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ABSTRACT 

Motivation for this research work started while helping a hospital administrator to assess whether patient oriented 
activity duration, X≥0 is reflecting the service’s efficiency? Higher value of the sample mean duration, X implies 
lesser productivity in the hospital and more healthcare cost. Likewise, larger value of sample dispersion, sx

2
 in the 

service durations is an indicator of lesser reliability and inefficiency. Of course, the dispersion, sx
2
 in a healthcare 

hospital operation could be due to diverse medical complications among patients or operational inefficiency. 
Assuming that it is not the diverse medical complications of patients, how should the pertinent information from 
data be extracted, quantified and interpreted to address inefficient operation? This is the problem statement for 
discussion in this article. To be specific, in an inefficient hospital operation, the sample dispersion and mean of 
service durations are likely to be highly correlated. Their correlation is a clue to identify an inefficient operation 
of a hospital. To compute the correlation, currently there is no appropriate formula in the literature. The aim of 
this article is, therefore, to derive a working formula to compute the correlation between sample dispersion and 
mean. The dispersion is too valuable statistical measure to quickly dispense, not only in healthcare operations but 
also in engineering, economics, business, social or sport applications. The approach starts first in quantifying a 
general relationship between the dispersion and mean in a given data. This relationship might range from a linear 
to a quadratic, cubic or higher degree. Suppose that the dispersion, σ

2 
is a function, f(µ)of the mean, µ of patient 

oriented activity durations. Specific functionality depends on the frequency pattern of the data. The tangent at a 
locus of their relationship curve is either declining or inclining line with an angle θ whose cosine value is indeed 
the correlation between the mean, x and dispersion, sx

2
. An expression to compute the angle is nowhere seen in 

the literature. Therefore, this article derives a general expression based on geometric concepts and then obtains 
specific formula for several count and continuous distributions. These expressions are foundations for further data 
analyses. To initiate, promote or maintain an efficient service operation for patients in a hospital, practical 
strategies have to be formulated based on the cluein the form of correlation value. For this purpose, a one-to-one 
relationship between sample dispersion and mean could be utilized to improve the service efficiency. In this 
process, a formula is developed to check whether the model parameters are orthogonal. The curvature and the 
shifting angle in the relationship between dispersion and mean are captured when the mean changes one unit. 
Both Poisson and exponential distributions are illustrated to comprehend the concepts and the derived expressions 
of this article. Efficient healthcare service is a necessity not only in USA but also in other nations because of an 
escalating demand by medical tourists in this era of globalized medical treatment. A reformation to the entire 
healthcare field could be achievable with the help of biostatical concepts and tools. To extract and comprehend 
pertinent data information in the patient oriented activity durations, the correlation is a tool. The data information 
holds the key to make the much needed reformation and operational efficiency. This article illustrates that the 
correlation between the data mean and dispersion provides clues. The correlation helps to assess healthcare 
service efficiency as it is demonstrated in this article with data. Similar applications occur in engineering, 
business and science fields.  
 
Keywords: Data Mean and Dispersion, Curvature, Healthcare Management, Shifting Angle 

1. INTRODUCTION 

The dispersion, σ
2
 is well connected to the mean, µ in 

probability distributions (Evans et al., 2000). Any one of 

these  could  be  an  underlying   model   for  the  data  to 
be   analyzed   and   interpreted.  The  relation,  f(µ) 
between   the  dispersion   and  mean   is   useful   in   
data   analysis.   This   article   demonstrates   it.  
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Table 1. Summary of correlation, 2
x,s
r for distributions. 

Distribution Correlation, 2
x,s
r  

Beta 
2

2 2 2

{(1 x)x}

(1 2x) s {(1 x)x}

−

− + −

 

Beta binomial; β≥1 

2

2 2

(n 2x) x (n 1) 2x
{ }

x(n x) ( x)(n x)
; 1

(n 2x) x (n 1) 2x
s { }

x(n x) ( x)(n x)

−

−

− − + β +
+

− β + β +
β ≥

− − + β +
+ +

− β + β +

 
Binomial (n=1 for Bernoulli) 

2

2 2 2

{(n x)x}

(n 2x) s {(n x)x}

−

− + −

 
Consul; β≥1 

2

2

2 2

2

2 x 1 1
{ }

x x 1
; 1

2 x 1 1
s { }

x x 1

−

−

β −
+

β −
β≥

β −
+ +

β −

 

Discrete uniform 
2

2 2 2

{x(x 1)}

(2x 1) s {x(x 1)}

+

+ + +

 Erlang 
2

2 2

x

4s x+

 F; β≥1 
2

2 2 2

{x[ (x 1) 2]}
; 1

{3 (x 1) x 6} s {x[ (x 1) 2]}

β − +
β ≥

β − +β + + β − +

 Gamma (β≥1 is exponential) 
2 2

2 2 2

x
; 1

4s x

β
β≥

+β

 
Geeta; β≥1 

2

2 2

2x 1
{ }
x(x 1) x 1

; 1
2x 1

s { }
x(x 1) x 1

−

−

− β
+

− β −
β ≥

− β
+ +

− β −

 

Generalized binomial; β≥0 
2

2 2 2 2

{n 2[ 1]x}
; 0

{n [ 1]x} x s {n 2[ 1]x}

−

−

+ β−
β ≥

+ β− + + β −

 Generalized Katz; β≥0 
2

2 2 2

{x( x)}
; , 0

{3 4 x} s {x( x)}

α +β
α β ≥

α + β + α +β

 Geometric 
2

2 2 2

{x(x 1)}

(2x 1) s {x(x 1)}

−

+ + −

 Hyper geometric; N≥1 

2

2 2

n 2x (n 1)N 2x
{ }
x(n 2x) (nN x)(N x)

;N 1
n 2x (n 1)N 2x

s { }
x(n 2x) (nN x)(N x)

−

−

− + −
+

− − −
≥

− + −
+ +

− − −

 
Intervened Poisson (β = 0 for positive Poisson) 

2

2 2 2

{x(x )}
; 0

(x ) s {x (x )}

− βθ
β ≥

+ βθ + − βθ

 
Inverse Gaussian; β≥0 

2

2 2 2

{x( x)}
; 0

( 2x) s {x( x)}

β +
β ≥

β + + β +

 
Lagrangian Poisson; β≥0 

2

2 2 2

{x}
; 0

{1 } s {x}
β ≥

− β +

 

Lognormal; β≥0 
2

2 2 2 2 2

{x(x )(x )}
; 0

4(2x ) s {x(x )(x )}

+β −β
β ≥

−β + +β −β
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Table 1. Continue  

Lomax; β≥0 
2 2 2

2 2 2 2 2 2 2

{x (1 x )}
; 0

4(1 2 x ) s {x(1 x )}

− β
β ≥

− β + − β

 

Neyman Type A; β≥0 
2

2 2 2

{x( 2x)}
; 0

{ 2x} s {x( 2x)}

β +
β ≥

β + + β +

 

Noncentral chi squared (for chi-squaredβ = 0) 
2

2 2

(x )
; 0

s (x )

+β
β≥

+ +β
 

Pareto; β≥0 
2

2 2 2 2 2

{x(x )(2 x )}
; 0

4(3 x x ) s {x (x )(2 x)}

− β β −
β ≥

β − β − + − β β −

 Poisson 
2

2 2

x

s x+

 
Power function; β≥0 

2

2 2 2

{x( x)}
; 0

(2 3x) s {x( x)}

β−
β≥

β− + β−
 

Random walk; β≥0 
2

2 2

2 2

2 2

1 2x
{ }
x x

; 0
1 2x

s { }
x x

−

−

+
−β

β ≥

+ +
−β

 Uniform; β≥0 
2

2 2

{(x )}
; 0

4s {(x )}

−β
β ≥

+ −β
 

 
Table 2. Curvature c and shifting angle φ for distributions 

Distribution f (x)  Curvature Shifting angle 

  
2

x

2

xx

c f (x){[ ln f (x)]

[ ln f (x)]}

= ∂

+ ∂

 
2

x

c

{1 [f (x) ln f (x)] }
φ =

+ ∂
 

Beta; β≥0 
2x (1 x )

; 0
( x )

−
β ≥

β +

 

2(1 x) x
6{ { ) }

( x) x

−
−

β + β +

 

2

c

x(1 x) x
{1 [ (2 )] }

( x) x

−
+ +

β + β +

 
Beta binomial; β≥0 

x x
x(1 )( ); 0

n n x

β+
− β >

β+
 

2

2
{n 3x

(n x)

( x)([n 2]x) n x )

x(n x)
}

(n x)

− β − +
β +

β + + − −

− −

β +

 

2

c

( x)(n 2x)

x(n x)(n 1)

(n x)
{1 [ ] }

(n x)

β + −

β − −
+

β +
+

β +
 

Binomial (n=1 for Bernoulli) x
x(1 )

n
−

 

2

n
−

 

2

c

{1 (1 x / n) }
φ =

+ −
 

Consul; β≥0 
x(1 x)(1 [ 1]x)− + β−

β

 

2(1 [ 1][3x 1])+ β− −

β

 2

2

c

{1

(1 [ 1]x)(2x 1)

( 1)x
[ ] }

+

+ β − −

+ β −

β

 

Discrete uniform 
x(x 1)

3

+

 

2

3

 

2

c

2x 1
{1 [ ] }

3

+
+

 Erlang, β≥0 
2

x

β

 

2

β

 

2

c

4x
{1 }+

β

 

F; β≥0 3 [x 1] 2
x ( )

2

β − +

 

3x( [2x 1] 2)β − +

 

4 2

c

x [ x 3 6]
{1 }

4

β − β+
+

 Gamma (β≥0 for exponential) 2
x

β

 

2

β

 

2

c

4x
{1 }+

β

 



Ramalingam Shanmugam / American Journal of Biostatistics 2 (2) (2011) 36-43 

 

39 Science Publications

 
AJBS 

Table 2. Continue  

Geeta; β≥0 x(2 x 1)(x 1)β − −

 

2 (3x 2)β −

 

2

c

{1 [( x 1)(x 1)

x (x 1) x ( x 1)] }

+ β − −

+β − + β −

 Generalized binomial(β = 0 for n ( 1)x
x[ ]

n

+ β−  2( 1)

n

β −

 

2

c

n 2( 1)x
1 [ ]

n

+ β−
+

 

binomial,β = 1 for inverse binomial) 

Generalized Katz α>0;β≥0 
3

2

(1 )x
; , 0

− β
α β >

α
 

2

2

6 xβ

α

 

2

2

2

c

x (3 4 x)
{1 [ ] }

φ =
α + β

+
α

 Geometric x(x 1)+

 

2

 

2

c

{1 [1 2x] }+ +

 

Hyper geometric x N n
x (1 )( )

n N 1

−

−

−

 

2(N n)

n(N 1)

−

−

−

 

2

c

(N n)(n 2x)
{1 [ ] }

n(N 1)

φ =
− −

+
−

 Intervened Poisson (β = 0 for positive 
x

[x (1 ) ]

[x ]

−

− +β θ

−βθ

 2

  

2

c

{1 [1 2(x ) ] }+ − −βθ + θ
 

poisson) 

 

Inverse binomial; β>0 x(x )+ β

β

 

2

β

 

2

c

2x
{1 [1 ] }+ +

β

 Inverse Gaussian; β≥0 3
x

β

 

6x

β

 

4

2

c

9x
{1 }+

β

 Lagrangian Poisson; -1<β<1 
2

x

(1 )− β
 

0

 

0

 
Lognormal; β>0 

2 2 2

2

x (x )−β

β

 

2

2

6x
2( 1)−

β

 

2

2 2

2

c

2x
{1 4x [ 1] }+ −

β

 Lomax; β≥0 21 x
( )x
1 x

+β

−β

 

2

[1 2 x][1 2 x]
2( )

[1 x]

− β + β

−β

 

2 2

2

2

c

2x(1 2 x )
{1 [ ] }

(1 x)

− β
+

− β

 Neyman Type A, β>0 x( x)β+

β

 

2

β

 

2

c

2x
{1 [ ] }

β+
+

β

 Noncentral chi squared (for 2(x ); 0+ β β ≥  0 0 

chi-squared β = 0 

 Pareto; β≥0 
2x(x )

(2 x)

−β

β−

 

2

2

2(x )
{1

(2 x)

2( ) }
2 x

− β
+

β −

β

β −

 

2

2 2

c

2(x )
{1 [

(2 x )

( x [x ] )] }

− β
+

β −

β − − β  
Poisson x  0 0

 Power function; β>0 
2

x x
( )
2 x

β −

β β −

 

2

2(2 5x)

(2 x)

β−

β−

 

2

c

(2 3x )x
{1 [ ] }

(2 x )

β −
+

β β −

 Random walk; β>0 2x
x[( ) 1]−

β
 

2

4x

β

 

2 2

c

x
1 [3( ) 1]+ −

β

 Uniform; β>0 2
(x )

3

− β

 

2

3

 

2

c

4 (x )
{1 }

9

− β
+
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In fact, the data mean, x and dispersion,
2

x
s are correlated. 

Their correlation is indicated by 2
x,s
r . Neither a textbook 

nor a journal article provides explicit expression to 

compute their correlation or how to use it in data 

analysis. This article derives geometrically an 

expression for the correlation. Specific expressions to 

compute the correlation for specific count and 

continuous probability distributions are obtained and 

displayed in Table 1. Applied data analysts and 

healthcare decision makers could compute and use the 

correlation to assess whether the healthcare services are 

efficiently done after the selection of an underlying 

distribution for the data.  
Also developed in this article are a general expression 

for the curvature (c) in the relation between dispersion and 
mean and the shifting angle, φ of the curvature. The 
curvature is an interesting concept. For example, the 
curvature of a circle is reciprocal to its radius and 
consequently, the smaller circle bends quickly with higher 
curvature. However, particular formulas are obtained for 
potential count or continuous probability distributions 
which might be appropriate for a given data. The 
curvature and shifting angle (Table 2) provide a paradigm 
in healthcare service efficiency assessment as illustrated. 

2. GEOMETRIC DERIVATION OF 

CORRELATION BETWEEN 

DISPERSION AND MEAN 

Suppose that a random data x1,x2,…..xn is drawn 

from a probability distribution g(x|µ,σ
2
) which governs 

the chance mechanism of the collected data, where µ and 

σ2are mean and dispersion parameter respectively. The 

data mean, x and dispersion, 2

x
s are natural (in fact, 

maximum likelihood estimator) of the mean and 

dispersion parameter. These estimators are correlated. 

There is no formula in the literature to compute the 

correlation. To visualize their correlation, consider the 

configuration of the relation, σ
2
 = f between dispersion, 

σ
2
 and mean, µ in Fig. 1. 

In the case of normal distribution, the function f(µ) 
does not exist as dispersion, σ

2
 and mean, µ are 

disconnected and independent. In other symmetric non-
normal distributions, the dispersion, f(µ) and mean, µ 
parameters could be disconnected but not necessarily 
independent. Their data counterparts s

2
 and x could be 

correlated but there is no formula in the literature to 
compute it. In non-symmetric non-normal count or 
continuous distributions in Table 1, the function f (µ) 
does exist as dispersion, σ

2
 and mean, µ are connected 

and dependent. The non-orthogonality between them is 
captured by Cosθ where the angle θ is acute or obtuse 
depending on whether f(µ)< or f(µ)>µ.  

For an example, when f(µ) = µ as in the Poisson 

distribution, the angle is 45°C. To derive a general 

formula, the geometric view is helpful. To derive an 

expression for Cosθ, note that the opposite side of the 

angle has length f (µ). To find the hypotenuse, why not 

first obtain the tangent’s equation and it is y-f(µ) = (x-

µ)∂µf(µ) where the notation ∂mf(m)  denotes the derivative 

with respect to m. This tangent crosses the horizontal axis 

at a location (µ0,0) and consequently the horizontal 

distance between the locations (µ0,0) and(µ0,0) is µ-µ0 = 

[∂µ In f(µ)]
−1
. Hence, the cosine angle is the elevation of 

the dispersion with reference to the mean axis and it is: 

 
1 2 2 1/2cos [(1 [ ln f ( )] ) ]− −

µ
θ = + σ ∂ µ  (1) 

 

 
 

Fig. 1. Dispersion y = f(µ)
 
in terms of mean x =µ

 
with angle θacute

 
or θobtuse 
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which, is dynamically shifting, depending on the mean 

location and the oscillation of the curve f (µ). 

Consequently, an expression could be derived for the 

finite correlation, 2
x,s
r as in (2) between the data 

dispersion, 2

x
s and mean, x . The correlation could be 

computed for a given data using (2). That is: 
 

2

2 2 1/ 2

xx,s
ˆr cos (1 s [ ln f (x)] )−= θ = + ∂  (2) 

 

The curvature, 2

xx
c f (x)= ∂ of the relation connecting 

dispersion and mean could be derived using (2) as 

follows. Note that: 
 

2

2

2

x

2

x2 2 3 x,s

x,s

2 2

x xx

c f (x){[ ln f (x)]

s
r }

(s r )

f (x){[ ln f (x)] [ ln f (x)]}.

= ∂

+ ∂
−

= ∂ + ∂

 (3) 

 

The shifting angle,
2

xx

2

x

f (x)

1 [ f (x)]

∂
φ =

+ ∂
 is then: 

 
2 2

x xx

2

x

f (x){[ ln f (x)] [ ln f (x)]}
.

{1 [f (x) ln f (x)] }

∂ + ∂
φ =

+ ∂
 (4)  

 
These results are explained with Poisson example in 

the count category and exponential example in the 

continuous category below.  

3. POISSSON EXAMPLE 

For an example in count distributions category, 

consider the Poisson distribution f(x|λ) = e
-λ
λ
x
|x!;x = 

0,1,2,…;λ>0 in which the dispersion, σ
2 
and mean µ are 

respectively λ. Hence, f(µ) = µ and the non-

orthogonality between the dispersion and mean, 

according to (1), is 1
cos [ ]

1

− λ
θ =

+ λ
, an acute angle. The 

correlation, according to (2), between the Poisson data 

dispersion and mean is 2

2

2 2x ,s

s

r

s x

=

+

. The curvature in 

the Poisson distribution, according to (3), is c = 0 and the 

shifting angle of the Poisson curvature, according to (4) 

is φ = 0. 

4. EXPONENTIAL EXAMPLE 

For an example in continuous distributions category, 

consider the exponential 

distribution
x

1
f (x ) e ;x 0; 0

−
λλ = > λ >

λ
 in which the 

dispersion, σ
2
 and mean µ are respectively λ

2
 and λ. 

Note that f(µ) = µ
2
 and the non-orthogonality between 

the dispersion and mean, according to (1), is 

1
cos [2 ]

5

−
λ

θ = , an acute, 45
0
 or obtuse angle depending 

on λ<1,λ = 1 or λ >1 respectively. The correlation, 

according to (2), between the exponential distribution 

data dispersion and mean is 2

2

2 2x ,s

s
r

s 4x
=

+

, where 2
x,s
r is 

less than one. The curvature in the exponential 

distribution, according to (3), is c = 2 and the shifting 

angle of the exponential distribution curvature, according 

to (4) is
2

2
( )
1 4x

φ =
+

. 

The   statistical   community   and   data   analysts 

in   applied    disciplines   have   expressed   interest  

in   dispersion   issues   and   have   been   discussing 

it   as   under,  equal  or   over   dispersion   (Lindsey, 

1999).   However,   for  the   sake   of   users  in 

applied   disciplines,   specific   expressions   are 

derived   and   displayed   in  Section   3   and   are 

illustrated   with   healthcare   data in   Section 4.  

5. EXPRESSIONS FOR COUNT AND 

CONTINUOUS DISTRIBUTIONS 

Particular expression of the correlation 2
x,s
r using (2), 

the curvature c using (3) and the shifting angle, φ of the 

curvature using (4) for several distributions are derived 

and displayed alphabetically in Table 1 and 2, where β 

denotes a nuisance parameter.  

6. HEALTHCARE APPLICATION: ARE 

PATIENTS EFFICIENTLY SERVED? 

The results of Section 3 are illustrated using patient 
service activities data in Ozcan (2005) and other data.  

First, consider the data in Table 3 about the number, 

X of emergency pickups from home in Austin, Texas 

over the weekdays of the months in 2011. Clearly, the 

pickups are Poisson event because of rarity. The Poisson 

correlation,
2

2 2

x

s x+

 is displayed with the data. Notice 

that all correlations between the dispersion and mean in 

the data are above 0.5. There is no curvature for Poisson 

data and hence no shifting angle. 
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Table 3. Correlation, 2
x,s
r in Poisson data 

Year 2011 Mon Tue Wed Thurs Fri Sat Sun x  s2 2
x,s
r  

January 12.00 11.00 12.00 9.00 13.00 12.00 9.00 11.140 2.48 0.90 
February 9.00 7.00 6.00 8.00 7.00 9.00 5.00 9.214 2.24 0.90 
March 8.00 8.00 7.00 9.00 19.00 11.00 6.00 8.500 19.20 0.55 
April 4.00 3.00 4.00 5.00 6.00 4.00 8.00 7.286 2.81 0.85 
May 8.00 7.00 6.00 9.00 10.00 7.00 5.00 6.143 2.95 0.82 
June 18.00 21.00 18.00 19.00 21.00 20.00 17.00 13.290 2.48 0.92 
July 5.00 6.00 5.00 7.00 8.00 6.00 9.00 12.860 2.29 0.92 
August 8.00 5.00 6.00 8.00 9.00 10.00 12.00 7.429 5.57 0.76 
September 4.00 3.00 3.00 5.00 6.00 5.00 12.00 6.857 9.62 0.65 
October 6.00 5.00 5.00 4.00 6.00 7.00 11.00 5.857 5.24 0.73 
November 9.00 11.00 12.00 11.00 9.00 7.00 4.00 7.643 7.67 0.71 
December 12.00 9.00 12.00 10.00 19.00 11.00 18.00 11.000 15.30 0.65 
x  8.58 8.00 8.00 8.67 11.10 9.08 9.67 

s2 15.90 23.80 20.00 15.20 31.00 18.30 20.80 

2
x,s
r  0.71 0.57 0.62 0.73 0.59 0.69 0.67 

# ambulatory pickups in a hospital at Austin, Texas during 2011 (Poisson data) 
 

Table 4. Correlation, 2
x,s
r in exponential data about time spent in a hospital by eleven patients 

Patient Activity P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 x  s
2 

2
x,s
r  φ 

Registration 3.00 6.00 4.00 8.00 4.00 5.00 4.00 6.00 4.00 6.00 4.00 4.19 2.09 0.86 0.02 
Co Payment 7.00 9.00 11.00 8.00 12.00 9.00 6.00 11.00 9.00 12.00 10.00 9.45 3.87 0.92 0.01 
Waiting For Nurse 12.00 15.00 17.00 12.00 11.00 17.00 12.00 19.00 12.00 20.00 18.00 15.00 11.00 0.19 0.00 
Vital Signs 9.00 8.00 11.00 12.00 9.00 8.00 10.00 12.00 8.00 12.00 11.00 .10 2.80 0.95 0.00 
Waiting For Exam Room 12.00 15.00 12.00 14.00 21.00 18.00 11.00 16.00 9.00 14.00 18.00 14.50 12.50 0.90 0.00 
Placement In Exam Room 3.00 5.00 4.00 6.00 3.00 5.00 3.00 6.00 5.00 4.00 7.00 4.64 1.85 0.86 0.02 
Wait For Physician 10.00 17.00 21.00 11.00 13.00 15.00 14.00 12.00 19.00 15.00 9.00 14.20 14.00 0.88 0.00 
Examination 18.00 15.00 19.00 22.00 18.00 12.00 19.00 21.00 16.00 21.00 17.00 18.00 8.60 0.95 0.00 
Test Order 4.00 7.00 3.00 5.00 4.00 11.00 9.00 12.00 11.00 14.00 9.00 8.09 13.90 0.74 0.01 
Referral Request 11.00 10.00 16.00 9.00 8.00 9.00 7.00 7.00 9.00 7.00 6.00 9.00 7.60 0.85 0.01 
Follow up Entry 3.00 5.00 3.00 4.00 3.00 4.00 4.00 5.00 3.00 3.00 5.00 3.82 0.76 0.91 0.03 
x  8.36 10.20 11.00 10.10 9.64 10.30 9.00 11.50 9.55 11.60 10.40 10.10 1.01 

s
2
 23.70 20.40 45.20 25.50 37.30 23.40 23.80 29.10 23.70 36.70 26.50 28.60 59.60 

2
x,s
r  0.65 0.75 0.63 0.71 0.62 0.73 0.68 0.73 0.70 0.69 0.71 

φ 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00  

Ozcan (2005) Quantitative Methods in Health Care Management, New York: John Wiley Press (Hospital outpatient clinic efficiency) X = 
Minutes spent for patient (exponential data) 
 
Table 5. Correlation, 2

x,s
r in binomial data (number of patients 

spending more than 10 minutes in activities) 

Patient activity X 

Registration 0.00 
Co Payment 5.00 
Waiting for Nurse 11.00 
Vital Signs 5.00 
Waiting for Exam Room 10.00 
Placement in Exam Room 0.00 
Wait for Physician 9.00 
Examination 11.00 
Test Order 4.00 
Referral Request 2.00 
Follow up Entry 0.00 
x  5.18 

s
2
 19.80 

2
x,s
r  0.98 

φ -0.01 

Next,  the  data  from  Ozcan  (2005) about the time, 

Y spent by patients in a hospital for several activities 

are considered. The exponential distribution is a 

natural choice for the data. The data and the 

exponential correlation,
2

2 2

x

4s x+

are displayed in Table 

4. X = # patients spending more than 10 min in ten 

services. 

Notice the exponential dispersion and average are 

highly correlated in all activities and for all patients 

implying that more dispersion occurs among the 

patients who spent more time. The curvature is 2 for 

the exponential data but the curve is shifting by an 

angle,
2

2

{1 4x }+

that changes along with mean, x . 
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Table 6. Correlation, 2
x,s
r in geometric data (# completed activities before one taking more than 10 min) 

X  = # activities P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 

 2.00 2.00 1.00 2.00 1.00 2.00 2.00 1.00 2.00 1.00 2.00 

 1.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 3.00 0.00 0.00 

 2.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 

 1.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

   0.00 0.00 0.00 0.00  1.00  1.00 2.00 

   1.00     0.00  0.00 

   0.00     0.00  0.00 

   0.00 

   1.00 

x  1.50 1.00 0.44 0.60 0.60 0.80 1.00 0.29 1.25 0.29 0.80 

s
2
 0.33 0.67 0.28 0.80 0.30 0.70 0.67 0.24 2.25 0.24 1.20 

2
x,s
r  0.54 0.00 0.97 0.80 0.91 0.30 0.00 0.70 0.14 0.70 0.24 

φ 0.12 0.20 0.44 0.34 0.34 0.26 0.20 0.58 0.15 0.58 0.26 

X = # activities completed before an activity taking more than 10 min 

 

Next, consider the number among n = 11patients 

spending more than 10 min in activities at a hospital and 

the data follow a binomial distribution. The 

correlation,
2

2 2 2

{(n x)x}

(n 2x) s {(n x)x}

−

− + −
 and shifting 

angle,
2

c

{1 (1 2x) }
φ =

+ −
are shown in Table 5. The 

shifting angle of the curvature is less. The correlation 

between the binomial mean and dispersion is 0.97, a 

large amount. It means the dispersion increases along 

with mean spending time. 

Next, consider geometric distributed number, Y of 

completed activities by n = 11 patients before 

experiencing an activity which took more than 10 min in 

a hospital as displayed in Table 6. The 

correlations,
2

2 2 2

{x(x 1)}

(2x 1) s {x(x 1)}

−

+ + −

between the 

geometric mean and dispersion are low only for patients 

2, 6, 7, 9 and 11 with the moderate shifting 

angle,
2

2

{1 [1 2x] }+ +

of their curvature. The curvature of 

geometric distributed data is 2. 

To be brief, other distributions are not illustrated. The 

data from other distributions could be similarly 

illustrated with appropriate healthcare management data. 

7. CONCLUSION 

The expression of this article to compute the 

correlation between sample dispersion and mean is a 

foundation to build a regression methodology for 

analyzing healthcare cost data which might follow any 

one of the distributions that are listed in Table 1. A 

regression methodology helps to identify or assess the 

importance of the predictors of the healthcare cost. 
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