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Abstract: Non-inferiority of a diagnostic test to the standard is a common 

issue in medical research. For instance, we may be interested in determining 

if a new diagnostic test is noninferior to the standard reference test because 

the new test might be inexpensive to the extent that some small inferior 

margin in sensitivity or specificity may be acceptable. Noninferiority trials 

are also found to be useful in clinical trials, such as image studies, where the 

data are collected in pairs. Conventional noninferiority trials for paired 

binary data are designed with a fixed sample size and no interim analysis is 

allowed. Adaptive design which allows for interim modifications of the trial 

becomes very popular in recent years and are widely used in clinical trials 

because of its efficiency. However, to our knowledge there is no adaptive 

design method available for noninferiority trial with paired binary data. In 

this study, we developed an adaptive design method for non-inferiority trials 

with paired binary data, which can also be used for superiority trials when 

the noninferiority margin is set to zero. We included a trial example and 

provided the SAS program for the design simulations. 

 

Keywords: Non-Inferiority, Adaptive Design, Power, Sample Size, Paired 

Data, Matched Data 

 

Introduction 

Noninferiority Design 

As the European regulatory agency, Committee for 

Medicinal Products for Human Use (CHMP, 2005) 

stated, “Many clinical trials comparing a test product 

with an active comparator are designed as noninferiority 

trials. The term ‘noninferiority’ is now well 

established, but if taken literally could be misleading. 

The objective of a noninferiority trial is sometimes 

stated as being to demonstrate that the test product is 

not inferior to the comparator. However, only a 

superiority trial can demonstrate this. In fact a 

noninferiority trial aims to demonstrate that the test 

product is not worse than the comparator by more 

than a pre-specified, small amount. This amount is 

known as the noninferiority margin, or delta.” 
Until recent years, the majority of clinical trials were 

designed for superiority to a comparative drug (the 

control group). A statistic shows that only 23% of all 

NDAs from 1998 to 2002 were innovative drugs and the 

rest were accounted for as “me-too” drugs (Chang, 

2010). The “me-too” drugs are judged based on 

noninferiority criteria. The increasing popularity of 

noninferiority trials is a reflection of regulatory and 

industry adjustments in response to increasing 

challenges in drug development. 

From a methodological perspective, Chan (2001) 

derived power and sample size formulations for 

noninferiority trials using an exact method. Kong et al. 

(2004), studied noninferiority diagnostic test for using a 

bivariate normal distribution. Wiens and Heyes (2003) 

proposed analysus strategy that allows to consider 

interactions in noninferiority trials. Liu et al. (2002) 

investigated two asymptotic test statistics, a Wald-type 

test statistic (sample-based) and a Restricted Maximum 

Likelihood Estimation (RMLE-based) test statistic, to 

assess non-inferiority based on paired binary endpoints. 

They found that the RMLE-based test controls type I 

error better than the sample-based test. Lu and Bean 

(1995) and Nam (1997) proposed test statistics and 

sample size determination for comparing two diagnostic 

methods for the non-inferiority test of sensitivity. Lu et 

al. (2003) discussed simultaneous comparisons of 
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sensitivity and specificity. However, all these methods 

are only applicable for classical design with fixed sample 

size. We will develop in this study an adaptive design 

method for noninferiority trials with paired binary 

endpoint and discuss its application in diagnosis test. 

There are three major sources of uncertainty about 

the conclusions from a non-inferiority (NI) study: (1) 

The uncertainty of the active-control effect over a 

placebo, which is estimated from historical data, (2) 

the possibility that the control effect may change over 

time, violating the “constancy assumption” and (3) the 

risk of making a wrong decision from the test of the 

noninferiority hypothesis in the NI study, i.e., the 

type-I error. These three uncertainties have to be 

considered in developing a noninferiority design 

method. 

Commonly Used Noninferiority Design 

Methods 

Most commonly used noninferiority trials are 

based on parallel, two-group designs. Three-group 

designs with a placebo may sometimes be used, but 

they are not very cost-effective and often face ethical 

challenges when including a placebo group, especially 

in the United States. 

There are three commonly used methods of 

noninferiority designs: The fixed-margin method, the 

λ-portion method and the synthesis method (in 

original and log scales). We denote the test and the 

active-control groups by subscripts T and C, 

respectively. Where there is no confusion, the letter T 

will also be used for test statistics. We will use the hat 

“^” to represent an estimate of the corresponding 

parameter, e.g., θ̂  is an estimate of θ. 

Fixed-Margin Method 

The null hypothesis for the fixed-margin method can 

be defined as: 

 

: 0
o T C NI

H θ θ δ− − ≤   (1) 

 

where, θ can be the mean, hazard rate, adverse event 

rate, recurrent events rate, or the mean number of events. 

The constant noninferiority margin δNI≤0 (assuming a 

larger value of the parameter is desirable; otherwise, δNI 

should be larger than zero) is usually determined based 

on a historical placebo control study (see more 

discussions later). When δNI = 0, (1) becomes a null 

hypothesis test for superiority. 

The rejection of (1) can be expressed a simple way: 

The test drug T is not inferior to C by δNI or more. 

λ-Portion Method 

The null hypothesis for the λ-portion method is 

given by: 

 

: 0
o T NI C

H θ λ θ− ≤   (2) 

 

where, 0<λNI<1. For the superiority test, λNI = 1. 

The rejection of (2) can be interpreted in layman’s 

terms: Drug T is at least 100λNI% as effective as drug C. 

Synthesis Method 

The null hypothesis for the synthesis method is 

given by: 

 

: 0T P
o NI

C P

H
θ θ

λ
θ θ
−

− ≤
−

 (3) 

 

Assuming we have proved θC-θP>0, (3) is then 

equivalent to: 

 

( )( ): 1 0o T C NI C PH θ θ λ θ θ− + − − ≤   (4) 

 

where, 0<λNI<1. For the superiority test, λNI = 1. 

The rejection of (3) can summed up in these terms: 

The test drug T is at least 100λNI% as effective as C 

after subtracting the placebo effect. When λNI = 0, (3) 

represents a null hypothesis for a putative placebo-

control trial. 

Non-Inferiority Design with Fixed-Margin 

Method for Paired Data 

Classical Design 

Let Y1 and Y2 be, respectively, binary response 

variables of treatments 1 and 2 with the joint distribution 

P(Y1 = i; Y2 = j) = pij for i = 0, 1; j = 0, 1. 
1 1

0 0
1iji j

p
= =

=∑ ∑ . Paired data are commonly displayed in 

a 2×2 contingency table (Table 1). 

Nam (1997; Tango, 1998) proposed the following 

asymptotic test for paired data: 

 

10 01
: 0 . :

o NI a o
H p p vs H Hδ− − ≤  (5) 

 

where, δNI<0 is the noninferiority margin. The test 

statistic is defined as: 

 

ˆ

ˆ

n
Z

ε
σ

=   (6) 
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Table 1. Matched-pair data 

 Test Total 

Control 1   0 

1 x11 x10 

0 x01 x00 

Total  n 

 
Where: 

 

10 01

2 2

01

ˆ ˆ ˆ ,

ˆ /

ˆ 2

NI

ij ij

NI NI

p p

p x n

p

ε δ

σ δ δ

 = − −


=


= + − ɶ

 (7) 

 

And 
10

p̂  is the restricted MLE of p10: 

 

( )
( )

2

01

01 10 01 10

01

8

4

ˆ ˆ ˆ ˆ2

ˆ 1

NI

NI NI

b b c
p

b p p p p

c p

δ

δ δ

 − + −
=



= + − − −


= − −



ɶ

  (8) 

 
Nam (1997) proved that under the constraint p10-p01-

δNI = 0, Z in (6) follows approximately the normal 

distribution for large n: 
 

,1
n

Z N
ε
σ

 
∼   

 
  (9) 

 

where, ε = E ( ε̂ ) and σ = E ( σ̂ ) can be obtained by 

replacing ˆ
ijp  with pij (i = 0, 1; j = 0, 1) in the 

corresponding expression (7). 

The rejection rule is specified as follows (assuming a 

larger θ is preferred): 

 

1Re o

o

ject H if Z z

Accept H otherwise

α− ≥



  (10) 

 

Equivalently, we can use the confidence interval of ε: 
 

11
n

z α

ε
β

σ −

 
− = Φ −  

 
  (11) 

 

The power of the test statistic T under a particular Ha 

can be expressed as: 

 

11
n

z α

ε
β

σ −

 
− = Φ −  

 
  (12) 

 

where, ε and σ are estimated by (7). 

Solving (12) for the sample size, we obtain: 

( )2
2

1 1

2
, 0

, 0

z z
forn

for

α β σ
ε

ε
ε

− −
 +
 >= 
 ∞ >

  (13) 

 
Equation 13 is a general sample size formulation for 

a trial with a normal, binary, or survival endpoint 
(Chang, 2007a). 

For the test statistic given by (9), the p-value is 

given by: 
 

ˆ
1

ˆ

n
p

ε
σ

 
= −Φ  

 
  (14) 

 

where, Φ is the standard normal cdf. 

Remark 

A common misconception is that for an NI trial the 

sample size calculation must assume θT = θC or p01 = p10, 

which is not true at all. 

One can choose an NI design because the difference 

θT-θC is positive but too small for a superiority test with 

reasonable power or unreasonably large sample size. The 

treatment difference can be positive or negative 

depending on the particular situation. The power and 

sample size calculation should be based on the best 

knowledge about the value of θT-θC and this knowledge 

should not change because of the different choice of 

hypothesis test. Therefore, for a given value of θT-θC and 

power, superiority testing always requires a larger 

sample size than noninferiority testing. 

Adaptive Design 

We now discuss how to incorporate Nam’s 

formulation (Nam, 1997) into group sequential and 

adaptive designs. Let Tk be a test statistic on p-value 

scale at the kth stage. The stopping rules are given by: 
 

k k

k k

k k k

if TStop for efficacy

Stop for futility if T

Continue with adaptations if T

α

β

α β

 ≤


>
 < ≤

  (15) 

 

where, αk<βk (k = 1, ..., K-1) and αK = βK. For 

convenience, αk and βk are called the efficacy and futility 

boundaries, respectively. The adoptions can be changes 

in the timing and the number of interim analyses, 

sample-size re-estimation, etc. 

To reach the kth stage, a trial has to pass the 1st to (k-

1)
th

 stages. 

Therefore the c.d.f. of Tk is given by: 
 

( ) ( )
1 1

1 1

1 1 1 1 1 1

1 1...1

Pr ,..., ,

... ...
k

kk

k k k k k

t

k kT T

t T T T t

f dt dt dt
β β

α α

ψ α β α β

−

−

− − −

−∞

= < < < < <

= ∫ ∫ ∫
  (16) 
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where, 
1 ... kT T

f is the joint p.d.f. of T1, ... and Tk. 

In a classic group sequential or adaptive design, the 

test statistic on p-value scale can be expressed as 

(Chang, 2007b): 

 

( )1

1

1 1
k

k ki i

i

T w p−

=

 
= −Φ Φ − 

 
∑  (17) 

 

where the weights wki satisfy 2

1
1

k

kii
w

=
=∑ . The weights wki 

can be functions of the information time or sample-size 

fraction. For the error-spending approach, 

1

, 1.., , 1,..., ,i
ki k

jj

n
w i k k K

n
=

= = =
∑

 where ni is the sub-

sample size (not cumulative sample size) at stage i. 

Using the error-spending approach, the changes in the 

timing (information time) of the interim analyses and the 

total number of analyses can be changed after the 

initiation of the trial as long as the change is independent 

of treatment difference. For sample size re-estimation, 

we use fixed weights wki, i.e., the weight will not change 

even when the sample size is modified. 

Two other commonly used test statistics for adaptive 

designs are the product of stagewise p-values and the 

linear combination of stagewise p-values: 

 

1

k

k i

i

T p
=

=∏   (18) 

 

And: 

 

1

1 k

k i

i

T p
k =

= ∑   (19) 

 

The two-stage design stopping boundaries for (15) 

can be calculated using numerical integration or 

simulation, whereas the stopping boundaries for (18) and 

(19) can be analytically obtained for two-stage designs. 

Specifically, for the test statistic defined by (18), after 

choosing the efficacy stopping boundary α1 and futility 

stopping (β1 = 1), the efficacy stopping boundary for the 

2nd stage is given by (Chang, 2007b): 

 

1
2

1
ln

α α
α

α
−

=   (20) 

 

Similarly, for the test statistic defined by (19), the 

stopping boundary is given by: 

 

( )1 1

2

2

2

α α α
α

− +
=   (21) 

For the error-spending approach numerical 

integrations gives the OF-like boundary, Pocock-like 

boundary and power-function boundary (with ρ = 0.2) as 

follows: α1 = 0.00260 and α2 = 0.0240 (OF), α1 = 

0.0147 and α2 = 0.0147 (Pocock) and α1 = 0.00625 and 

α2 = 0.02173 (PF). These stopping boundaries will be 

used later in our trial example. 

If we use Nam’s test statistic defined by (6)-(8) for the 

subsumple at the ith stage, we then can calculate the 

“stagewise” p-value for the ith stage based on (14), that is: 

 

ˆ
1

ˆ

i i

i

i

n
p

ε
σ

 
 = −Φ
 
 

  (22) 

 

where, ˆ ,
i i

nε and ˆ
i

σ  are the corresponding quantities in 

(14) but calculated based on a subsample at the ith stage. 

(22) is valid as long as ni is large. 

Conditional Power and Sample-Size Re-

estimation 

The general expression of conditional power at the 

interim analysis for a two stage adaptive design can be 

written as (Chang, 2007b): 

 

( ) ( ) 1

1 2 1 1 1 1

1

ˆ 2
1 , ,

ˆ

n
cP p B p pδ

ε
α α β

σ

 
 = −Φ − < ≤
 
 

  (23) 

 

Where: 

 

( )

( ) ( )
( )

( )

( )

1 1

2 1 1

2

1 2
2 1

1

1 2
1

1 1
17

, 1 18

1 max 0, 19
2

w p
for thetest statistic

w

B p for thetest statistic
p

p for thetest statistic

α

α
α

α

− −

−

−

Φ − − Φ −




 
= Φ −  

 
   Φ − −      

 

 

If the trial continues, i.e., α1<p1≤β1, for a given 

conditional power cP, we can solve (23) for the adjusted 

sample-size for the second stage: 

 

( ) ( )( )
2

2
11

2 12

2 1

, 1 , 0

, 0

B z cP if
n

if

σ
α ε

ε

ε

−
−Φ − >

= 
∞ ≤

  (24) 

 

Type-I Error Control 

We have used an approximation of the normal 

distribution for z given by (6) and (22) for the classic and 

adaptive designs, respectively. We want to check how 
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well such approximations work in terms of type-I error 

control. Various scenarios have been checked with 

1,000,000 simulation runs for each scenario. The 

scenarios with larger type-I errors are presented in Table 

2 (sample size = 3000 pairs). For a classic design, we use 

3000 pairs. For an adaptive design with sample size re-

estimation, we use 1500 pairs for the interim analysis 

and the maximum sample size allowed is Nmax = 6000. 

We can see from the table that type-I error is well 

controlled when the proportion p10≥2%. When p10<2%, 

there is a slight inflation of the error. 
When we run the same set of simulations with a 

smaller sample size of 300 pairs and Nmax = 600 pairs, 
the type-I error is far below 2.5% for all cases. For 
p10≥2%, smaller sample sizes give smaller error but the 
difference is small; for p10<2%, the error is much smaller 
than 2.5% with 300 pairs. Therefore, we can say the 
method can be applied to NI adaptive designs. 

Trial Example 

Preliminary Data for Trial Design 

The adaptive design considerations will be oriented 
toward comparisons of the diagnostic performance of 
two scanning methods, separately for sensitivity (using 
data from positive patients) and specificity (using data 
from negative patients). 

The two methods (Method 1 is a good standard) for 
the detection of metastatic disease in a group of subjects 
with known prostate cancer use standardized clinical 
end-points of documented disease including clinical 
outcome, serial PSA levels, contrast enhanced CT scans 
and radionuclide bone scans. A small study was 
conducted on a group of matched patients. The 
sensitivities are 63 and 84% for method 1 and method 2, 
respectively. The specificity is 80% for both methods. 

The patients per CT/bone scan data are presented in 

Table 3. 

The Effectiveness Requirements 

The requirements for gaining the regulatory approval 

are defined as follows: 

 

• Superiority on sensitivity with 10% margin (point 

estimate) and NI on specificity with 7.5% margin 

(CI); the hypothesis testing is based on the results 

from 2 out of 3 image readers 

• Statistical methods: McNemar’s test with and without 

cluster adjustment. However, since we don’t have data 

about the cluster, our sample size calculation will be 

based on testing without considering clustering 

 
The effectiveness claim will be based primarily on 

subject level results, that is, a diagnosis of whether or 
not the patient has any evidence of metastatic prostate 
cancer, disregarding the number of sites of disease. 
The analyses of lesions will provide additional 
information on the ability of the diagnostic tests to 
determine localization and staging of the disease. For 
this reason, the sample size will be based on analysis 
results on the subject level. It is required that Method 
2 has at least a 10% improvement (based on a point 
estimate) over Method 1 in sensitivity and is non-
inferior to 1 in specificity with a margin of 7.5%. 

Design for Sensitivity 

For the sensitivity requirement, we use group 
sequential design to handle the uncertain information 
with high power 95%. The simulation is done by setting 
the noninferiority margin to zero in the SAS program in 
the appendix, which was also verified using the 
commercial software package ExpDesign Studio 5.0. 

 
Table 2. Type-I error rate control (%) against α = 2.5% 

 Proportion p10 (%) 

 ---------------------------------------------------------------------------------------------------------------------------------------- 

Design 0.5 1.0 2.0 3.0 4.0 5.0 10 20 30 50 

Classic Sup 2.9 2.6 2.4 2.4 2.3 2.3 2.0 1.4 0.9 0.3 

Classic NI 2.6 2.6 2.4 2.4 2.3 2.2 1.9 1.2 0.7 0.1 

GSD Sup 2.9 2.7 2.5 2.4 2.3 2.2 1.9 1.4 0.9 0.3 

SSR Sup 2.8 2.6 2.4 2.4 2.3 2.2 1.9 1.4 0.9 0.3 

SSR NI 2.7 2.5 2.4 2.3 2.2 2.2 1.8 1.7 0.7 0.1 

Note: N = 3000, Nmax = 6000, NI margin δNI = -0.5p10. 

For superiority design, p10 = p01. SSR = Sample Size Re-estimation 

 
Table 3. CT/Bone scan data 

Positive patients   Negative patients 

------------------------------------------------------------------ ---------------------------------------------------------------------- 

 Method 1   Method 1 

 --------------------------------------  ------------------------------------------ 

Method 2 Positive Negative Method 2 Nagative Positive 

Positive 62% 20% Negative 60% 10% 

Negative 3% 15% Positive 10% 20% 
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For the purpose of comparison, we first calculate the 

sample size required for the classical design. Given the 

data in Table 3, i.e., p10 = 0.2 and p01 = 0.03, for a 95% 

power at a level of significance 2.5% (one-sided), 82 

pairs are required based on McNemar’s test with data 

provided in Table 3. 

For group sequential designs (GSD), three different 

error-spending functions are considered: (1) The 

O’Brien-Fleming-like error-spending function (OF), (2) 

the power-function with ρ = 2 (PF) and (3) the Pocock-

like errors pending function (Pocock). 

Given the data in Table 3 and a 95% power, we 

design the group sequential trial with one interim 

analysis at 50% information time. The simulation results 

are presented in Table 4. To choose an “optimal” design, 

we perform the following comparisons: 

 

• Comparing the results from the OF and the PF 

designs, we can see that the latter requires a smaller 

expected sample size (
a

N ), a 7.5% reduction (73 

versus 67.5 pairs) because the PF design has a larger 

Early Efficacy stopping Probability (EEP = 0.429) 

than the OF design (EEP = 0.263). The maximum 

sample size is almost the same for the two designs. 

Therefore, the PF design with ρ = 2 is a better 

design than the OF design 

• Comparing the results from the Pocock and PF 

designs, we can see that the latter requires a smaller 

maximum sample-size (86 versus 92) and a smaller 

expected sample-size (67.5 versus 63.2). We further 

compare the sample sizes required under other 

conditions, such as Ho 

• Under Ho: p10 = p01 = 0.2, the expected sample 

sizes are 65.3, 66.7 and 71 pairs for the OF, the 

PF and the Pocock designs, respectively. The 

expected sample sizes under Ho are thus similar 

for the OF and PF designs while being smaller 

than that for the Pocock design. The Early Futility 

stopping Probabilities (EFP) are almost identical, 

i.e., 45% for all three designs, which deviates 

from the theoretical value 50% due to 

approximation in normality. Based on these 

comparisons, we believe the design with PF (ρ = 

2) is the best design among the three. The design 

can save about 18% in the expected sample size 

from the classical design (67 versus 82 pairs) 

 

Design for Specificity 

For specificity, due to large uncertainty in the 

information (rates in Table 3), our design starts with a 

lower power 85%, then uses sample-size re-estimation at 

interim with 50% information time and the targeted 

conditional power 90%. 

Like the GSD for sensitivity, we start with a 

classical design for specificity. Given the data in 

Table 3, i.e., p10 = 0.1 and p01 = 0.1, the calculation 

indicates that 322 pairs are required for an 85% power 

at a level of significance 2.5% (one-sided) based on 

Nam’s test (1997) and the sample size calculation 

method presented earlier. 

We use the same three error-spending functions for 

the adaptive trial for specificity: (1) OF, (2) PF with ρ 

= 2 and (3) the Pocock. All designs have two stages 

and the interim analysis will be performed at 50% 

information time with a sample size of 161 pairs. The 

sample size adjustment is based on a targeted 

conditional power of 90% and the maximum sample 

size Nmax is 500 pairs. In all designs we use the futility 

boundary α1 = 0.5 which means approximately that if 

at interim analysis we observe 
10 01

ˆ ˆ 0
NI

p p δ− − ≤ , we 

will stop the trial for futility. The simulation results are 

presented in Table 5, where EEP and 
a

N  are the early 

efficacy stopping probability and expected sample size, 

respectively, when Ha (p10 = p01 = 0.1) is true. 

 

Table 4. Operating Characteristics of AD Under Ha for Sensitivity 

 α1 α2 EEP Power 
a

N  EFP 
O

N  Nmax 

OF 0.00260 0.02400 0.263 0.95 73.0 0.45 65.3 84 

PF 0.00625 0.02173 0.429 0.95 67.5 0.45 66.7 86 

Pocock 0.01470 0.01470 0.625 0.95 63.2 0.45 71.0 92 

Note: β1 = 0.5, the proportions of shifting: p10 = 0.2, p01 = 0.03 

 
Table 5. Operating characteristics of adaptive design for specificity 

 α1 α2 Nmax EEP Power 
a

N  EFP 
o

N  

OF 0.00260 0.02400 500 0.206 0.942 354 0.47 335 

PF 0.00625 0.02173 500 0.328 0.940 336 0.47 335 

Pocock 0.01470 0.01470 500 0.454 0.931 324 0.47 335 
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Table 6. Power Preserved by GSD and SSR Designs for Specificity 

Boundary Design α1 α2 Nmax N  Power 

OF GSD 0.00260 0.02400 322 299 0.716 

OF SSR 0.00260 0.02400 500 386 0.847 

PF GSD 0.00625 0.02173 322 284 0.705 

PF SSR 0.00625 0.02173 500 374 0.842 

Pocock GSD 0.01470 0.01470 322 266 0.659 

Pocock SSR 0.01470 0.01470 500 364 0.814 

 

The simulation results are summarized in Table 5. 

Following the same steps for comparing different 

adaptive designs in sensitivity, we find the PF design is 

better than the OF design. To evaluate the PF design 

against the Pocock design, we need to perform the 

simulations under Ho: p10-p01-δNI = 0 (p10 = 0.1, p01 = 

0.175 and δNI = 0.075). Under this null hypothesis, the 

OF, PF and Pocock designs have almost the same 

expected sample size (
o

N ) 335 with futility stopping 

probability 47%. This is because they use the same 

futility boundary and same sample size at the interim 

analysis, while the efficacy stopping boundary has 

virtually no effect on sample size. 

We also studied the effect of SSR. We assume there 

is a small difference in proportions but within the 

noninferiority margin: p10 = 0.1, p01 = 0.11. We want to 

know if the power is reasonably preserved in this case. 

The simulation results (Table 6) show that that GSD 

cannot well preserve power in this case. The effect of 

sample size adjustment on power is higher for the OB 

and FP designs than the Pocock designs because the OB 

and PF designs spend more alpha on stage 2. The Pocock 

design has already spent 50% alpha before the interim 

analysis; therefore, the sample-size adjustment at stage 2 

has less effect on the power. Compared with the OB 

design with SSR, the PF design with SSR has a smaller 

expected sample size 
S

N  (374 versus 386). 

We noticed that the expected sample size under Ho is 

high even when the null hypothesis is true. Therefore, 

we ran simulations with an aggressive futility boundary 

β1 = 0.25 (less than original 0.5). The sample size under 

Ho reduces from 335 to 265. However, the reduction is at 

the cost of power: The power is reduced from 84 to 79% 

when p10 = 0.1, p01 = 0.11. Therefore we still recommend 

using β1 = 0.5, which means that if at interim analysis 

the observed difference is at the non-inferiority margin, 

we will stop the trial for futility. 

Through these comparisons, we can conclude that 

the PF design with SSR is most preferable for the 

specificity design. 

Summary of Design 

For sensitivity, totally 86 positive patients with one 

interim analysis will provide 95% power for the 

superiority test. The error-spending function for the 

stopping boundary is αt
2
, where t is information time or 

sample-size fraction and the futility stopping rule is 

p1>β1 = 0.5. The design features a 43% early efficacy 

stopping probability if the alternative hypothesis is true, 

a 45% early futility stopping probability if the null 

hypothesis is true. The expected sample size is 68 and 67 

under Ha and Ho, respectively, an 18% savings in 

comparison to 82 pairs for the classic design. 

For specificity, we use the two-stage design, 

featuring sample size re-estimation at interim analysis 

with 161 pairs. The sample size re-estimation will be 

based on a 90% conditional power with a cap of 500 

pairs. The two-stage adaptive design has 94% power 

for the non-inferiority test with an NI margin of 7.5%. 

The error-spending function for the stopping boundary 

is αt
2
, where t is information time and the futility 

stopping rule is p1>β1 = 0.5. 

The design features a 33% early efficacy stopping 

probability when the alternative hypothesis is true, a 

47% early futility stopping probability if the null 

hypothesis is true. The expected sample size is 336 

and 335 under Ha and Ho, respectively, a 23% savings 

as compared to the classical design (N = 438) with the 

same 94% power. 

Given a 95% power for the sensitivity test and a 

94% power for the specificity test, which are assumed 

to be independent, the overall probability of getting an 

effectiveness claim for the diagnosis test (Method 2) 

is about 90%. 

The stopping rules for sensitivity and specificity are 

the same but sample size re-estimation is allowed for the 

design for specificity: 

If the interim p-value for the sensitivity 

(specificity) test is p1≤0.00625, the null hypothesis for 

sensitivity (specificity) will be rejected. If the p-value 

for sensitivity (specificity) test is p1>0.5, stop 

recruiting positive (negative) patients. If 

0.5≥p1>0.00625, we continue to recruit positive 

(negative) patients and the sample size will be 

reestimated for negative patients based on a 90% 

conditional power. At the final analysis, if the p-value 

for the sensitivity (specificity) is p1≤0.02173, then the 

null hypothesis for sensitivity (specificity) will be 

rejected. In the end, if both null hypothesis tests for 

sensitivity and specificity are rejected, then the new 

diagnosis test (Method 2) will be claimed effective. 
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Conclusion 

We have developed a simple method for adaptive 

trial design with binary paired data. We illustrate an 

application of the adaptive method for an image study, in 

which both superiority in sensitivity and non-inferiority 

in specificity are required. Using the adaptive design, the 

savings in the expected sample size is about 20%. The 

method can easily be used for other cases with paired 

data. For convenience, we have provided the SAS 

program for the classical and adaptive non-

inferiority/superiority designs. 
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Appendix: SAS Program 

/*––––––––––––––––––––––––––––––––––––––*/ 

/* Adaptive Noninferiority Design with Paired Data */ 

/* Ho: p10-p01-delNI <= 0 */ 

/* p10 and p01 are the % of disconcordant pairs */ 

/* Sample size: nPairs = nPairs1 + nPairs2 from stage 1 

and 2 */ 

/* ExpN = the expected sample size (pairs) 

nPairs/nRuns; */ 

/* nRuns = number of simulation runs */ 

/* alpha = one-sided significance level */ 

/* RejPr1 and RejPr2 = Rejection probability at stage 1 

and 2 */ 

/* Power = probability of rejecting Ho. */ 

/* alpha1, alpha2=, beta1 = Stopping boundaries on p-

scale. */ 

/*––––––––––––––––––––––––––––––––––––––*/ 

%Macro McNemarAD(alpha1 = 0.0026, alpha2 = 0.024, 

beta1 = 1, p10 = 0.125, 

p01 = 0.125, delNI = 0.1, nPairs1 = 154, nPairs2 = 154, 

nPairsMax = 600, 

TargetcPow = 0.90, w1 = 0.707, w2 = 0.707, nRuns = 

1000000); 

Data RnMvars; 

Retain Power1 Power2 Futile nPairs; 

alpha1 = &alpha1; alpha2 = &alpha2; beta1 = &beta1; 

p10 = &p10; p01 = &p01; delNI = &delNI; 

nPairs1 = &nPairs1; nPairs20 = &nPairs2; 

TargetcPow = &TargetcPow; nPairsMax = &nPairsMax; 
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nRuns = &nRuns; 

w1 = &w1/(&w1**2+&w2**2)**0.5; 

w2=&w2/(&w1**2+&w2**2)**0.5; 

Power1 = 0; Power2 = 0; Futile = 0; nPairs = 0; 

Do iRun = 1 To nRuns; 

nPairs = nPairs+nPairs1; 

n10Stg1 = RANBIN(0,nPairs1,p10); 

n01Stg1 = RANBIN(0,nPairs1,p01); 

p10obsStg1 = n10Stg1/nPairs1; 

p01obsStg1 = n01Stg1/nPairs1; 

epsStg1 = p10obsStg1-p01obsStg1-delNI; 

b = (2+p01obsStg1-p10obsStg1)*delNI-p01obsStg1-

p10obsStg1; 

c = -p01obsStg1*delNI*(1-delNI); 

p01Wave = (-b+sqrt(b*b-8*c))/4; 

sigma2Stg1 = 2*p01Wave+delNI-delNI**2; 

z1 = 0; 

If sigma2Stg1 ^= 0 Then z1 = 

epsStg1*Sqrt(nPairs1/sigma2Stg1); 

pValue1 = 1-CDF(‘Normal’,z1); 

T1 = pValue1; 

If T1<= alpha1 Then Power1 = Power1+1; 

If T1>beta1 Then Futile = Futile+1; 

If alpha1<T1<= beta1 Then Do; 

** Sample size reestimation based on conditional power 

**; 

Bval = (Probit(1-alpha2)-w1*Probit(1-pValue1))/w2; 

 nPairs2 = nPairs20; 

 If epsStg1>0 Then 

 nPairs2 = sigma2Stg1/epsStg1**2*(Bval-Probit(1-

TargetcPow))**2; 

 nPairs2 = Min(nPairsMax-nPairs1,nPairs2); 

 nPairs2 = Round(Max(nPairs2, nPairs20)); 

 n10Stg2 = RANBIN(0,nPairs2,p10); 

 n01Stg2 = RANBIN(0,nPairs2,p01); 

 p10obsStg2 = n10Stg2/nPairs2; 

 p01obsStg2 = n01Stg2/nPairs2; 

 epsStg2 = p10obsStg2-p01obsStg2-delNI; 

 b = (2+p01obsStg2-p10obsStg2)*delNI-

p01obsStg2-p10obsStg2; 

 c = -p01obsStg2*delNI*(1-delNI); 

 p01Wave = (-b+sqrt(b*b-8*c))/4; 

 sigma2Stg2 = 2*p01Wave+delNI-delNI**2; 

 z2 = 0; 

 If sigma2Stg2 ^= 0 Then z2 = 

epsStg2*Sqrt(nPairs2/sigma2Stg2); 

 pValue2 = 1-CDF(‘Normal’,z2); 

 T2 = 1-CDF(‘NORMAL’, w1*z1+w2*z2); 

 If T2<= alpha2 Then Power2 = Power2+1; 

 nPairs = nPairs+nPairs2; 

 End; 

End; 

ExpN = nPairs/nRuns; 

RejPr1 = Power1/nRuns; 

RejPr2 = Power2/nRuns; 

Power = RejPr1+RejPr2; 

FutilePr = Futile/nRuns; 

Output; 

Run; 

proc print data = RnMvars; 

 var alpha1 alpha2 beta1 nPairs1 nPairs20 nPairs2 w1 

w2 

 TargetcPow nRuns p10 p01 FutilePr RejPr1 RejPr2 

Power ExpN; 

Run; 

%Mend McNemarAD; 

Title2 “Classic 1-Stage Design: Type-I erorr rate p10-

p01-delNI = 0”; 

%McNemarAD(alpha1 = 0.025, alpha2 = 0, beta1 = 0, 

p10=0.1, 

  p01 = 0.175, delNI = -0.075, nPairs1=322, nPairs2 = 

0); 

Title2 “PF (rho=2), beta1 = 0.5 with SSR (Nmax>N0)”; 

%McNemarAD(alpha1 = 0.00625, alpha2=0.02173, 

beta1 = 0.5, p10 = 0.1, 

 p01 = 0.1, delNI = -0.075, nPairs1 = 161, nPairs2 = 

161, nPairsMax = 500); 


