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ABSTRACT 

Multi-state stochastic models are useful tools for studying complex dynamics such as chronic diseases. The 

purpose of this study is to determine factors associated with the progression between different stages of the 

disease and to model the progression of HIV/AIDS disease of an individual patient under ART follow-up 

using semi-Markov processes. A sample of 1456 patients has been taken from a hospital record at Amhara 

Referral Hospitals, Amhara Region, Ethiopia, who have been under ART follow up from June 2006 to 

August 2013. The states of disease progression adopted in the multi-state model were defined based on of 

the following CD4 cell counts: ≥500(SI); 200 to 499(SII); <200(SIII); and Death (D). The first three 

states are named as good. Female patients were 1.6 times more likely to move from state 2 to state 1 

than those of male patients (adjusted HR = 1.60, CI = 1.02-2.49). Patients, who is not drug addicted, 

were 2.49 times more likely to move from state 3 to state 2 than those of drug addicted(adjusted HR = 

2.67, CI = 1.52-4.68). Patients with tuberculosis were 2.67 times more likely to move from state 3 to 

state 4 than those with no tuberculosis (adjusted HR = 2.67, CI = 1.52-4.68). On the other hand, the 

probability of staying in same state until a given number of month decreases with increasing time. 

Multi-state modeling is a powerful approach for studying chronic diseases and estimating factors 

associated with transitions between each stage of progression. The major predictors of the intensity of 

transitions between different states of HIV/AIDS patients were gender, age, drug addicted and TB 

status. The dynamic nature of the AIDS progression is confirmed with particular findings that there is 

more likely to be in worse state than better one unless interventions are made. 
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1. INTRODUCTION 

The rate of spread of the HIV/AIDS epidemic has 

reached a shocking level. The expansion of the epidemic 

has now become a burning issue globally and this is 

particularly so more important in developing countries. 

The disease being one without any cure is still account 

for economic, social and health crises in many 

developing countries. On a global scale, the HIV 

epidemic has stabilized, although with unacceptably high 

levels of new HIV infections and AIDS deaths. An 

estimated 34 million people worldwide were living with 

HIV in 2011 among which 23.5 million are living in sub-

Saharan Africa. Ethiopia is one of the countries hardest 

hit by HIV/AIDS epidemic. An estimated of 790,000 

were living with HIV in 2011(UNAIDS, 2013). 

Most studies of AIDS have analyzed the factors 

associated with therapeutic failure, such as death, 

opportunistic disease, detect Viral Load (VL) or low 

levels of immunity, using semi parametric Cox models 

(Pradeep et al., 2010; Muralidhar et al., 2010; Keiser et al., 

2010; Koethe et al., 2010; Neuhaus et al., 2010). 

However, it is also important to consider chronicity and 

the relatively slow progression of the disease and to 

assess the multiple immune states resulting from the 

effect of the virus on the human immune system. The use 

of multi-state Markov models to analyze the factors 

associated with transitions between different states of 
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chronicity has been suggested for chronic diseases and 

the cost-effectiveness of various therapeutic regimes 

(Shih et al., 2007; Pan et al., 2007; Gil et al., 2007).  

Recent studies have shown that the predicted 

probability of patients that changing their status given 

his/her current status allows the measurements of 

medical scientific progresses due to the advances in the 

treatment of the HIV/AIDS (D'Amico et al., 2009). Since 

the discovery of HIV/AIDS, numerous mathematical 

models Blasi and Manca (2004) have been developed to 

describe infectious disease transmission dynamics, 

understand the mechanisms of epidemic propagation, 

assess the impact of interventions on public health or 

forecast the future of epidemics. Among recent papers in 

biomedicine, Masala et al. (2014; Goshu and Dessie, 

2013; Giuseppe et al., 2007) analyzed HIV/AIDS 

dynamic evolution as defined by CD4 levels from a 

macroscopic point of view by means of homogeneous 

semi-Markov stochastic processes. Numerical analyses 

of the homogeneous semi-Markov process are dealt by 

Corradi et al. (2004; Janssen and Manca, 2001). Other 

more readings include (Davidov and Zelen, 2000; 

Viladent and Van Ackere, 2007; Satten and Sternberg, 

1999; Baryarama et al., 2005).  

In this study, the author proposes homogeneous 

Markov process to study the evolution of HIV/AIDS. The 

homogeneous approach considered is a piecewise Markov 

process, with the transition intensity functions being step 

functions. The author is interested in determining factors 

associated with the progression between different stages of 

the disease. Several researchers have studied Markov 

processes with covariates and a procedure to obtain the 

parameters in a model with covariates has been 

reported (Maciulis et al., 2009; Gentlemann et al., 

1985; Mathieu et al., 2007; Pѐrez-Ocόn et al., 2001). The 

author also present the results of modelling of the waiting 

time of HIV/AIDS so as to predict the future waiting time 

of a patient. This is: The conditional probability of staying 

in the starting state until month t. 

2. MATERIALS AND METHODS 

2.1. Ethics Statement 

This investigation was conducted according to the 

principles expressed in the Declaration of Bahir Dar 

University, Ethiopia. It was approved by the research 

ethics committee at the University of Bahir Dar and all 

participants who agreed to participate in this study 

signed a consent form. 

2.2. Data and Model Descriptions 

The target population for this study was patients 

under the follow up of ART at Amhara Referral 

Hospitals, Amhara Region, Ethiopia from June 2006 to 

August 2013. Multistage sampling was used to select 

study subjects. First, all the Referral Hospitals in the 

Amhara Region were stratified in to Western and 

Eastern area. The calculated sample size was 

proportionally allocated to Eastern (n = 482) and 

Western (n = 874) areas respectively. The sampling 

frame consists of 65000 HIV/AIDS patients who have 

visited the hospitals since the initiation of ART. The 

study may consider all HIV infected patients under 

ART whose age is >15 years regardless of their 

treatment category during the study period in Amhara 

Referral Hospitals, Amhara Region, Ethiopia. 

The states of disease progression adopted in the 

multi-state model were defined based on the following CD4 

cell counts as in Oliveira et al. (2013; Giuseppe et al., 

2007): ≥500 cells/mm
3
(SI); 350 to 499 cells/mm

3
(SII); 

<350 cells/mm
3
(SIII); and death(D). The death state is 

considered to be an absorbing state-meaning that once a 

patient is in the death state she/he will never be in the others 

states and rather stays there forever. The time elapse 

between state transitions was determined using the 

difference (in months) between the dates of CD4 tests. 

In Fig. 1 the graph model is pictured. It shows all 

the immunological states a HIV infected patient can 

go into. All the states apart from than Death are inter-

related and also improvements are considered. It is 

also possible that an examination will show that the 

patient’s state has not changed. 

2.3. Modelling Semi-Markov Processes 

2.3.1. The Transition-Specific Semi-Markov 

Model 

A semi-Markov process is a stochastic process, {X(t): 

t≥0}, where an embedded Markov chain governs the 

state to state transitions of the process while a separate 

probabilistic mechanism determines the time spent in 

each state. It is assumed that the transition probabilities 

depend on the current state and the time spent in each 

state depends upon the current and next state. Several 

authors have discussed the use of Markov processes 

techniques in health. The author cites only some of 

them, i.e., (Jackson et al., 2003; D’Amico et al., 2005; 

Foucher et al., 2005; Barbu and Limnios, 2009).  
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Fig. 1. Communication between the states of the process 
 

In this part, Homogeneous Semi-Markov model are 

described by using the notation of  Foucher et al. (2005). 

On a complete probability space the author define 

two random variables. Xn:Ω→S be the stochastic process 

with state space S = {S1,S2…Sm} and Tn:Ω→ℜ be the 

time of the n
th

 transition, with Ω domain of the process 

and ℜ set real numbers. 

The kernel Q = [Qij] associated with the process and 

the transition matrix Pij of the embedded Markov chain is 

defined as follows Equation 1 and 2: 
 

1 1
( ) [ , | ]ij n n n nQ t P X j T T t X i

+ +
= = − ≤ =  (1) 

 
lim ( )ij ij
t

P Q t
→∞

=  (2) 

 
And it is necessary to introduce the probability that 

the process may leave state i in a time t as Equation 3: 
 

1

1

( ) [ | ] ( )

m

i n n n ij

j

H t P T T t X i Q t
+

=

= − ≤ = =∑  (3) 

 
Foucher et al. (2005) defines the density probability 

function, of the waiting time in state i before passing to 

state j as follow Equation 4: 
 

1 1

0
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where, θij is the parameter vector of the density 

probability function fij(,). The distribution and the value 

of parameters can vary between transitions. As usual in 

survival analysis, we deduce from fij(x) the 

corresponding survival function and hazard function, 

respectively Sij(x) and gij(x) Equation 5: 
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The hazard function of the semi-Markovian 
process corresponds to the probability of jumping 
towards state j, given that the process occupies state i 
for duration x Equation 6: 
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It is assumed that process spends some time in a 

given state and random time has distribution Gij(x), 

Weibull distribution: -The hazard function is defined as 

Equation 7: 
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Foucher et al. (2005) also defines the hazard function 

with covariates as follow:- 

1 2
0,( , ) ( )exp( ), ( , ,..., )ijnT

ij ij ij ij ij ij ij ij ijG x z G x z where z z z zβ= = the 

vector of nij covariates, specific to the transition i→j. In 

the same paper, they proved that the Parameter 

estimations and likelihood methods Equation 8: 
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where, δh,r is equal to 1 if the transition r is observed for 

the individual h and 0 if censored. 

2.3.2. Semi-Markov for Predicting the 

Probability of Waiting Time 

After solving the evolution equations of the semi-
Markov model, it is appropriate to give some concrete 
applications of these processes as models of evolution of 
the probability of waiting time of some system. 

In this part, Numerical solution of the Homogeneous 
Semi-Markov model is described by using the notation 
of Giuseppe et al. (2007). 

For any homogeneous semi-Markov process {X(t), t≥0}, 

the transition probabilities are given by (9) for which the 

solutions should be obtained using the progression (10): 
 

( ) [ ( ) | (0) ]ij t P X t j X iϕ = = =  (9) 
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Here δij represents the Kronecker delta. An approximate 

solution of (10) can be obtained using the general numerical 

integration formula given in Corradi et al. (2004). In the 

same paper, they proved that the numerical solution of the 

process converges to the discrete time HSMP described as 

an infinite countable linear system Equation 11: 
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where, h stands for the step measure of the 

approximation and: 
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In matrix form, Equation 12 becomes: 

 

1

( ) ( ) (( ) ) ( )

k
h h h
kh V h k h D kh

τ

τ τ

=

Φ − Φ − =∑  (13) 

 
The fact that the matrix Φ

h
(kh) is stochastic is 

already proved in Corradi et al. (2004; Janssen and 
Manca, 2001). For solving the evolution Equation 13, 
Corradi et al. (2004) proposed the following algorithm 
with suggested matrix form Equation 14: 
 
T T T

V DΦ =  (14)
 

 
The variables involved are the following: 

 
m = number of states of SMP 

T = number of periods to be examined for the 

transient analysis of SMP 

P = matrix of order m of the embedded Markov chain 

in SMP 

G
T 

= square lower-triangular block matrix of order 

T+1 whose blocks are of order m 

Q
T 

= It represents the kernel of SMP 

Φ
T 

= block vector of order T+1 the block of which are 

square matrices of order m 

D
T 

= block vector of order T+1 the block of which are 

the diagonal square matrix of order m 

V
T 

= square lower-triangular block matrix of order 

T+1whose blocks are of order m 

S
T 

= block vector of order T+1 the block of which are 

the diagonal square matrix of order m. The diagonal 

element of each block t are 

1

( )

m

ii ij

j

s Q t
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Given an epoch T is fixed, matrices G
T
 and P, the 

algorithm solves the linear system (14) for the unknown 

matrix Φ
T
 by means of a purely iterative procedure. The 

algorithm is: 

 

(0) Read the inputs: m, T, P, G
T
  

(1) Construct: Q
T
, V

T
, D
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(2) Given Φ(0)=D(0), solve for Φ
T
  

  

( ) ( )

( ) ( ) ( ) ( )

1

1

t t

t t s t s

for t to T

D

for s to t

V

end for

end for

−

=

Φ =

=

Φ = Φ + •Φ
 

(3) Print the results, Φ
T
, Q

T
 

 

In the above (• ) represent the usual row column 

matrix product (∗ ) stands for element by element 

product and (1) is the m-component’s sum vector. 

In this study, a computer program for solving the 

evolution equations is developed in the R statistical 

software version 2.6.2. 

3. RESULTS AND DISCUSSION 

3.1. Descriptive Statistics 

The study analyzed data obtained from 1456 AIDS 

patients during seven years of follow-up. Female 

represent about 58% of individuals and 42.5% of 
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transitions concerns patients over 40 years old. The 

proportion of a patients who is not drug addicted 

accounted a larger proportion in the sample (about 

52.0%) compared to those of addicted patients 

(42.5%). The information presented above is 

summarized in Table 1. 

3.2. Multivariate Analysis 

According to univariate strategies, 10 factors out of 

72 possible (6 covariates * 12 transitions), were selected. 

Finally, the multivariate model uses the 8 regression 

parameters given in Table 2. Women tend to move 

quickly from state 2 to state 1. More precisely, Female 

patients were 1.6 times more likely to move from state 

2 to state 1 than those of male patients (adjusted HR = 

1.60, CI = 1.02-2.49). Similarly, The hazard of 

moving from state 3 to state 2 for female patients is 

about 23% higher than for male patients (adjusted HR 

= 1.23, CI = 1.01-1.48). Patients, who is not drug 

addicted, were 2.49 times more likely to move from 

state 3 to state 2 than those of drug addicted (adjusted 

HR = 2.67, CI = 1.52-4.68). Patients with tuberculosis 

were 2.67 times more likely to move from state 3 to 

state 4 than those with no tuberculosis (adjusted HR = 

2.67, CI = 1.52-4.68). Similarly, patients with 

tuberculosis were 2.28 times more likely to move 

from state 2 to state 4 than those with no tuberculosis 

(adjusted HR = 2.28, CI = 1.29-3.99). The hazard of 

moving from state 3 to state 4 for a patients less than 

40 years of old were about 2% lower than those of a 

patient greater than 40 years old (adjusted HR = 0.98, 

CI = 0.97-0.99). Table 2 reveals this in detail. 

3.3. Results of Semi-Markov for Predicting the 

Probability of Waiting Time 

Table 3 and Fig. 2 shows that the result of semi-

Markov for predicting the probability of waiting time. 

The conditional probability that a patient stays in state 

one, two and three for at least 30 months are 0.167, 

0.186 and 0.199 respectively. It is increasing with 

increasing seriousness of the disease. Within the good 

states, it is more likely for a patient to stay in a worse 

state than in a better one. Of course, the death state is an 

absorbing state, i.e., once a patient enters the death state 

he/she stays in same state forever. It is also interesting to 

find out that the conditional probability of staying in 

same state until a given number of month decreases with 

increasing time. So there is a possibility of changing 

from one state to another which is a non-zero probability. 

Table 3 and Fig. 2 reveal this in detail. 

 

 
Fig. 2. The probability that a patient stays in same state of 

disease for at least t months 

 
Table 1. Characteristics of 1456 patients diagnosed with AIDS 

under Antiretroviral Treatment (ART) 

Variables Frequency (%) 

Sex [n (%)] 

Female 853(58.6) 

Male 603(41.4) 

Drug Addicted [n (%)] 

No 757(52.0) 

Yes 619(42.5) 

Age [n(%)] 

<40 922(63.3) 

≥40 534(36.7) 

Baseline Weight [n (%)] 

<60 kg 925(63.5) 

≥60 kg 531(36.5) 

TB Status [n (%)] 

Negative 1085(74.5) 

Positive 371(25.5) 

Baseline Immunological State [n (%)] 

SI: CD4≥500  348(23.9) 

SII: (200<CD4<500) 549(37.7) 

SIII: (CD4≤350) 559(38.4) 

Transition between States [n (%)] 

1→1 152(10.4) 

1→2 52(3.6) 

1→3 116(8) 

1→4 28(1.9) 

2→1 206(14.1) 

2→2 126(8.7) 

2→3 167(11.5) 

2→4 50(3.4) 

3→1 97(6.7) 

3→2 226(15.5) 

3→3 157(10.8) 

3→4 79(5.4) 
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Table 2. Multiple multi-state model in patients diagnosed with AIDS under ART, Amhara Referral Hospitals, Amhara Region, 

Ethiopia 

  Adjusted HR Adjusted HR 

Variables Transition (95% CI for its HR) p-value 

Sex 

Female Vs male* 2→1 1.60(1.02, 2.49) 0.040** 

 3→2 1.23(1.01, 1.48) 0.047** 

 3→4 0.54(0.34, 0.85) 0.008** 

TB status 

Positive Vs negative* 3→4 2.67(1.52, 4.68) 0.001** 

 2→4 2.28(1.29, 3.99) 0.004** 

Drug addicted    

No Vs Yes* 3→2 2.49(1.48, 4.19) 0.001** 

 3→4 0.96(0.97, 0.98) 0.019** 

Age 

≤40 Vs >40* 3→4 0.98(0.97, 0.99) 0.000** 

(*) Reference Category; (**) Hazard Ratio (HR) is a significant at α = 0.05 

 
Table 3. The probability that a patient stays in same state of disease for at least “T” months 

States T = 1 T = 5 T = 10 T = 15 T = 20 T = 25 T = 30 T = 35 T = 40 T = 50 T = 60 T = 70 

State 1 0.933 0.712 0.515 0.378 0.283 0.216 0.167 0.132 0.105 0.071 0.050 0.036 

State 2 0.936 0.725 0.534 0.401 0.306 0.237 0.186 0.149 0.120 0.080 0.056 0.039 

State 3 0.941 0.742 0.558 0.424 0.326 0.254 0.199 0.157 0.125 0.081 0.054 0.037 

 

3.4. Discussion 

The Markov process framework developed by Kay 

(1986), continued by Gentlemann et al. (1985) and 

applied by Anderson et al. (1991; Foucher et al., 2005; 

D'Amico et al., 2009; Giuseppe et al., 2007; Goshu and 

Dessie, 2013), for studying the effect of disease 

indicators on survival has been used in this study for 

constructing survival probabilities for different states of 

disease progression on HIV/AIDS, introducing non-

homogeneity in time. The present paper is also to 

estimate transitions between states based on CD4 counts 

and to predict the probability of waiting time in the 

starting state until month t. The use of the multi-state 

model, as compared to the Cox regression, improved 

substantially the understanding of variation in risk factors 

related to the evolution of this chronic. Foucher et al. 

(2005) used multi-state models to estimate transitions 

between states based on VL and CD4 counts. 

The most significant difference between studies that 

use multi-state models is the definition of the different 

states. Although CD4 count, VL and the incidence of 

opportunistic infections are used to assess AIDS 

progression from a clinical point of view, few studies 

have used these multiple variables. The high cost of the 

VL assays is a major obstacle to the adoption of this test, 

therefore restricting its availability compared to CD4 cell 

counts test. As a result, we found that gender, age, drug 

addicted and TB status were predictors of the intensity of 

transitions between different states. This result is similar 

to the result obtained in previous study (Oliveira et al., 

2013; Foucher et al., 2005). 

The conditional probability of waiting time in the 

starting state until month t decreases with increasing of 

time; while with increasing CD4 count, the probability of 

waiting time in the starting state until month t decreases. 

Specifically, AIDS patient who is in the third state of the 

disease may have a highest waiting time until month t 

compared to the patients who is in the first and second stage 

of the disease with a given time. This result is similar to the 

result obtained in previous studies (Goshu and Dessie, 

2013; Giuseppe et al., 2007; Corradi et al., 2004). 

4. CONCLUSION 

The semi-Markov process model is applied to capture 

the AIDS dynamic progression of a patient. The model 

considers the randomness of the time that a patient 

spends in a given state of the disease. The following can 

be concluded from this study. 

When estimating survival in patients with chronic 

diseases, such as AIDS, that involve the transition 

between different states, it is fundamentally important to 

consider progression between the different degrees of 

chronic. AIDS multi-state modeling is capable of 
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identifying the factors associated with each transition 

between the degrees of chronic defined by CD4 count 

ranges. The multi-state model analysis showed that the 

major predictors of the intensity of transitions between 

different states of HIV/AIDS patients were gender, age, 

drug addicted and TB status. 

Within the good states, it is more likely for a patient 

to stay in a worse state than in a better one at any time of 

the process. The death state is an absorbing state, i.e., 

once a patient is death state he/she stays in same state 

forever. The conditional probability of staying in same 

state until a given number of month decreases with 

increasing time. So there is a possibility of changing 

from one state to another with non-zero probability. 

The dynamic nature of the AIDS progression is 

confirmed with particular findings that there is more 

likely to be in worse state than better one unless 

interventions are made. It is recommendable to keep up 

the ongoing ART treatment services in most effective 

ways with the careful considerations of recent disease 

status of patients. 
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