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Abstract: Classifying objects/individuals is common problem of interest. 

Receiver Operating Characteristic (ROC) curve is one such tool which 

helps in classifying the objects/individuals into one of the two known 

groups or populations. The present work focuses on proposing a Hybrid 

version of the ROC model. Usually the test scores of the two populations 

namely normal and abnormal tend to follow some particular distribution, 

here in this study it is considered that the test scores of normal follow Half 

Normal and abnormal follow Rayleigh distributions respectively. The 

characteristics of the proposed ROC model along with measures such as 

AUC and KLD are derived and demonstrated using a real data set and 

simulation data sets. 

 

Keywords: Half Normal Distribution, Rayleigh Distribution, ROC Curve, 

AUC and KLD 

 

Introduction  

Receiver Operating Characteristic (ROC) curve is a 

classification tool which is widely used in classification 

to evaluate the accuracy of a test. ROC Curve is a 

graphical plot between false positive rate and true 

positive rate (Green and Swets, 1966). This tool helps in 

classifying the individuals/subjects into one of the two 

groups, normal and abnormal, by using a threshold. 

Usually, the test Score (S) obtained from the set of 

individuals will be of continuous type and underlies a 

certain distribution. In ROC literature, so far many 

models are proposed based upon bi-distributional 

assumptions, such as Bi-normal (Egan, 1975), Bi-

lognoraml (Dorfman and Alf, 1968; 1969), bi-gamma 

(Hussain, 2012) and many more. Recently, a new type of 

ROC Curve is developed based upon mixture of two 

distributions namely Half Normal and exponential 

distributions and referred as Hybrid ROC Curve 

(Balaswamy, et al., 2015). 

In the present work, it is assumed that the test scores 

of normal and abnormal populations follow Half Normal 

(HN) and Rayleigh (RL) distributions. The motivation of 

considering Rayleigh instead of Exponential is its 

mathematical approximations, where it can easily be 

derived from all other distributions and also has a 

mathematical ease over other distributions. Moreover, 

the concept of ROC evolved by analyzing radar signals 

(Signal Detection Theory) and the important application 

of Rayleigh distribution is to analyze and assess the 

signals which are received by and from the receivers. 

Hence, the Rayleigh distribution is an apt one to 

identify the scatter in the abnormal population and 

helps in identifying the exact status of the 

objects/individuals. For further information on the 

applicability and ease of Rayleigh over Exponential 

distributions refer to Meintanis and Iliopoulos (2003). 

In the next subsequent sections, the expressions for 

the intrinsic measures such as Sensitivity (Sn), 

Specificity (Sp), accuracy measure AUC and the 

divergence measure KLD expressions are derived. 

The proposed methodology is supported using a real 

data set (APACHE II) and simulation studies with 

various combinations of scale parameters for different 

sample sizes. 

Methodology 

Let the test scores be X and Y from normal (H) and 

abnormal (D) populations which follow Half Normal and 

Rayleigh distributions respectively. The cumulative 

distribution function and probability density functions 

of Half Normal is: 
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where, σ is the scale parameter. 

The cumulative distribution function and probability 

density functions of Rayleigh is: 
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where, σ is the scale parameter. 

In classification, the ROC Curve is a graphical plot, 

which explains the performance of a binary classifier as 

its discrimination threshold is varied. The curve is 

generated by plotting the False Positive Rate (FPR) 

against the True Positive Rate (TPR). 

The expression for FPR (derived from HN 

Distribution) is defined as: 
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On further simplification, the threshold value t can be 

obtained by the formula: 
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where, Φ-1
(⋅) is the inverse cumulative standard normal 

distribution function. 

Similarly TPR (derived from Rayleigh Distribution) 

is defined as: 
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Here H

D

σ
β

σ
=  and the above equation is the 

expression for ROC Curve based on HN and R 

Distributions. It is known that the ROC Curve is 

generated through the coordinates (1-Sp, Sn), here the 

false positive rate (1-Sp) expression is derived from 

HN and true positive rate (Sn) is from R, hence the 

proposed ROC model (7) is referred as Hybrid ROC 

(HROC) Curve. 

The proposed ROC Curve is completely dependent 

on the ratio β and as this ratio β varies accordingly 

shape of the ROC Curve varies. The three typical 

forms of ROC Curves are shown in Fig. 1, which are 

drawn at different values of β. The first case is the 

one, which stands as an example for better case of 

proposed ROC Curve (Dashed line) with β = 0.2370, 

the second one stands as an example for moderate 

case of ROC Curve (Dotted line) with β = 1.0122 and 

the third case is referred as a worst case of ROC 

Curve (Dash-Dotted line) with β = 1.6833. From Fig. 

1, it is illustrated that the proposed ROC Curve gets 

influenced by the β and on conducting various 

experiments it is observed that the limit values of β 

varies from 0.1 to 1.8472, i.e., β = [0.1, 1.8472]. This 

refers to a clear meaning that as β tends to attain a 

lower value, the ROC Curve shifts towards the top left 

corner, otherwise. 

The expression for the accuracy measure AUC can 

be obtained by integrating the ROC expression (7) 

over [0, 1] as: 
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On further simplification, the closed form for AUC is 

as follows (for proof see Appendix): 
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In conventional ROC methodology, a test or 

procedure will be considered if its AUC value lies above 

the chance line, i.e., AUC ∈ [0.5, 1]. As AUC attains a 

larger value better will be the discriminating power of 

the test considered. 

In the next subsection, the scale parameters of both 

populations are estimated using the method of maximum 

likelihood estimated. 

Estimation of Parameters 

Here, X and Y are independent random variables from 

HN and RL distributions with scale parameters σH and σD 

respectively. Then the likelihood and log-likelihood 

functions based on distributions considered are given to 

obtain the estimates of the parameters σH and σD. 

The likelihood and log-likelihood functions of HN 

distribution is: 
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Fig. 1. Behavior of HROC Curve due to the effect of β 
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Similarly, likelihood and log-likelihood functions 

based on RL distribution are: 
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The Maximum Likelihood Estimate of the 

parameter 
Dσ
⌢

 is: 
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In the next subsection, the well known proximity 

measure namely Kullback-Leibler Divergence (KLD) is 

used measure the distance between both populations in 

the context of classification. 

The Proximity Measure KLD in Classification 

In information theory, the Kullback-Leibler 

Divergence (KLD) is used to measure the proximity 

between two density functions and is usually defined on 

likelihood ratio (Cover and Thomas, 1991). The KLD 

considered in the present work is to measure the distance 

between two density functions, which are used to 

construct the ROC Curve. Since the misclassification 

rate is completely dependent on the overlapping area of 

both populations and this varies, as the distance between 

both populations vary. Further, the divergence measure 

KLD is defined based on two probability density 

functions (Kullback and Leibler, 1951): 
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This KLD measure has become popular in 

classification theory to explain the extent of accuracy in 

terms of closeness between two densities and the 

asymptotic properties of ROC Curve. Recently, the 

divergence measure KLD is used in Bi-normal ROC 

Curve, Bi-exponential ROC model and Bi-gamma ROC 

model to explain the symmetric and asymmetric 

properties (Hughes and Bhattacharya, 2013). Further, 

(Balaswamy, et al., 2014) considered the concept of 

KLD in classification to study and interpret the Single 

Truncated ROC Curve as well as used to identify the 

closeness between both distributions of normal and 

abnormal populations. In the same paper, they have also 
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provided the functional relationship between slope of 

STROC Curve and KLD and then explained the 

asymmetric properties of STROC Curve. 
As the importance of β (slope) explained in Fig. 1, 

the slope can also be defined using the ratio of two 

probability density functions: 
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As the parameters of f(t) and g(t) varies, accordingly 

the shape of ROC Curve varies. The slope of proposed 

ROC Curve using the Equation 2 and 4 is: 
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Further, the Kullback Leibler Divergence (KLD) can 

be defined in the context of ROC Curve 

analysis as follows (Balaswamy et al., 2014): 
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Further, on substituting the mean and variance of 

Rayleigh distribution in Equation 12, the expression for 

KLD[g||f] is as: 
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On further simplification, the expression for 

KLD[g||f] is: 
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In similar way, the expression of KLD[f||g] can be 

defined as: 
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Therefore, to derive the KLD[f||g], the expression for 

inverse slope of proposed ROC Curve is: 
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Further, by substituting the inverse slope of ROC 

Curve (Equation 16) in Equation 15 and on simplifying: 
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On substituting mean and variances of half normal 

distribution in the above equation, the expression for 

KLD[f||g] is: 
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In the next section, the simulation studies are 

conducted to explain the proposed methodology, further 

the results and discussions are made. 

Results and Discussion 

Simulation studies and a real data set (APACHE II) 

are used to demonstrate the proposed HROC Curve and 

its behavior. 

Simulation Studies 

The proposed methodology is demonstrated using 

simulation studies with various combinations of scale 

parameters of both populations for different sample 

sizes. Further, the computations are based on sample 

estimates which are obtained from each simulation data 

set using maximum likelihood estimation. The 

simulation studies are conducted in four different 

experiments. In the first experiment, three combinations 

of scale parameters are considered by varying the scale 

of normal population σH = {0.2, 0.3, 0.4} with fixed 
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variability in abnormal population σD = 0.8. The second 

experiment is conducted with four different 

combinations of scale parameters by fixing the 

variability in normal population σH = 0.5 and varying 

scale in abnormal population σD = {1.2, 1.5, 2, 2.5}. 

Further, the third experiment is conducted with high 

variability σH = 2 in normal population than the abnormal 

population σD = {1.5, 1.2, 1.15} to explain the proposed 

ROC Curve. Finally, the equal variability is considered in 

both populations with σH = 1 and σD = 1 in experiment 4. 

Table 1 reports the sample estimates of scale parameters 

and the ratio β
⌢

 along with accuracy measure AUC and 

the proximity measures KLD [g||f] and KLD [f||g]. 

As the ratio β
⌢

 increases, the accuracy measure AUC 

decreases along with its corresponding KLD values 

(Experiment 1). i.e., the normal population gets skewed 

with increasing values of scale parameter and this 

skewed density influences the overlapping area of both 

populations. Therefore, the distance between both 

populations will be less and it leads to a reduced KLD 

and accuracy value (AUC). 

Further, as values decreases, the AUC and KLD tend to 

increase by explaining a better accuracy (experiment 2), 

because the change in density of abnormal population 

influences the overlapping area of both populations. i.e., as 

the scale in abnormal population increases, its 

corresponding density curve moves towards right with a 

peak shape and this leads to create larger distance 

between both populations. 

The third experiment is conducted with AUC nearer to 

50% to explain the worst case scenario of proposed 

methodology. From experiment 3, it is reasonable to 

conclude that the β
⌢

 can take values till 1.8472 and a least 

value of 0.1. So, the β
⌢

 values can lie between 0.1 and 

1.8472 for the proposed ROC Curve. If the β
⌢

 lies beyond 

this interval, the normal and abnormal populations are 

inverted thus explaining a worst case of binary 

classification. In the last experiment 4, the equal scale 

parameters are considered to know the behavior of 

proposed ROC Curve and this experiment can be treated 

as a moderate case of classification with AUC nearer to 

70% along with higher distance between both populations. 

From Fig. 2a, it can be visualized that the accuracy 

of a test (AUC) increases when the ratio β decreases, 

since the overlapping area minimizes as this ratio β 

increases. Similarly, the distance between both 

populations is measured by using KLD, which explains 

the proximity between both populations. From Fig. 2b, 

it can be seen that KLD [g||f] is higher than the KLD 

[f||g] as explained in methodology. As the ratio β 

decreases, the KLD value increases which indicates 

moderate classification (Fig. 2b). 
Further, ROC Curves are plotted to explain the 

behavior of proposed ROC Curve for the considered 
combinations of scale parameters. Figure 3 depicts the 
different forms of proposed ROC Curves. From Fig. 3a, 
it can be seen that the effect of scale parameter in normal 
population has drifted the shape of the ROC Curve 
towards chance line, which means that higher 
overlapping area between both populations is due to the 
increased value of scale in normal population. From Fig. 
3b, it can be seen that the ROC Curve moves towards the 
top left corner of the plot as the overlapping area 
reduces, this is because of increased scale in abnormal 
population. Further, Fig. 3c depicts the case of 
overlapping where there is a similar kind of variability 
observed in both normal and abnormal populations. 

 

     
 (a) (b) 

 
Fig. 2. Behavior of AUC and KLD due to the effect of β (a) Relationship between AUC and β (b) Relationship between KLD and β 
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 (a) (b) 
 

 
 (c) 
 
Fig. 3. Typical forms of proposed ROC Curve for various combinations of scale parameters of both populations (a) Behavior of ROC 

Curve for varying σH (b) Behavior of ROC Curve for varying σD (c) Typical forms of ROC Curve at worst classifications 
 
Table 1. Behavior of proposed ROC Curve for various combinations of scale parameters of both populations 

Experiment 
Hσ
⌢

 
Dσ
⌢

 β
⌢

 AUC KLD[g||f] KLD[f||g] 

Experiment 1 0.1889 0.7969 0.2370 0.9730 15.6421 2.6928 

 0.3112 0.8372 0.3717 0.9373 5.5364 1.8338 

 0.3768 0.8034 0.4690 0.9054 3.0707 1.4097 

Experiment 2 0.5002 1.2246 0.4084 0.9258 4.4391 1.6596 

 0.4896 1.4456 0.3387 0.9471 6.9916 2.0081 

 0.5193 1.9771 0.2626 0.9672 12.5427 2.4938 

 0.5050 2.4478 0.2063 0.9794 21.3114 2.9634 

Experiment 3 2.0739 1.4912 1.3908 0.5838 0.2068 0.0928 

 1.9531 1.1603 1.6833 0.5107 0.2075 0.1606 

 2.1053 1.1398 1.8472 0.4761 0.2385 0.2641 

Experiment 4 1.0101 0.9980 1.0122 0.7028 0.3029 0.2735
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Real Data Set 

The real data set is about the ICU scoring system, 

Acute Physiology and Chronic Health Evaluation II 

(APACHE II). Patients admitted to the Intensive Care 

Unit (ICU) have a wide range of underlying 

pathologies and physiological abnormalities. Scoring 

systems have been developed in order to allow 

comparisons in outcome between these patients. The 

most commonly used scoring system is APACHE II 

which assumes that there is a strong and consistent 

underlying relationship between acute physiological 

derangement and the risk of death during acute illness. 

The APACHE II score is derived from 11 

physiological variables, the Glasgow Coma Score 

(GCS) and the patient’s age and chronic health status. 

This data consists a total of 111 respondents of which 

66 are alive and 45 dead. 

From this data set it is observed that the APACHE 

II scores for died patients follows Rayleigh 

distribution (KS- Statistic = 0.0681; p-value = 0.9758 

at 0.05 level of significance) whereas the score for 

patients who are alive follows half normal distribution 

(K-Statistic = 0.1499; p-value = 0.0927 at 0.05 level 

of significance). Therefore, we have used this scoring 

variable to predict the mortality using the proposed 

methodology. The results for the prognosis of disease 

are reported in Table 2. From Table 2, it is observed 

that the accuracy of the test is 68.66% along with the 

ratio β = 1.05. This means that the APACHE II score 

is able to identify the patients with prognosis of 

disease with 68.66% of correct classification. In other 

words, the APCHE II score can describe the survivors 

from non survivors with an accuracy of 68.66% and 

the distance between normal and abnormal 

populations is 0.3957nits with respect to the abnormal 

population and is 0.2316nits with respect to the 

normal population. This means that the distance 

between both alive and dead populations reflects the 

good extent about the accuracy of APACHE II (with 

AUC = 0.6866). Further, the curve obtained for the 

biomarker APACHE II explains about 68.66% of 

accuracy only with the ROC Curve uniformly lies 

above the chance line (Fig. 4). 

 

 

 

Fig. 4. HROC Curve for APACHE II data set 

 
Table 2. Results for APACHE II using HROC curve methodology 

Hσ
⌢

 
Dσ
⌢

 β
⌢

 AUC KLD[g||f] KLD[f||g] 

28.8184 27.2182 1.0587 0.6866 0.3957 0.2316 



Saebugari Balaswamy and Rudravaram Vishnu Vardhan / American Journal of Biostatistics 2015, 5 (2): 69.77 

DOI: 10.3844/amjbsp.2015.69.77 

 

76 

Conclusion 

The present work focuses on proposing a new 

ROC model which is based on mixture of two 

distributions namely HN and R distributions and 

further the proximity measure KLD is used to measure 

the distance between both populations. The ROC 

model which is developed in this study is completely 

dependent upon the ratio β and using the behavior of 

this β, the characteristics of the curve is discussed. 

From the results obtained, the ratio β lies between 0.1 

and 1.8472. Whenever the value of β approaches 0.1, 

the ROC Curve moves towards the top left corner of 

the plot with a better accuracy and whenever the value 

of β approaches to a value of 1.8472, the ROC Curve 

moves nearer to the chance line. i.e., higher the value of 

β lesser will be the accuracy and vice-versa (Fig. 2a 

and b). Further, the KLD is also computed to measure 

the distance and is found to be larger at least value of β 

and KLD is found to attain a least value at larger values 

of β. An interesting fact observed is that the KLD and 

AUC are explaining similar kind of information with 

respect to β, since KLD explains the distance between 

both populations and the other one AUC explains the 

overlapping area of both populations. 

Further, the real data set for detection of mortality 

rate using APACHE II in ICU explains the accuracy 

of 68.66% along with the ratio β = 1.05. This means 

that the APACHE II score is able to identify the 

patients with prognosis of disease with 68.66% of 

correct classification. In other words, the APCHE II 

score can describe the survivors from non survivors 

with an accuracy of 68.66%. 
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Appendix 

The accuracy of a test (AUC) can be obtained by 

integrating the ROC expression over the range 0 to 1 

with respect to its false positive rate: 

 

( )

( )

2
2

11 1
2 2

0

x t

AUC e dx t

β −
  

− Φ −      = ∫  

 

Using the relationship between error function and 

normal density, the above expression can be rewritten as: 



Saebugari Balaswamy and Rudravaram Vishnu Vardhan / American Journal of Biostatistics 2015, 5 (2): 69.77 

DOI: 10.3844/amjbsp.2015.69.77 

 

77 

( )( ) ( )
2

2 1
1

1

0

erf x t
AUC e dx t

β − − − = ∫  

 

Let, ( )1 1u erf x t−=  −  which implies that 

( )
22 udx t e du

π
−−

=  

 

By using the above transformation, AUC can be 

written as: 

 

2 21

0

2 u
AUC e du

β

π

∞
 − + = ∫  

 

On further simplification, the closed form for AUC is 

as follows: 
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