tending to paracomplete QV→⊥ 
Inconsistent T Quasi-false tending to inconsistent QF→T 
Paracomplete ⊥ Quasi-false tending to paracomplete QF→⊥ 
   Quasi-inconsistent tending to true QT→V 
   Quasi-inconsistent tending to false QT→F 
   Quasi-paracomplete tending to true Q⊥→V 
   Quasi-paracomplete tending to false Q⊥→F 

 
Table 2: Paraconsistent artificial neural cells 
PANC Inputs Calculations Output 

Analytic connection-PANCac µ, λ, Ftct,, Ftce λc = Xc(λ) (Eq. 3)  If |Gce| > Ftce then S1 = µr and S2 = 0;  
  Gun (Eq. 1) If |Gun| > Ftct and |Gun| > | Gce| then 
  Gce (Eq. 2) S1= µr and S2 = |Gun|, 
  µr = (Gce + 1)/2 if not S1 = ½ and S2 = 0 
Maximization-PANCmax µ, λ None If µ > λ, then S1 = µ, if not S1 = λ 
Minimization-PANCmin µ, λ None If µ < λ, then S1 = µ, if not S1 = λ 

 
Table 3: Group of individuals selected for the study (p = 0.8496) 
  Normal individuals Probable AD individuals 
 control group AD group 
Male 8.00 6.00 
Female 26.00 27.00 
Mean 61.38 68.00 
Schooling 8.12 6.21 
MEEM 24.53 20.58 
 
 The data acquisition is obtained from magnetic 
archives (suitable software for physical capture of the 
signals) or manually (archives TXT-American National 
Standard Code for Information Interchange). As the 
actual EEG examination values can vary highly, in 
module, something like 10/1500 µV, we precede a 
normalization of the values between 100 and 100 µV by 
a simple linear conversion (Eq. 4), to facilitate the 
manipulation and to visualize in the screen: 
 

100.a
x

m
 =  
 

 (4) 

 
Where: 
m = Maximum value of the exam  
a = Current value of the exam  
x = Current normalized value 
 
 It is worth to observe that the process above does 
not allow the loss of any wave essential characteristics 
for our analysis. 
 
Elimination of negative cycle: The minimum value of 
the exam is taken as zero value and the remaining 
values are translated proportionally.  
 
Data analysis, expert system, and wave morphology: 
In analyzing EEG signals, one important aspect to take 

into account is the morphological aspect. To perform 
this task, it is valuable to build a very simple Expert 
System, which allows “abnormalities” to be verified, 
such as spikes and artifacts. Also, it analyses the signal 
behavior, verifying which band it belongs to (delta, 
theta, alpha and beta). 
 
Morphological analysis: A control database is 
composed by waves presenting 256 positions with 
perfect sinusoidal morphology, with 0.5 Hz of variance, 
so taking into account Delta, Theta, Alpha and Beta (of 
0.5-30.0 Hz) wave groups. 
 The process of morphological analysis of a wave is 
performed by comparing with a certain set of wave 
patterns (stored in the control database). A wave is 
associated with a vector (finite sequence of natural 
numbers) through digital sampling. This vector 
characterizes a wave pattern and is registered by 
PANN. Thus, new waves are compared, allowing their 
recognition or otherwise.  
 For the sake of completeness, we show some basic 
aspects of how PANN operates. Let us take three 
vectors (Fig. 3): V1 = (8, 5, 4, 6, 1); V2 = (8, 6, 4, 6, 5); 
V3 = (8, 2, 4, 6, 9), where V1 is the analyzed wave, V2 
and V3 are waves previously stored in the control 
database. The favorable evidence is calculated as 
follows: given a pair of vectors, we take ‘1’ for equal 
elements and ‘0’ for different elements, and calculate 
their percentage. 
 
• Comparing V2 with V1: 1+0+1+1+0 = 3; in 

percentage: (3/5)*100 = 60%  
• Comparing V3 with V1: 1+0+1+1+0 = 3; in 

percentage: (3/5)*100 = 60%  



Am. J. Neuroscience 2 (1): 17-27, 2011 
 

21 

 
 
Fig. 3: Comparison of the vectors. Taking as basis the 

vector V1, visually we can observe that vector 
V2 is ‘more similar’ to V1 than V3. We use a 
PANN to recognize this technical system 

 
 The contrary evidence is the weighted addition of 
the differences between the different elements, in 
module (Eq. 5):  
 
• Comparing V2 with V1 = 0+1/10+0+0+4/10 = 

(5/10)/5 = 10%  
• Comparing V3 with V1 = 0+3/10+0+0+8/10 = 

(11/10)/5 = 22%  
 

n
j j

j 1

x y

a
Ce

n

=

 −
 
 
 =

∑
 (5) 

 
Where: 
n = Total of elements  
a = Maximum amplitute 
j = Actual element  
Ce = Contrary evidence 
 
 Therefore, we can say that V2 is ‘more similar’ to 
V1 than V3. We use a PANN to recognize this 
technical system. 
 Following this process, PANN was applied 
successfully in some studies, e.g., speech recognition 
(Silva Filho et al., 2010).  
 When the methodology is used in vectors with a huge 
number of positions, as it is the case of EEG signals, it can 
present low variance in the favorable evidence. 
 To avoid this, we introduce other characteristic 
factor of comparison, the number of peaks of the wave 
(Eq. 6). In this process, instead we consider as 
favorable evidence the equality between wave points, 
we substitute them for the similarity among the peaks 
of the analyzed waves: 
 

( )
( )
bd vt

Fe 1
bd vt

 −
= −  

 + 
 (6) 

Where: 
Vt = Number of wave peaks of the exam 
Bd = Number of the wave peaks being compared 

(pattern stored in the database)  
Fe = Favorable evidence 
 
 Each peak is a 1 Hz morphological approximation; 
so a wave with 8 peaks is classified as 8 Hz wave 
(Alpha band). 
 At the end of the process, the values of contrary 
evidence and evidence favorable are submitted to the 
lattice of decision making. If the coordinated fall on the 
true region, it is similar to the wave, otherwise as not 
similar. Therefore, the wave to get more favorable 
evidence and less contrary evidence will be selected as 
the most similar wave. Thus, with this improvement we 
can detect differences among waves more sharply 
allowing verifying different kinds of interference 
waveforms (artifacts) and spikes. 
 In this process, other interesting information can 
be obtained, the waves’ approximate frequency. As the 
control waves of normality pattern were stored in the 
database in a systematic way, in other words, with 
waves with prefixed frequency, then, we know the 
frequency of each wave. Therefore, when we found the 
most similar wave to the one that is being analyzed, we 
also found its frequency. The most amazing advantage 
of this method of analysis is the low processing, thus it 
allows using relatively simpler mathematical techniques 
in comparison with the techniques used nowadays (such 
as fast Fourier transform). 
 
Data analysis-expert system for detecting the 
diminishing average frequency level: An expert 
system verifies the average frequency level of Alpha 
waves and compares them with a fixed external one 
(external parameter wave). 
 Such external parameter can be, for instance, the 
average frequency of a population or the average 
frequency of the last exam of the patient. This system 
also generates two outputs: favorable evidence µ 
(normalized values ranging from 0 (corresponds to 
100%-or greater frequency loss) to 1 (which 
corresponds to 0% of frequency loss) and contrary 
evidence λ = Xc(µ) (Eq. 3). 
 The average frequency of population pattern used 
in this study is 10 Hz (Carthery-Goulart et al., 2009). 
 
Data analysis-expert system for high frequency band 
concentration: This expert system is utilized for Alpha 
band concentration in the exam. For this, we consider 
the quotient of the sum of fast Alpha and Beta waves 
over slow Delta and Theta waves (Eq. 7). This expert 
system generates two outputs: 
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• Favorable evidence µ (Eq. 7) 
• Contrary evidence λ = Xc(µ) (Eq. 3) 

 

( )
( )
A B

D T

 +
µ =   + 

 (7) 

 
Where: 
A = Alpha band concentration  
B = Beta band concentration  
D = Delta band concentration  
T = Theta band concentration 
µ  = Value resulting from the calculation 
 
Data analysis-expert system for low frequency band 
concentration: This expert system is utilized for Delta 
band concentration in the exam. For this, we consider 
the quotient of the sum of slow Delta and Theta waves 
over fast Alpha and Beta waves (Eq. 8). This expert 
system generates two outputs: 
 
• Favorable evidence µ (Eq. 8). 
• Contrary evidence λ = Xc(µ) (Eq. 3) 
 

( )
( )
D T

A B

 +
µ =   + 

 (8) 

 
Where: 
A = Alpha band concentration 
B = Beta band concentration 
D = Delta band concentration 
T = Theta band concentration 
µ  = Value resulting from the calculation 
 
Data analysis-decision making: When we analyze 
information from sources, we may encounter 
contradictory, fuzzy or para complete data. However, a 
decision can still be reached. For instance, assuming we 
have   three  items  of  information  PA, PB, and PC, 
which PA and PB are being analyzed. Thus, if we 
cannot decide with this expert information, we take the 
third PC into account in the following way. 
 The first layer is composed of three analytical 
PANC connections: C1, C2, and C3 whose signals are 
analyzed by means of the Basic Structural Equation-
BSE (Eq. 9), resulting in the output signals SA, SB and 
SC (Fig. 4):  
 

( )( )- 1- 1
S

2

 µ λ +
=  
 
 

  (9) 

 
 
Fig. 4: Lattice of morphological analysis. Ce is the 

contrary evidence; Fe is the favorable 
evidence; F is logic state False; V is logic state 
True 

 

 
 
Fig. 5: Lattice of PANN analisys. Ce is the contrary 

evidence; Fe is the favorable evidence; F is 
logic state False; V is logic state True. Area 1: 
State logical False (AD likely below average 
population), 2: State logical Near-real (AD 
likely than average population); Area 3: State-
Almost logical false (Normal below average 
population); Area 4: State logical True 
(Normal above average population); Area 5: 
logical state of uncertainty (not used in the 
study area) 

 
 In the internal layers, the cells C4 and C6 
constitute the Maximization Neural Unit (it takes the 
maximum value SG among output values SA, SB and 
SC) and the cells C5 and C7, the Minimization Neural 
Unit (which takes the minimum value SE among output 
values SA, SB, and SC). 
 To define an interpretation of the analysis is used 
the resultant value (µr) and complements, because this 
generates a complemented resultant value (λr). This 
way, we acquire resultant favorable evidence (µr) and 
resultant contrary evidence (λr), which are submitted to 
the lattice of decision making (Fig. 5). 
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Fig. 6: A decision-making architecture for global analysis. Three expert systems operate: PA, for detecting the diminishing 

average frequency level; PB, for Alpha band concentration, and PC, for Theta band concentration 
 
Where: 
PANC A = Para consistent artificial neural cell of 

analytic connection 
PANCLsMax = Para consistent artificial neural cell of 

simple logic connection of 
maximization 

PANCLsMin = Para consistent artificial neural cell of 
simple logic connection of 
minimization 

Ftce = Certainty tolerance factor 
Ftct = Contradiction tolerance factor 
Sa = Output of C1 cell 
Sb = Output of C2 cell 
Sc = Output of C3 cell 

Sd = Output of C4 cell 
Se = Output of C5 cell 
Sf = Output of C6 cell 
Sg = Output of C7 cell 
C = Complemented value of input 
µr = Value of output of PANN 
 

RESULTS 
 
 The Table 4 and 5 show details of each 
examination analyzed. The proposed method obtained 
a sensitivity of 80% and a specificity of 73%, as 
shown in Table 6. Figure 8 shows the distribution of 
lattice results in decision-making.  
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Table 4: Test with normal patients. FE = Favorable Evidence; CE = Contrary Evidence; Diagnosis - 1 = Normal individual 2 = Probable AD 
patient; Delta, Theta, Alpha, and Beta = quantity of waves; Mean = Mean of quantity of waves 

Exam Patient Delta Theta Alpha Beta Mean FE CE Diagnosis 
7601 JS 7 152 111 0 6.91840 0.4813 0.1404 1 
7701 RKG 0 100 215 24 8.47500 0.4813 0.0712 2 
5401 EC 4 157 108 12 7.02500 0.4959 0.1377 2 
7801 JIS 1 91 209 39 8.50000 0.5191 0.0603 1 
6501 LANG 4 86 222 25 8.42500 0.5207 0.0548 1 
7101 JTBT 0 89 243 12 8.60000 0.5419 0.0594 1 
7201 OTWNV 0 74 249 13 8.40000 0.5896 0.0301 1 
1202 RA 6 44 194 164 10.20000 0.8162 0.0613 1 
2102 DYT 7 66 101 579 18.82500 0.8546 0.0485 1 
1802 DO 0 32 269 105 10.15000 0.8818 0.0394 1 
6101 EFRC 0 31 261 106 10.19860 0.8832 0.0389 2 
1902 ILM 3 26 242 136 10.48420 0.8931 0.0356 1 
3001 AB 10 27 40 584 16.52500 0.9580 0.0280 2 
1605 DO 0 21 308 88 10.42500 0.9622 0.0252 1 
1303 DO 2 12 308 74 10.16440 0.9735 0.0177 1 
2202 GM 0 39 93 1064 29.90000 0.9755 0.0163 2 
2001 LBA 2 19 82 508 17.07500 0.9769 0.0154 1 
5901 DG 0 13 181 258 11.88330 0.9784 0.0144 1 
1103 DO 0 12 259 150 10.81310 0.9786 0.0143 1 
2401 NAG 2 7 285 108 10.07500 0.9833 0.0112 1 
1004 ON 0 14 102 562 16.95000 0.9845 0.0103 1 
2302 GAA 0 11 168 429 16.31000 0.9864 0.0090 1 
1404 RA 0 7 316 78 10.02500 0.9869 0.0087 1 
2901 LFM 2 15 87 923 26.70260 0.9876 0.0083 1 
2701 AEJO 2 12 99 995 29.94440 0.9905 0.0063 1 
1604 MLSD 3 7 141 720 25.98125 0.9914 0.0057 2 
2201 MHA 0 0 101 941 26.05000 1.0000 0.0000 1 
2501 YVG 0 0 0 1347 34.30260 1.0000 0.0000 1 
4001 TANB 15 135 98 26 6.85000 0.5107 0.1162 2 
1201 E 4 32 175 238 11.50000 0.8797 0.0401 1 
1704 JSM 0 25 231 195 11.27500 0.9584 0.0277 1 
2103 MRA 0 30 108 407 14.34210 0.9587 0.0275 1 
1503 ACP 4 5 327 39 9.37500 0.9664 0.0193 2 
1302 MM 4 0 161 474 15.97500 0.9953 0.0031 1 
4301 NGP 15 153 103 0 6.77500 0.4544 0.1487 1 
7501 IOG 13 161 71 37 7.05000 0.4635 0.1610 1 
3201 GBS 4 40 264 50 8.95000 0.7631 0.0090 2 
1203 CLD 3 42 286 26 9.16050 0.7690 0.0211 2 
2601 RPS 6 47 141 291 12.56710 0.8361 0.0546 2 
3101 JCS 0 46 223 134 10.07500 0.8288 0.0571 2 
2101 MW 7 75 196 68 8.65000 0.5770 0.0510 2 

 
DISCUSSION 

 
 We believe that a process of the examination 
analysis using a PANN attached to EEG findings, such 
as relations between frequency bandwidth and inter 
hemispheric coherences, can create computational 
methodologies that allow the automation of analysis 
and diagnosis. The computational implementation of 
PANN shown in Fig. 6 can be performed very easily, 
thus enabling their application. 
 As seen in Fig. 7, the method can distinguish 
groups and subgroups of individuals. Both in relation to 
normal or probable AD, as for the average number of 
individuals, ie, the method can differentiate normal 
patients from probable AD patients regardless of the 
average frequency of brain activity of the individual. 

 These methodologies could be employed as tools 
to aid in the diagnosis of diseases such as Alzheimer's 
disease, provided they have defined 
electroencephalographic findings. 
 In the case of Alzheimer's disease, for example, in 
studies carried out previously (Lopes et al., 2009) 
shown satisfactory results (but still far from being a tool 
to aid clinical) that demonstrated the computational 
efficiency of the methodology using a simple 
morphological analysis (only Paraconsistent Annotated 
Logic Eτ). These results encouraged us to improve the 
morphological analysis of the waves and try to apply the 
method in other diseases besides Alzheimer's disease. 
 With the process of morphological analysis using 
the PANN, it becomes possible to quantify the 
frequency average of the individual without losing its 
temporal reference. 
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Table 5: Test with non-normal patients FE = Favorable Evidence; CE = Contrary Evidence; Diagnosis - 1 = Normal individual, 2 = Probable AD 
patient; Delta, Theta, Alpha, and Beta = quantity of waves; Mean = Mean of quantity of waves 

Exam Patient Delta Theta Alpha Beta Mean FE CE Diagnosis 
4101 MTRS 6 104 168 24 7.5500 0.3311 0.0596 2 
6001 EGT 8 177 40 0 5.9210 0.4373 0.2072 2 
7901 AMNT 5 71 162 147 9.6250 0.6851 0.0800 1 
5701 ABC 6 55 202 120 9.5750 0.7398 0.0584 2 
2203 JPNF 11 142 94 0 6.1750 0.1204 0.1185 2 
6201 ESSE 0 144 146 12 7.5500 0.1623 0.1159 2 
6301 MF 0 137 162 0 7.4750 0.1865 0.1028 2 
7301 AOFFS 10 117 144 27 7.4500 0.2332 0.0856 1 
5501 TMOG 16 155 62 13 6.1500 0.2352 0.1551 2 
6401 RRS 4 176 72 0 6.3000 0.2564 0.1721 2 
8102 ABS 0 123 168 27 7.9500 0.3173 0.0909 2 
5801 TCS 15 177 47 13 6.3000 0.3279 0.1960 1 
1504 CLD 11 96 203 0 7.7500 0.3698 0.0601 1 
8001 BLW 4 114 174 40 8.3000 0.3819 0.0927 1 
1703 CLD 4 104 208 0 7.9000 0.3823 0.0659 2 
1801 ZSA 4 101 187 16 7.8907 0.3832 0.0650 2 
2801 CRSV 8 89 213 13 8.0750 0.4533 0.0539 2 
43901 AVB 8 152 114 12 7.1500 0.5092 0.1372 2 
44001 ASS 40 165 8 0 5.4552 0.6709 0.2540 2 
1701 LHO 4 64 242 59 9.2250 0.6848 0.0534 2 
1102 MLCM 6 67 202 107 9.5500 0.6909 0.0730 2 
1702 RF 0 65 227 81 9.3250 0.7049 0.0534 2 
1301 MGC 7 66 148 216 11.5000 0.7494 0.0835 2 
1606 OSP 0 63 214 121 10.1723 0.7626 0.0791 2 
4201 MAP 8 43 221 115 9.6750 0.7861 0.0496 1 
1803 ABM 4 54 191 171 10.5000 0.7929 0.0690 2 

 

 
 
Fig. 7: The lattice final decision of the review process of PANN with the result of the 67 examinations. Area 1: 

State logical False (AD likely below average population), 2: State logical Near-real (AD likely than average 
population); Area 3: State-Almost logical false (Normal below average population); Area 4: State logical 
True (Normal above average population); Area 5: logical state of uncertainty (not used in the study area) 
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Table 6: Diagnosis-normal individual x probable AD patients 
Gold standard 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
   AD Patient (%) Normal individual (%) Total (%) 
 AD Patient  35.82 14.93 50.75 
PANN Normal individual 8.96 40.30 49.25 
 Total 44.78 55.22 100.00 
 Sensitivity: 0.80   
 Specificity: 0.73   
 Index of coincidence (Kappa): 0.76   

 
This feature becomes a differential, compared to 
traditional analysis of quantification of frequencies, 
such as Fast Fourier Transform (FFT), aiming at a 
future application in real-time analysis, i.e. at the time 
of acquisition of the EEG exams. 
 For this future application, it must be assumed that 
the automatic detection of spikes and artifacts are 
important functions that should be aggregated for 
analysis, thus creating variations in morphology 
specialized detection devices, for example. 
 It is noteworthy that by treating the PANN a 
relatively new theory and extend the operation of 
classical PANN is justified to use different approaches 
(as discussed in this study) to know the full potential of 
the theory applied to the specific and real needs. 

 
CONCLUSION 

 
 The methodology of pattern of recognition 
(through PANNs) using morphological analysis showed 
itself to be effective, achieving recognize patterns of 
waves similar to patterns stored in the database. In 
addition, this methodology allows the quantification 
and qualification of the examination of EEG data to be 
used by PANN in its process of examination analysis. 
PANN also proved to be an agile and promising as a 
tool for distinguishing among patients, providing a 
satisfactory performance, classifying them with good 
sensitivity but low specificity. 
 The setup possibilities allows PANN to make 
further studies with larger number of patients, and then 
our findings could be used as basic values to achieve 
new comparisons. The characteristics of Para consistent 
Logic and PANNs show up effective in recognizing 
patterns. Moreover, our results may extend to other 
studies of waves, such as identification of artifacts and 
also to other diseases in which EEG can be used as a 
clinical procedure. Finally, our study opens 
opportunities for future studies using other options for 
processing and treating the EEG signals with 
Paraconsistent Logic and PANN. 
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