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Abstract: Problem statement: This article considers the analysis of multivagieggression experiment
that is used frequently in variety of applicatioesearch such as psychiatric epidemiologic studies.
study concerned with multivariate regression madethich the responses were correlated in particula
ways for both standard and non-standard multivaniaddel structures. Our objective is to find rdkab
procedure that can be used to guide the selecfitimeobest multivariate regression model that s t
right covariance structure and in the same time thasright multivariate model structure for both
standard and non-standard multivariate model strastApproach: In this study, we were proposing
and evaluating a new three stages procedure thdtl dme used to guide the selection of the best
multivariate regression model that has the rightaciance structure and in the same time has thwe rig
multivariate model structure using bootstrap siriolka procedure.Results: The simulation results
indicated that the performance of the new proceduralentifying the right multivariate regression
model that has the right covariance structure arithé same time the right multivariate model sticest
from both standard and non-standard multivariate dehostructures was excellent overall.
Conclusion/Recommendations. We recommended using the new procedure as sttoasito guide the
selection of the best multivariate regression malig has the right covariance structure and irstime
time has the right multivariate model structure.
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INTRODUCTION data analysis different from univariate multipladar
regression data in term of the prediction of an
The multivariate linear regression model composedndividual response component given some or athef
of multiple correlated dependent variables for eachemaining components (McCullagh, 2006).
subject, in addition to a set of predictor variable Although the MIXED procedure of the SAS
Multivariate linear regression allows researcherfitta  System is used as tools for fitting mixed effectsl a
single model for each response, taking into acctheit repeated measures models, it is also a very ussdlil
correlation among the multiple responses on a givefor fitting multivariate regression. The most adisayes
subject. The basic assumptions of multivariateof using the MIXED procedure instead of stander
regression are multivariate normality of the realdy  multivariate procedure are MIXED uses observations
homogenous variances of residuals conditional omave incomplete responses, Mixed has the ability to
predictors, common covariance structure acrosgleal with non-stander (e.g., multiple design)
observations and independent observations. Whese themultivariate models and MIXED enables researchers t
assumptions are satisfied, the coefficients will befit correlated error model with different covarianc
unbiased, the least-squares estimates will havetructure. The MIXED procedure of the SAS System
minimum variance and the relationships among théhas different selections for modeling the covaréanc
coefficients will reflect the relationships amonget structure. The MIXED procedure of the SAS System
predictors. In general, this is what REG procedofre can be used to develop either Maximum Likelihood
the SAS System is set up to do. When we deal Wigh t (ML) or Restricted Maximum Likelihood (REML)
multivariate linear regression model a companiothto  estimates in order to complete the analysis of the
estimation problem is the model selection problemmultivariate regression, where REML estimation are
which consists of choosing an appropriate modehfeo  generally preferred to ML. A lot of effort is uslal
class of candidate models to characterize thewtatar needed to decide what the suitable covariancetateic
study. The covariance structures of the observedf the data is at the beginning of the statistasalysis.
multiple responses makes multivariate linear resioes ~ Statisticians often use information criteria sushfdC
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(Akaike, 1974), BIC (Schwarz, 1978), CAIC In general form, the mixed effects linear modei ca
(Bozdogan, 1987), HQIC (Hannan and Quinn, 1979) tde written as (McCulloch and Searle, 2001, Litseil.,
guide the selection of the covariance structummixed  1996):

models (AL-Marshadi, 2007; Keselmaa al., 1999;

Littell et al., 2000; Singer, 1998) Many studies haveY = XB +ZU + e 1)
investigated performance of those information date

in selection of the covariance structure considgrin Where:

repeated measures models (Keselnshnal., 1999; B = px1 vector of fixed effects

Ferronet al., 2002; Gomezt al., 2005; Guerin and U = gx1 vector of random effects

Stroup, 2000). One study compared the followindZ Al e = nx1 vector of residuals

BIC, AICC and RIC to select stander multivariate X = nxp design matrix for fixed effects

regression model with the stander covariance streict Z = nxp design matrix for random effects

(Azari et al., 2006). A simulation study by Beal (2005)

compared different information criteria methodsSiS U~N(0,G), e~N(0,R),

for selecting the right multiple linear regressimodels Y~N(XB,V) and V = ZGZ +R

for large sample size. Another research by Seglouan _ _ )
(2006) had developed and compared a new small When Vis known, the Best Linear Unbiased
sample model selection criterion for multivariate Estimators (BLUE) of estimable functionisp of the
regression models to other known criterion with thefixed effects in (1) are given by:

stander covariance structure. A new paper proposed

new criterion deals with selection of variables in hp=h (XV?X)"™XVY 2)
multivariate linear regression models with fewer

observations than the dimension by using Akaike’sWith:

Information Criterion (AIC) (Yamamurat al., 2008).

A psychiatric  epidemiologic  study  proposed var(hp)= h (XV'X) h (3)
multivariate linear regression as the preferredhoet
when the multiple informant outcome data are In most applications/ is unknown. Therefore, it is

continuous using MIXED procedure in SAS estimated from the data where estimators base®)n (
(Goldwasser and Fitzmaurice, 2001). In our resenare not generally BLUE. Various procedures were
simulation study, we were concerned with multiveria proposed for testing hypotheses on fixed effects in
regression model in which the responses wergnixed models with unknoww , most of which assume
correlated in particular ways for both standard aod-  that V is estimated by the REML method (Fai and
standard multivariate model structures. Our goahat Cornelius, 1996; Giesbrecht and Burns, 1985; Kedwar
study was evaluating six model selection criteria i and Rogers, 1997). Standard error estimates based o
SAS using MIXED procedure to guide the selection Of(3) are biased downwards when V replaced by its
the best multivariate regression model that hasigie  estimate (Kacker and Harville, 1984). Fixed effemts
covariance structure and in the same time hasighé r estimated based on (2), with V replaced by a pfug-i
multivariate model structure for both standard and- REML estimate. Null hypotheses of the form
standard multivariate model structures. The studyy :hp=0 are tested by:
indicated that the percentages of identifying thuntr
multivariate regression model from both standard an W b Sk
non-standard multivariate model structures werey ver F= Bhih XV_X) hhE _ F ok
low overall, except for specific models that invelv rank(h)
indicator variable (AL-Marshadi, 2009b).

In the current study we are still concerned wité t

(4)

when rank(h)>1in general, the test statistics oy
multivariate regression model in which the respsnsef@ve approximate F-distribution. The approximate

were correlated in particular ways for both staddend ~ de€nominator degree of freedamof F-distribution can
non-standard multivariate model structures. OurP€ determined using one of the four different metho

objective is to find reliable procedure that canused implemented in MIXED procedure of SAS. The four
to guide the selection of the best multivariateresgion ~methods of the approximations are residual method,
model that has the right covariance structure artié  containment method (this is the default in MIXED),
same time has the right multivariate model striefor ~ extended Satterthwaite (1941) method of Giesbrecht
both standard and non-standard multivariate modeind Burns (1985); Fai and Cornelius (1996) and
structures using MIXED procedure in SAS. Kenward-Roger method. Kenward and Roger (1997)
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found good performance of their method across a The MIXED format in matrix notation is
number of designs. Also, Guerin and Stroup (2000)y =x{+&, which is a special case of the mixed model
recommended using the Kenward-Roger method ag)) (singer, 1998). The situation of interest iis tstudy
standard operating proced_ure. Th_erefo_re, Kenwardy” gne in which the responses are correlated in
Roger method was considered in this study forparticular ways. Different covariance matrix sturets
approximating the denominator degrees of freedom. of X, were used to simulate correlated error models for
the simulated study data.

In this study we are proposing and evaluating a
new three stages procedure which could be used to
guide the selection of the best multivariate regjos
model that has the right covariance structure arithe
same time has the right multivariate model struectur

MATERIALSAND METHODS

The following model reflects the standard
multivariate linear model:

Y = Xp+e ®) The new procedure is based on three stages using th
MIXED procedure. At the first stage, the right

Where: . . multivariate model structure will be determined fwi

Y = nxr matrix of r response variables measured on My, model selection criterion using the bootstrap
subjects _ _ simulation procedure. The new model selection

X = nxp design matrix for explanatory variables criterion will be called Variance Information Crien

B = pxr matrix of regression coefficients (VARIC). At the second stage, the right covariance

e = mxr matrix of residuals whose rows are iid normal, structure will be determined with the model seteuti
i.e., the rows of e~N(&) criteria available in MIXED procedure using the

bootstrap simulation procedure considering the trigh

In the standard multivariate linear regression ehod multivariate model structure that was determinethin
the response distribution is Y~NgK,JX), where the first stage. At the third stage, the right multiede
parameter space consists of the coefficient m@traf  model structure and right covariance structure that
order p<r plus the covariance matri¥JPD,, the cone determined in the first and second stage will bedus
of symmetric positive semi-definite r-matrices. ¥hi fit the right multivariate model using MIXED
multivariate regression setting is called the stmdd procedure. Also, the study involves comparing the
multivariate regression model because both compsenenperformance of the model selection criteria tha ar
of the parameter space are unconstrained. In thavailable in MIXED procedure using the bootstrap
following we give an example showing the format of simulation procedure to determine the right covaréa
the standard multivariate linear model (REG format)structure.
and its relationship to the MIXED format. The exdenp The first stage of the procedure concerns with
considers the format with two response variables anevaluating our new model selection criterion inrisrof
one explanatory variable in addition to an intetdepm  its ability to identify the appropriate multivaréatodel

for three subjects: structure with the help of the bootstrap simulation
procedure where the corresponding value of the

vy y2| [1 x el e2 Varian<_:e Information Criterion (VARIC) caICl_JIated a

vL y2, =1 x, {[301 Boz}_'_ el e3 the variance of the a_bsolute value for the readﬂ_ﬂhe_
B B multivariate regression model when the multivariate

Y Y2 1 x ey e3 model was fitted with the unstructured covariance

structure using MIXED procedure. We may use the
To use the MIXED format, we need to write ¥, new information criterion to guide the selectiontioé
and e as vectors and rearrange X accordingly &sMol  right model structure such as selecting the model
structure with the smallest value of the new infation

(yL] [1 0 x O [ el] criterion.

y2, 01 0 x/|By e2 The bootstrap simulation procedure for the fired a

vi, 10 x O0|B, el second stage involves using the bootstrap technique
= + (Efron, 1983; 1986) and the Multiple Comparisonghwi

Y2, 010 %)By ez the Best (MCB) procedure (Hsu, 1984) as tools 1p he

Y1 |1 0 % 0|B,] |€l the information criterion in identifying the right

1¥2,] [0 1 0 Xx] A multivariate model structure in the first stage and
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identifying the right covariance structure in thecend
stage. The idea of the new approach can be jutfiel
applied in a very general context, one which inekid
the selection of the right multivariate model stuse
and the selection of the right covariance struc{ixe-
Marshadi, 2007; 2009a). The idea of using the tiays
to improve the performance of a model selectior rul
was
extensively discussed by Efron and Tibshirani (3993

Recent studies applied the bootstrap technique with

different approaches to select the best modelffardnt

introduced by Efron (1983; 1986) and is

when we consider the bootstrap replicates of the
information criteria, that is produced by eachtf t
model structure, as groups. The value of W = 10
was used for this study as suggested in our
pervious simulation study (AL-Marshadi, 2009a).
The general linear mixed effects model approach
was used to pick the winners using MCB procedure
in MIXED procedure in order to accommodating
the violation of the equal variances assumptioh tha
was exist in the analysis of this study as suggeste
in (AL-Marshadi, 2008).

context (AL-Marshadi, 2007; 2009a; Uradbial., 2009).

In the context of multivariate regression models,
(5), the algorithm for using parametric bootstraur
bootstrap simulation procedure for the selectiorthef
right multivariate model structure in the first g¢acan
be outlined as follows:

Let the observation vector, @ defined as follows:

The simulation setup of the experiment is desdribe
below:

There are seven correlated response variables (y
Yo, Y3 VYa Y5, Yo @nd y) which are related to two
predictor variables (x and x%) with five different
multivariate  model structures and seven different
covariance structures for the seven correlatedoresp

o) =[y. Yy X X, } variables. The multivariate model structures of the
voLm o e simulated experiment are described as follow:
where i=1,2,...,n. «  The first multivariate model structure is a stamdar

multivariate model structure which fits seven
intercepts (one for level of responses), severeslop
for x; and seven slops for Xplus the elements of
the covariance matrix of the multiple responses) as
follow:

» Generate the bootstrap sample on case-by-case
using the observed data (original sample) i.e.,
based on resampling from {@,,...,0,). The
bootstrap sample size is taken to be the sameeas th
size of the observed sample (i.e., n). The properti
of the bootstrap when the bootstrap sample size is
equal to the original sample size are discussed by
Efron and Tibshirani (1993)

« Fit all the class of candidate multivariate regi@ss
model structures, which we would like to select the
right multivariate model structure from, to the
bootstrap data with the unstructured covariance
structure, thereby obtaining the bootstrap value of
the new information criteria VARIC for each
multivariate model structure *

* Repeat the first and the second steps (W) times

e Statisticians often use the information criteria in
MIXED procedure into guide the selection of the
true model structure such as selecting the model
structure with the smallest value of the informatio
criteria (Keselmaret al., 1999; Littellet al., 2000;
Singer, 1998). We will follow the same rule in our
information criteria, but we have the advantage tha
our information criterion has (W) replication
values result of the bootstrapping of the observed
data (from the first three steps). To make use of
this advantage, we propose using MCB procedure
(Hsu, 1984) to pick the winners (i.e., selecting th
best set of models or single model if possible),
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Y1 =B tBiX 1t B X T e
Y2 =Bo tBiX 1+ B X e
Y3 =Bos tBuX it B e
Ys = Bos tBuX +B X e
Y5 =Bos tBiX +B X T e
Yo =Bos tBiX 1t BoX ot e
Y7 =Bor tBiX tB X ot e

The second multivariate model structure is a
standard multivariate model structure which fits
seven intercepts (one for level of responses) and
seven slopes for x(plus the elements of the
covariance matrix of the multiple responses) as
follow:

Y. =B B X, te
Y, =Bo, tBX, T e
Vs =Bt BiX,te
Vs =Bo tBX, T e
Ys =Bos +BiX te
Yo =Bos tBiX 1t €
Y7 =Bo +BX teE
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The third multivariate model structure is a staddar
multivariate  model structure which fits seven

intercepts (one for level of responses) and seven
slops for % (plus the elements of the covariance.

matrix of the multiple responses) as follow:

Y. =By tBiX,te
Y, =B tB. X, te
Vs =Bos tByx,te
Vs =Bo tB.X,te
Y5 =Bos+BiX ,+ €
Yo =Bos +BiX o+ €
Y7 =Bor tBiX e

The forth multivariate model structure is a non-
standard multivariate model structure which is
called “multiple design”. It allows each response

Akaike (1974) Information Criterion (AIC)

Schwarz (1978) Bayesian Information Criterion
(BIC)

Bozdogan (1987) Corrected Akaike Information
Criterion (CAIC)

Hannan and Quinn (1979) Information Criterion
(HQIC)

Hurvich and Tsai (1989) the Akaike’s Information
Corrected Criterion (AICC)

The second stage of the procedure concerns with
comparing the five information criteria available i
MIXED procedure in terms of their ability to idefyti
the right covariance structure with the help of the
bootstrap simulation procedure considering the trigh
multivariate model structure that was determinethin
first stage. The multivariate model structures thate
considered in the first stage involve both standard
non-standard multivariate model structures i.eomfr

variable to have a different set of explanatory,sivariate model structures with both “single iges

variables as follow:

Y, =B tBix e
Y2 =B t B X te
Y3 =B +Bix e
Vs =Bos tBuX tB X e
Ys = Bos tByX B ot e
Yo =PBos +BiX 1t B X e
Y7 =Bor +BiX tB X e

The fifth multivariate model structure is also anno
standard multivariate model structure which is
called “multiple design”. It allows each response
variable to have a different set of explanatory
variables as follow:

Y, =B.X,te
Y, =Bpx te
Y3 =BostBiX tB X e
Vs =Bux te
Ys = Bos tBiX +B X ot e
Yo = PBos +B1X 1+ B X e
Y, =ByX,te

MIXED procedure is a very useful tool for fitting

multivariate regression in which users find five dab
selection criteria available, which give users socin
be used to select an appropriate covariance steuftu
a multivariate regression model (Litte#t al., 1996).
The five model selection criteria are:
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such as the first three model structures and “mielti
design” such as the last two model structures iteae
considered in this study. The algorithm for usihg t
bootstrap simulation procedure for the selectiorhef
right covariance structure in the second stage was
applied in similar way as the one explained in first
stage. Seven covariance structures were considered
the second stage. The seven covariance structues w
Independent Errors (VC), Compound Symmetry (CS),
Heterogeneous Compound Symmetry (CSH), First-
Order Autoregressive (AR(1)), Heterogeneous First-
Order Autoregressive (ARH(1)), Banded Main
Diagonal (UN(1)) and Unstructured (UN).

The multivariate regression analyses for the first
multivariate model structure design can be impleteetn
by the following example SAS code (Singer, 1998):

PROC MIXED DATA = one;

CLASS time;

MODEL y = time time*x time*x,/noint notest ddfm =
kr;

REPEATED time / type = UN subject = subject;

The multivariate regression analyses for the
second multivariate model structure design can be
implemented by the following example SAS code
(Singer, 1998):

PROC MIXED DATA = one;
CLASS time;
MODEL y = time time*x, / noint notest ddfm = kr;

REPEATED time / type = UN subject = subject;
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The multivariate regression analyses for the thirdstructures with one setting of covariance matrix
multivariate model structure design can be impletedtn parameter values for each covariance structure and
by the following example SAS code (Singer, 1998):  sample sizes 40 (& 40 subjects). The 7 settings of

covariance matrix parameter values are given ifeTab

PROC MIXED DATA = one; For each scenario, we simulated 150 datasets. S4& c
CLASS time; was written to generate the datasets accordindgo t
MODEL y = time time*x, / noint notest ddfm = kr; described setup using the SAS®9.1.3 package (SAS
REPEATED time / type = UN subject = subject; Institute Inc., 2008). We will consider the caseswhwe

have 12 subjects as an example to explain the ggsoce
Note: The class variable “time” in the first, second andof generating the datasets. A 121 7vector of standard
third structure is used to identify the multiple normal random deviates were generated using SAS’s
responses. NORMAL function. Denoted the vector:
The multivariate regression analyses for the forth
multivariate model structure design can be impleteen

by the following example SAS code (Singer, 1998): & :[81‘82‘83‘84‘85i86‘€7‘j

PROC MIXED DATA = one; where,i =1,2,3,...,1Z. Note that the 12 represents the 12
CLASS time; subjects and the 7 represents the 7 levels of difieet
MODEL y = timel timel*; time2 time2*x; time3  within each subject. Then the 12xI7 vectors of
time3*x, time4 timed*, time4*x, time5 time5*;, residuals for model (5) were calculated as:
time5*x, time6 time6*; time6*x, time7 time7*x, .
time7*x, / noint notest ddfm = kr; g=3% ;i=12,3,..,1;
REPEATED time / type = UN subject = subject;

Where:

The multivariate regression analyses for the fifth zg
multivariate model structure design can be
implemented by the following example SAS codeZ
(Singer, 1998):

The Cholevsky decomposition of
The covariance matrix of multiple response
variable

PROC MIXED DATA = one: Th(_erefore, the_ vector; & defined as the rows of
CLASS time: the residuals matrix, e, such that-N(0,Y). The fixed

MODEL y = timel*x, time2*x, time3 time3*, Portion of the model, R, is added to the residuals

. N . N . : - . . matrix, e, according to the model structure to give
time3*x, time4tx, tmes timedh; tmed*x, vector of response, Y. The first explanatory vddab

time6*x; time6*x, time7*x, / noint notest ddfm =kr; \yas considered as indicator variable with two Isvel
REPEATED time / type = UN subject = subject; and the second explanatory variable was considased

random variable generated from normal distribution
Note: The variable “time” is replaced in the forth and with mean equal 30 and variance equal to 5. Eaeh on
fifth structure by individual 0-1 dummy variablesye  of the 150 generated data sets was fitted to &l th
for each responses variable. possible combination of the selected model strestur

and covariance structures for the two set of model
The dsmulation study: A simulation study of structures and covariance structures mentionedréaefo
multivariate regression data was conducted to et@alu Then each one of the information criteria was
the new three stages procedure in terms of thealculated according to the process of the newethre
percentage of number of times that it identifieel biest  stages procedure in order to identify the best
multivariate regression model that has the rightmultivariate regression model that has the right
covariance structure and in the same time hasighé r covariance structure and in the same time the right
multivariate model structure. multivariate model structure.

Correlated multivariate normal data were generated The 7 settings of the covariance matrix are given
according to MIXED format model. There were 35 Table 1 which can be categorized to seven covagianc
scenarios to generate data involving five multateri  structures. The first one, (Setting No. 1) repréesen
regression model structures and seven covariandompound Symmetry (CS) covariance structure.
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Table 1: The setting of seven covariance matrix structures usé¢ite simulations

Setting Setting
no. Covariance matrix no. Covariance matrix
[ 16 12.8 1024 8192 65536 524288 4.194B
[16 128 128 128 128 128 12.8 16 12.8  10.24 8192 65536 5.242
128 16 128 128 128 128 1024 128 16 128 1024 8192  6.553¢
1 128 128 16 128 128 128 2. 8192 1024 128 16 128 1024  8.19
128 128 128 16 128 128
198 128 128 128 16 128 6.5536 8192 1024 128 16 12.8 10.2
128 128 128 128 128 16 524288 65536 8.192 10.24 12.8 16 12.
|12.8 128 128 128 128 128 14.194304 524288 65536 8.192 1024  12.8 1
[ 4 4.8 512 512 49152 4.58752 4.1943( [4 48 64 8 96 112 128
438 9 9.6 9.6 9216 86016 7.8643: 48 9 96 12 144 168 19f
5.12 9.6 16 16 1536 14.336 13.107. 6.4 96 16 16 192 224 25
3. 5.12 9.6 16 25 24 22.4 20.48 4. 8 12 16 25 24 28 32
49152 9216 1536 24 36 33.6 30.72 96 144 192 24 36 33.6 38|
458752 8.6016 14336 224 33.6 49 44, 112 168 224 28 33.6 49 44l
|4.194304 7.86432 13.1072 20.48 30.72 448 64 |12.8 19.2 256 32 384 448 64
[16 0 0 0 0 0 O [4 0 0 0 0 0 O]
0 16 0 0 0 0 O 09 0 0 0 0 O
0 0 16 0 0 0 O 0016 0 0 0 O
5. 0 0 16 0 0 0O 6 00 0 25 0 0 O
0 0 0 16 0 O 00 O 3 0 0
0 0 0 0 16 0 00 O 0 49 0
Lo o 0 0 1§ 0 0 0 0 64
[4 24 48 8 84 7 498
24 9 24 15 27 735 10.
48 24 16 34 1008 154 6.48
7. 8 15 34 25 189 1645 9.7
84 27 10.08 189 36 462 225
7 735 154 1645 462 49 16.2
496 108 648 92 2256 1624 64

The second one, (Setting No. 2) represents FirdefOr model structures for each of the covariance strastu
Autoregressive (AR(1)) covariance structure. Thedth with the new Variance Information Criterion (VARIC)
one, (Setting No. 3) represents Heterogeneous- FirsTable 2 summarizes results of the percentage obeum
Order Autoregressive (ARH(1)) covariance structure.of times that the procedure in the first stagectsléhe
The fourth one, (Setting No. 4) representsright multivariate model structure alone from tHass
Heterogeneous =~ Compound Symmetry  (CSH)of candidate multivariate model structures for ea€th
covariance structure. The fifth one, (Setting N9§. 5the covariance structures with the new Variance
represents Independent Errors (VC) covariancénformation Criterion (VARIC). Table 2 indicate tha
structure. The sixth one, (Setting No. 6) representthe new Variance Information Criterion (VARIC)
Banded Main Diagonal (UN(1)) covariance structure.showed very good performance in identifying thehtrig
The seventh one, (Setting No. 7) representsnultivariate model structure in the first stage eptcfor

Unstructured (UN) covariance structure. specific models with Unstructured (UN) covariance
structure, banded main diagonal (UN(1)) covariance
RESULTS structure and independent errors (VC) covariance

structure that have slightly low percentage conmggtd
The simulation results indicated that the procedur others which could be related to conversion difficu
in the first stage selects the right multivariatedel The simulation results indicated that the procedur
structure as member of the best subset hundre@rmterc in the second stage selects the right covariamaetste
of the times from the class of candidate multivaria as member of the best subset hundred peotémt
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Table 2: The percentage of number of times thaptbeedure in the ~ Table 3: The Percentage of number of times thaptbeedure in the
first stage selects the right multivariate modelctire alone second stage selects the right covariance structioee
from a class of candidate multivariate model stmegt for from a class of candidate covariance structuresefh
each one of the covariance structures with the new multivariate model structure determined in thetfatage as

information criterion (where nominal Type | errop=05) the right model structure for with the five criger{where

nominal Type | error = 0.05)

Covariance Model Thijar_iance Information The five criteria (%)
structure structure Criterion (VARIC) (%) Model  Covariance
1 1 100.0000 structure  structure  AIC BIC CAIC HQIC  AICC
1 2 100.0000 1 1 99.3333 100 100 100.0000 99.3333
1 3 97.9020 1 2 99.3333 100 100 100.0000 100.0000
1 4 96.6670 1 3 100.0000 100 100 100.0000 100.0000
1 : 933330 1 4 99.3333 100 100 100.0000 100.0000
: 1 5 95.9999 100 100 99.3333 98.0000
2 1 100.0000 1 6 98.6667 100 100 100.0000 100.0000
2 2 100.0000 1 7 100.0000 100 100 100.0000 100.0000
2 3 98.6580 2 1 100.0000 100 100 100.0000 100.0000
2 4 97.3333 2 2 98.6667 100 100 100.0000 100.0000
5 5 93.3330 2 3 100.0000 100 100 100.0000 100.0000
3 1 100.0000 2 4 99.3333 100 100 100.0000 99.3333
: 2 5 98.0000 100 100 100.0000 99.3333
3 2 100.0000 2 6 99.3333 100 100 100.0000 100.0000
3 3 98.9470 2 7 100.0000 100 100 100.0000 100.0000
3 4 100.0000 3 1 100.0000 100 100 100.0000 100.0000
3 5 96.6670 3 2 100.0000 100 100 100.0000 100.0000
4 1 100.0000 3 3 100.0000 100 100 100.0000 100.0000
4 5 100.0000 3 4 100.0000 100 100 100.0000 100.0000
3 5 98.0000 100 100 100.0000 100.0000
4 3 98.0000 3 6 98.0000 100 100 100.0000 99.3333
4 4 98.0000 3 7 100.0000 100 100 100.0000 100.0000
4 5 94.0000 4 1 100.0000 100 100 100.0000 100.0000
5 1 100.0000 4 2 99.3333 100 100 100.0000 100.0000
5 2 100.0000 4 3 100.0000 100 100 100.0000 100.0000
5 3 94.3090 4 4 100.0000 100 100 100.0000 100.0000
4 5 98.6667 100 100 100.0000 100.0000
5 4 100.0000 4 6 99.3333 100 100 100.0000 99.3333
5 5 88.6670 4 7 100.0000 100 100 100.0000 100.0000
6 1 100.0000 5 1 98.6667 100 100 100.0000 100.0000
6 2 100.0000 5 2 100.0000 100 100 100.0000 100.0000
6 3 75.1820 5 3 100.0000 100 100 100.0000 100.0000
6 2 100.0000 5 4 100.0000 100 100 100.0000 100.0000
5 5 95.3333 100 100 100.0000 97.3333
6 5 96.6670 5 6 98.6667 100 100 100.0000 100.0000
7 1 100.0000 5 7 100.0000 100 100 100.0000 100.0000
7 2 99.3330
7 3 97.8570
7 4 90.6670 DISCUSSION
7 5 78.6660

In our simulation, we considered multivariate
regression models in which the responses were
times from the class of candidate covariance sirast correlated in particular ways, looking at the
for each multivariate model structure determinethin  performance of a new three stages procedure thdd co
first stage as the right model structure with thee f be used to guide the selection of the best multter
criteria. Table 3 present the percentage of nunafer regression model that has the right covariancetstre
times that the procedure in the second stage seleet and in the same time has the right multivariate ehod
right covariance structure alone from the class oftructure from both standard and non-standard

candidate covariance structures for each multiteria gltjig:\éairs'a:ﬁa:ntiiel ;:;grcr;u;ﬁi'e E??h:anilgwretﬁlrjlt 2;;0
model structure determined in the first stage agitht n &Y

. ) o N procedure in identifying the best multivariate esggion
model structure with the five criteria. Table 3 irate model that has the right covariance structure arttié

that although all the criteria showed very goodsame time the right multivariate model structures wa
performance in identifying the right covariance excellent overall in terms of identified the right
structure in the second stage, CAIC and BIC cateri multivariate model structure in the first stage rthe
have the best performance overall. identifying the right covariance structure in trecend
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stage for the multivariate model structure that wasmultivariate regression model that has the right
determined in the first stage. Finally, the bestcovariance structure and in the same time the right
multivariate regression model that has the rightmultivariate model structure was excellent for both
covariance structure and in the same time hasighe¢ r standard and non-standard multivariate model
multivariate model structure is fitted in the thisthge structures. Therefore, the new procedure is
using MIXED procedure. Hence, the new procedure isecommended to be used as stander tools to guide th
recommended to be used to guide the selectioneof thselection of the best multivariate regression malat
best multivariate regression model that has thétrig has the right covariance structure and in the séme
covariance structure and in the same time hasigh¢ r has the right multivariate model structure.
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