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Abstract: Problem statement: This article considers the analysis of multivariate regression experiment 
that is used frequently in variety of applications research such as psychiatric epidemiologic studies. Our 
study concerned with multivariate regression model in which the responses were correlated in particular 
ways for both standard and non-standard multivariate model structures. Our objective is to find reliable 
procedure that can be used to guide the selection of the best multivariate regression model that has the 
right covariance structure and in the same time has the right multivariate model structure for both 
standard and non-standard multivariate model structures. Approach: In this study, we were proposing 
and evaluating a new three stages procedure that could be used to guide the selection of the best 
multivariate regression model that has the right covariance structure and in the same time has the right 
multivariate model structure using bootstrap simulation procedure. Results: The simulation results 
indicated that the performance of the new procedure in identifying the right multivariate regression 
model that has the right covariance structure and in the same time the right multivariate model structure 
from both standard and non-standard multivariate model structures was excellent overall. 
Conclusion/Recommendations: We recommended using the new procedure as stander tools to guide the 
selection of the best multivariate regression model that has the right covariance structure and in the same 
time has the right multivariate model structure.  
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INTRODUCTION 

 
 The multivariate linear regression model composed 
of multiple correlated dependent variables for each 
subject, in addition to a set of predictor variables. 
Multivariate linear regression allows researchers to fit a 
single model for each response, taking into account the 
correlation among the multiple responses on a given 
subject. The basic assumptions of multivariate 
regression are multivariate normality of the residuals, 
homogenous variances of residuals conditional on 
predictors, common covariance structure across 
observations and independent observations. When these 
assumptions are satisfied, the coefficients will be 
unbiased, the least-squares estimates will have 
minimum variance and the relationships among the 
coefficients will reflect the relationships among the 
predictors. In general, this is what REG procedure of 
the SAS System is set up to do. When we deal with the 
multivariate linear regression model a companion to the 
estimation problem is the model selection problem, 
which consists of choosing an appropriate model from a 
class of candidate models to characterize the data under 
study. The covariance structures of the observed 
multiple responses makes multivariate linear regression 

data analysis different from univariate multiple linear 
regression data in term of the prediction of an 
individual response component given some or all of the 
remaining components (McCullagh, 2006). 
 Although the MIXED procedure of the SAS 
System is used as tools for fitting mixed effects and 
repeated measures models, it is also a very useful tool 
for fitting multivariate regression. The most advantages 
of using the MIXED procedure instead of stander 
multivariate procedure are MIXED uses observations 
have incomplete responses, Mixed has the ability to 
deal with non-stander (e.g., multiple design) 
multivariate models and MIXED enables researchers to 
fit correlated error model with different covariance 
structure. The MIXED procedure of the SAS System 
has different selections for modeling the covariance 
structure. The MIXED procedure of the SAS System 
can be used to develop either Maximum Likelihood 
(ML) or Restricted Maximum Likelihood (REML) 
estimates in order to complete the analysis of the 
multivariate regression, where REML estimation are 
generally preferred to ML. A lot of effort is usually 
needed to decide what the suitable covariance structure 
of the data is at the beginning of the statistical analysis. 
Statisticians often use information criteria such as AIC 
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(Akaike, 1974), BIC (Schwarz, 1978), CAIC 
(Bozdogan, 1987), HQIC (Hannan and Quinn, 1979) to 
guide the selection of the covariance structure in mixed 
models (AL-Marshadi, 2007; Keselman et al., 1999; 
Littell et al., 2000; Singer, 1998) Many studies have 
investigated performance of those information criteria 
in selection of the covariance structure considering 
repeated measures models (Keselman et al., 1999; 
Ferron et al., 2002; Gomez et al., 2005; Guerin and 
Stroup, 2000). One study compared the following, AIC, 
BIC, AICC and RIC to select stander multivariate 
regression model with the stander covariance structure 
(Azari et al., 2006). A simulation study by Beal (2005) 
compared different information criteria methods in SAS 
for selecting the right multiple linear regression models 
for large sample size. Another research by Seghouane 
(2006) had developed and compared a new small 
sample model selection criterion for multivariate 
regression models to other known criterion with the 
stander covariance structure. A new paper proposed 
new criterion deals with selection of variables in 
multivariate linear regression models with fewer 
observations than the dimension by using Akaike’s 
Information Criterion (AIC) (Yamamura et al., 2008). 
A psychiatric epidemiologic study proposed 
multivariate linear regression as the preferred method 
when the multiple informant outcome data are 
continuous using MIXED procedure in SAS 
(Goldwasser and Fitzmaurice, 2001). In our resent 
simulation study, we were concerned with multivariate 
regression model in which the responses were 
correlated in particular ways for both standard and non-
standard multivariate model structures. Our goal in that 
study was evaluating six model selection criteria in 
SAS using MIXED procedure to guide the selection of 
the best multivariate regression model that has the right 
covariance structure and in the same time has the right 
multivariate model structure for both standard and non-
standard multivariate model structures. The study 
indicated that the percentages of identifying the right 
multivariate regression model from both standard and 
non-standard multivariate model structures were very 
low overall, except for specific models that involve 
indicator variable (AL-Marshadi, 2009b).  
 In the current study we are still concerned with the 
multivariate regression model in which the responses 
were correlated in particular ways for both standard and 
non-standard multivariate model structures. Our 
objective is to find reliable procedure that can be used 
to guide the selection of the best multivariate regression 
model that has the right covariance structure and in the 
same time has the right multivariate model structure for 
both standard and non-standard multivariate model 
structures using MIXED procedure in SAS.  

 In general form, the mixed effects linear model can 
be written as (McCulloch and Searle, 2001; Littell et al., 
1996): 
 
Y = Xβ + ZU + e (1) 
 
Where: 
β = p×1 vector of fixed effects 
U = q×1 vector of random effects 
e = n×1 vector of residuals 
X = n×p design matrix for fixed effects 
Z = n×p design matrix for random effects 
 

U~N(0,G),  e~N(0,R), 
Y~N(Xβ,V) and V = ZGZ´+R 

 
 When V is known, the Best Linear Unbiased 
Estimators (BLUE) of estimable functions `hβ  of the 
fixed effects in (1) are given by: 
 

` ` 1 1ˆh h (X V X) X V Y− − −′ ′β =  (2) 
 
With: 
 

` ` ` 1ˆvar(h ) h (X V X) h− −β =  (3) 
 
 In most applications V is unknown. Therefore, it is 
estimated from the data where estimators based on (2) 
are not generally BLUE. Various procedures were 
proposed for testing hypotheses on fixed effects in 
mixed models with unknown V , most of which assume 
that V is estimated by the REML method (Fai and 
Cornelius, 1996; Giesbrecht and Burns, 1985; Kenward 
and Rogers, 1997). Standard error estimates based on 
(3) are biased downwards when V replaced by its 
estimate (Kacker and Harville, 1984). Fixed effects are 
estimated based on (2), with V replaced by a plug-in 
REML estimate. Null hypotheses of the form 

`
0H : h 0β =  are tested by: 

 
` ` 1 1 `

(rank(h), )

ˆ ˆˆh[h (X V X) h] h
F F

rank(h)

− − −

υ

′β β= ∼

 
(4) 

 
when rank(h)>1in general, the test statistics in (4) only 
have approximate F-distribution. The approximate 
denominator degree of freedom υ of F-distribution can 
be determined using one of the four different methods 
implemented in MIXED procedure of SAS. The four 
methods of the approximations are residual method, 
containment method (this is the default in MIXED), 
extended Satterthwaite (1941) method of Giesbrecht 
and Burns (1985); Fai and Cornelius (1996) and 
Kenward-Roger method. Kenward and Roger (1997) 
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found good performance of their method across a 
number of designs. Also, Guerin and Stroup (2000) 
recommended using the Kenward-Roger method as 
standard operating procedure. Therefore, Kenward-
Roger method was considered in this study for 
approximating the denominator degrees of freedom.  
 

MATERIALS AND METHODS 
 
 The following model reflects the standard 
multivariate linear model: 
 
Y = Xβ+e (5) 
 
Where: 
Y = n×r matrix of r  response variables measured on n 

subjects 
X = n×p design matrix for explanatory variables 
β = p×r matrix of regression coefficients 
e = n×r matrix of residuals whose rows are iid normal, 

i.e., the rows of e~N(0,Σ) 
 
 In the standard multivariate linear regression model 
the response distribution is Y~N(XβIn,⊗Σ), where the 
parameter space consists of the coefficient matrix β of 
order p×r plus the covariance matrix, Σ∈PDr, the cone 
of symmetric positive semi-definite r-matrices. This 
multivariate regression setting is called the standard 
multivariate regression model because both components 
of the parameter space are unconstrained. In the 
following we give an example showing the format of 
the standard multivariate linear model (REG format) 
and its relationship to the MIXED format. The example 
considers the format with two response variables and 
one explanatory variable in addition to an intercept term 
for three subjects: 
 

1 1 1 1 1
01 02

2 2 2 2 2
11 12

3 3 3 3 3

y1 y2 1 x e1 e2

y1 y2 1 x e1 e2

y1 y2 1 x e1 e2

     
β β      = +      β β           

 

 
 To use the MIXED format, we need to write Y, β 
and e as vectors and rearrange X accordingly as follow: 
 

1 1 1

1 1 101

2 2 202

2 2 211

3 3 312

3 3 3

y1 1 0 x 0 e1

y2 0 1 0 x e2

y1 1 0 x 0 e1

y2 0 1 0 x e2

y1 1 0 x 0 e1

y2 0 1 0 x e2

     
     β      

      β = +     
 β     
      β      

          

 

  The MIXED format in matrix notation is 
Y X e= β +ɶɶ ɶ ɶ , which is a special case of the mixed model 
(1) (Singer, 1998). The situation of interest in this study 
is one in which the responses are correlated in 
particular ways. Different covariance matrix structures 
of ∑ were used to simulate correlated error models for 
the simulated study data.  
 In this study we are proposing and evaluating a 
new three stages procedure which could be used to 
guide the selection of the best multivariate regression 
model that has the right covariance structure and in the 
same time has the right multivariate model structure. 
The new procedure is based on three stages using the 
MIXED procedure. At the first stage, the right 
multivariate model structure will be determined with a 
new model selection criterion using the bootstrap 
simulation procedure. The new model selection 
criterion will be called Variance Information Criterion 
(VARIC). At the second stage, the right covariance 
structure will be determined with the model selection 
criteria available in MIXED procedure using the 
bootstrap simulation procedure considering the right 
multivariate model structure that was determined in the 
first stage. At the third stage, the right multivariate 
model structure and right covariance structure that 
determined in the first and second stage will be used to 
fit the right multivariate model using MIXED 
procedure. Also, the study involves comparing the 
performance of the model selection criteria that are 
available in MIXED procedure using the bootstrap 
simulation procedure to determine the right covariance 
structure.  
 The first stage of the procedure concerns with 
evaluating our new model selection criterion in terms of 
its ability to identify the appropriate multivariate model 
structure with the help of the bootstrap simulation 
procedure where the corresponding value of the 
Variance Information Criterion (VARIC) calculated as 
the variance of the absolute value for the residual of the 
multivariate regression model when the multivariate 
model was fitted with the unstructured covariance 
structure using MIXED procedure. We may use the 
new information criterion to guide the selection of the 
right model structure such as selecting the model 
structure with the smallest value of the new information 
criterion. 
 The bootstrap simulation procedure for the first and 
second stage involves using the bootstrap technique 
(Efron, 1983; 1986) and the Multiple Comparisons with 
the Best (MCB) procedure (Hsu, 1984) as tools to help 
the information criterion in identifying the right 
multivariate model structure in the first stage and 
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identifying the right covariance structure in the second 
stage. The idea of the new approach can be justified and 
applied in a very general context, one which includes 
the selection of the right multivariate model structure 
and the selection of the right covariance structure (AL-
Marshadi, 2007; 2009a). The idea of using the bootstrap 
to improve the performance of a model selection rule 
was introduced by Efron (1983; 1986) and is 
extensively discussed by Efron and Tibshirani (1993). 
Recent studies applied the bootstrap technique with 
different approaches to select the best model in different 
context (AL-Marshadi, 2007; 2009a; Uraibi et al., 2009).  
 In the context of multivariate regression models, 
(5), the algorithm for using parametric bootstrap in our 
bootstrap simulation procedure for the selection of the 
right multivariate model structure in the first stage can 
be outlined as follows: 
 Let the observation vector Oi is defined as follows: 
 

`

i i1 i  r i1 i p 1O y    ...   y x ... x − =    

 
where i = 1,2,…,n.  
 
• Generate the bootstrap sample on case-by-case 

using the observed data (original sample) i.e., 
based on resampling from (O1,O2,…,On). The 
bootstrap sample size is taken to be the same as the 
size of the observed sample (i.e., n). The properties 
of the bootstrap when the bootstrap sample size is 
equal to the original sample size are discussed by 
Efron and Tibshirani (1993) 

• Fit all the class of candidate multivariate regression 
model structures, which we would like to select the 
right multivariate model structure from, to the 
bootstrap data with the unstructured covariance 
structure, thereby obtaining the bootstrap value of 
the new information criteria VARIC* for each 
multivariate model structure 

• Repeat the first and the second steps (W) times 
• Statisticians often use the information criteria in 

MIXED procedure into guide the selection of the 
true model structure such as selecting the model 
structure with the smallest value of the information 
criteria (Keselman et al., 1999; Littell et al., 2000; 
Singer, 1998). We will follow the same rule in our 
information criteria, but we have the advantage that 
our information criterion has (W) replication 
values result of the bootstrapping of the observed 
data (from the first three steps). To make use of 
this advantage, we propose using MCB procedure 
(Hsu, 1984) to pick the winners (i.e., selecting the 
best set of models or single model if possible), 

when we consider the bootstrap replicates of the 
information criteria, that is produced by each of the 
model structure, as groups. The value of W = 10 
was used for this study as suggested in our 
pervious simulation study (AL-Marshadi, 2009a). 
The general linear mixed effects model approach 
was used to pick the winners using MCB procedure 
in MIXED procedure in order to accommodating 
the violation of the equal variances assumption that 
was exist in the analysis of this study as suggested 
in (AL-Marshadi, 2008). 
  

 The simulation setup of the experiment is described 
below:  
 There are seven correlated response variables (y1, 
y2, y3, y4, y5, y6 and y7) which are related to two 
predictor variables (x1 and x2) with five different 
multivariate model structures and seven different 
covariance structures for the seven correlated response 
variables. The multivariate model structures of the 
simulated experiment are described as follow:  
 
• The first multivariate model structure is a standard 

multivariate model structure which fits seven 
intercepts (one for level of responses), seven slopes 
for x1 and seven slops for x2 (plus the elements of 
the covariance matrix of the multiple responses) as 
follow:  
 

1 01 11 1 21 2

2 02 12 1 22 2

3 03 13 1 23 2

4 04 14 1 24 2

5 05 15 1 25 2

6 06 16 1 26 2

7 07 17 1 27 2

y x x e

y x x e

y x x e

y x x e

y x x e

y x x e

y x x e

= β + β + β +
= β + β + β +
= β + β + β +
= β + β + β +
= β + β + β +
= β + β + β +
= β + β + β +  

 
• The second multivariate model structure is a 

standard multivariate model structure which fits 
seven intercepts (one for level of responses) and 
seven slopes for x1 (plus the elements of the 
covariance matrix of the multiple responses) as 
follow: 

 

1 01 11 1

2 02 12 1

3 03 13 1

4 04 14 1

5 05 15 1

6 06 16 1

7 07 17 1

y x e

y x e

y x e

y x e

y x e

y x e

y x e

= β + β +
= β + β +
= β + β +
= β + β +
= β + β +
= β + β +
= β + β +
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• The third multivariate model structure is a standard 
multivariate model structure which fits seven 
intercepts (one for level of responses) and seven 
slops for x2 (plus the elements of the covariance 
matrix of the multiple responses) as follow: 

 

1 01 11 2

2 02 12 2

3 03 13 2

4 04 14 2

5 05 15 2

6 06 16 2

7 07 17 2

y x e

y x e

y x e

y x e

y x e

y x e

y x e

= β + β +
= β + β +
= β + β +
= β + β +
= β + β +
= β + β +
= β + β +

 

 
• The forth multivariate model structure is a non-

standard multivariate model structure which is 
called “multiple design”. It allows each response 
variable to have a different set of explanatory 
variables as follow: 

 

1 01 11 1

2 02 12 1

3 03 13 2

4 04 14 1 24 2

5 05 15 1 25 2

6 06 16 1 26 2

7 07 17 1 27 2

y x e

y x e

y x e

y x x e

y x x e

y x x e

y x x e

= β + β +
= β + β +
= β + β +
= β + β + β +
= β + β + β +
= β + β + β +
= β + β + β +  

 
• The fifth multivariate model structure is also a non-

standard multivariate model structure which is 
called “multiple design”. It allows each response 
variable to have a different set of explanatory 
variables as follow:  
 

1 11 2

2 12 1

3 03 13 1 23 2

4 14 1

5 05 15 1 25 2

6 06 16 1 26 2

7 27 2

y x e

y x e

y x x e

y x e

y x x e

y x x e

y x e

= β +
= β +
= β + β + β +
= β +
= β + β + β +
= β + β + β +
= β +

 

 
 MIXED procedure is a very useful tool for fitting 
multivariate regression in which users find five model 
selection criteria available, which give users tools can 
be used to select an appropriate covariance structure for 
a multivariate regression model (Littell et al., 1996). 
The five model selection criteria are: 

• Akaike (1974) Information Criterion (AIC) 
• Schwarz (1978) Bayesian Information Criterion 

(BIC)  
• Bozdogan (1987) Corrected Akaike Information 

Criterion (CAIC)  
• Hannan and Quinn (1979) Information Criterion 

(HQIC) 
• Hurvich and Tsai (1989) the Akaike’s Information 

Corrected Criterion (AICC) 
 
 The second stage of the procedure concerns with 
comparing the five information criteria available in 
MIXED procedure in terms of their ability to identify 
the right covariance structure with the help of the 
bootstrap simulation procedure considering the right 
multivariate model structure that was determined in the 
first stage. The multivariate model structures that were 
considered in the first stage involve both standard and 
non-standard multivariate model structures i.e., from 
multivariate model structures with both “single design” 
such as the first three model structures and “multiple 
design” such as the last two model structures that were 
considered in this study. The algorithm for using the 
bootstrap simulation procedure for the selection of the 
right covariance structure in the second stage was 
applied in similar way as the one explained in the first 
stage. Seven covariance structures were considered in 
the second stage. The seven covariance structures were 
Independent Errors (VC), Compound Symmetry (CS), 
Heterogeneous Compound Symmetry (CSH), First-
Order Autoregressive (AR(1)), Heterogeneous First-
Order Autoregressive (ARH(1)), Banded Main 
Diagonal (UN(1)) and Unstructured (UN). 
 The multivariate regression analyses for the first 
multivariate model structure design can be implemented 
by the following example SAS code (Singer, 1998): 
 
PROC MIXED DATA = one; 
CLASS time; 
MODEL y = time time*x1 time*x2/noint notest ddfm = 
kr; 
REPEATED time / type = UN subject = subject;  
 
 The multivariate regression analyses for the 
second multivariate model structure design can be 
implemented by the following example SAS code 
(Singer, 1998): 
 
PROC MIXED DATA = one; 
CLASS time; 
MODEL y = time time* 1x  / noint notest ddfm = kr; 

REPEATED time / type = UN subject = subject;  
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 The multivariate regression analyses for the third 
multivariate model structure design can be implemented 
by the following example SAS code (Singer, 1998): 
 
PROC MIXED DATA = one; 
CLASS time; 
MODEL y = time time* 2x  / noint notest ddfm = kr; 

REPEATED time / type = UN subject = subject;  
 
Note: The class variable “time” in the first, second and 
third structure is used to identify the multiple 
responses. 
 The multivariate regression analyses for the forth 
multivariate model structure design can be implemented 
by the following example SAS code (Singer, 1998): 
 
PROC MIXED DATA = one; 
CLASS time; 
MODEL y = time1 time1* 1x  time2 time2* 1x  time3 

time3* 2x  time4 time4* 1x  time4* 2x  time5 time5* 1x  

time5* 2x  time6 time6* 1x  time6* 2x  time7 time7* 1x  

time7* 2x  / noint notest ddfm = kr; 

REPEATED time / type = UN subject = subject;  
 
 The multivariate regression analyses for the fifth 
multivariate model structure design can be 
implemented by the following example SAS code 
(Singer, 1998): 
 
PROC MIXED DATA = one; 
CLASS time; 
MODEL y = time1* 2x  time2* 1x  time3 time3* 1x  

time3* 2x  time4* 1x  time5 time5* 1x  time5* 2x  

time6* 1x  time6* 2x  time7* 2x  / noint notest ddfm = kr; 

REPEATED time / type = UN subject = subject;  
 
Note: The variable “time” is replaced in the forth and 
fifth structure by individual 0-1 dummy variables, one 
for each responses variable. 
 
The simulation study: A simulation study of 
multivariate regression data was conducted to evaluate 
the new three stages procedure in terms of the 
percentage of number of times that it identified the best 
multivariate regression model that has the right 
covariance structure and in the same time has the right 
multivariate model structure.  
 Correlated multivariate normal data were generated 
according to MIXED format model. There were 35 
scenarios to generate data involving five multivariate 
regression model structures and seven covariance 

structures with one setting of covariance matrix 
parameter values for each covariance structure and 
sample sizes 40 (n = 40 subjects). The 7 settings of 
covariance matrix parameter values are given in Table 1. 
For each scenario, we simulated 150 datasets. SAS code 
was written to generate the datasets according to the 
described setup using the SAS®9.1.3 package (SAS 
Institute Inc., 2008). We will consider the case when we 
have 12 subjects as an example to explain the process 
of generating the datasets. A 12 7×1 vector of standard 
normal random deviates were generated using SAS’s 
NORMAL function. Denoted the vector: 
 

  i 1i 2i 3i 4i 5i 6i 7i
′ε = ε ε ε ε ε ε ε     

 
where, i 1,2,3,...,12= . Note that the 12 represents the 12 
subjects and the 7 represents the 7 levels of time effect 
within each subject. Then the 12 7×1 vectors of 
residuals for model (5) were calculated as: 
 

ie =
1

2
i  ;  i 1,2,3,...,12Σ ε =  

 
Where: 

1

2Σ  = The Cholevsky decomposition of ∑ 
∑ = The covariance matrix of multiple response 

variable 
  
 Therefore, the vector ei is defined as the rows of 
the residuals matrix, e, such that e ~ N(0, )∑ . The fixed 
portion of the model, Xβ, is added to the residuals 
matrix, e, according to the model structure to give the 
vector of response, Y. The first explanatory variable 
was considered as indicator variable with two levels 
and the second explanatory variable was considered as 
random variable generated from normal distribution 
with mean equal 30 and variance equal to 5. Each one 
of the 150 generated data sets was fitted to all the 
possible combination of the selected model structures 
and covariance structures for the two set of model 
structures and covariance structures mentioned before. 
Then each one of the information criteria was 
calculated according to the process of the new three 
stages procedure in order to identify the best 
multivariate regression model that has the right 
covariance structure and in the same time the right 
multivariate model structure.  
 The 7 settings of the covariance matrix are given in 
Table 1 which can be categorized to seven covariance 
structures. The first one, (Setting No. 1) represents 
Compound Symmetry (CS) covariance structure.
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Table 1:  The setting of seven covariance matrix structures used in the simulations 
Setting  Setting 
 no. Covariance matrix no. Covariance matrix 

1. 

16 12.8 12.8 12.8 12.8 12.8 12.8

12.8 16 12.8 12.8 12.8 12.8 12.8

12.8 12.8 16 12.8 12.8 12.8 12.8

12.8 12.8 12.8 16 12.8 12.8 12.8

12.8 12.8 12.8 12.8 16 12.8 12.8

12.8 12.8 12.8 12.8 12.8 16 12.8

12.8 12.8 12.8 12.8 12.8 12.8 16

 
 
 
 
 
 




 




  

2. 

16 12.8 10.24 8.192 6.5536 5.24288 4.194304

12.8 16 12.8 10.24 8.192 6.5536 5.24288

10.24 12.8 16 12.8 10.24 8.192 6.5536

8.192 10.24 12.8 16 12.8 10.24 8.192

6.5536 8.192 10.24 12.8 16 12.8 10.24

5.24288 6.5536 8.192 10.24 12.8 16 12.8

4.194304 5.24288 6.5536 8.192 10.24 12.8 16

 
 
 
 
 
 
 
 
 
 
 

 

3. 

4 4.8 5.12 5.12 4.9152 4.58752 4.194304

4.8 9 9.6 9.6 9.216 8.6016 7.86432

5.12 9.6 16 16 15.36 14.336 13.1072

5.12 9.6 16 25 24 22.4 20.48

4.9152 9.216 15.36 24 36 33.6 30.72

4.58752 8.6016 14.336 22.4 33.6 49 44.8

4.194304 7.86432 13.1072 20.48 30.72 44.8 64

 
 
 
 
 
 
 
 
 
 
 

 4. 

4 4.8 6.4 8 9.6 11.2 12.8

4.8 9 9.6 12 14.4 16.8 19.2

6.4 9.6 16 16 19.2 22.4 25.6

8 12 16 25 24 28 32

9.6 14.4 19.2 24 36 33.6 38.4

11.2 16.8 22.4 28 33.6 49 44.8

12.8 19.2 25.6 32 38.4 44.8 64

 
 
 
 
 
 
 
 
 
 
 

 

5. 

16 0 0 0 0 0 0

0 16 0 0 0 0 0

0 0 16 0 0 0 0

0 0 0 16 0 0 0

0 0 0 0 16 0 0

0 0 0 0 0 16 0

0 0 0 0 0 0 16

 
 
 
 
 
 
 
 
 
 
 

 6. 

4 0 0 0 0 0 0

0 9 0 0 0 0 0

0 0 16 0 0 0 0

0 0 0 25 0 0 0

0 0 0 0 36 0 0

0 0 0 0 0 49 0

0 0 0 0 0 0 64

 
 
 
 
 
 
 
 
 
 
 

 

7. 

4 2.4 4.8 8 8.4 7 4.96

2.4 9 2.4 1.5 2.7 7.35 10.8

4.8 2.4 16 3.4 10.08 15.4 6.48

8 1.5 3.4 25 18.9 16.45 9.2

8.4 2.7 10.08 18.9 36 4.62 22.56

7 7.35 15.4 16.45 4.62 49 16.24

4.96 10.8 6.48 9.2 22.56 16.24 64

 
 
 
 
 
 
 
 
 
 
 

  

 
The second one, (Setting No. 2) represents First-Order 
Autoregressive (AR(1)) covariance structure. The third 
one, (Setting No. 3) represents Heterogeneous First-
Order Autoregressive (ARH(1)) covariance structure. 
The fourth one, (Setting No. 4) represents 
Heterogeneous Compound Symmetry (CSH) 
covariance structure. The fifth one, (Setting No. 5) 
represents Independent Errors (VC) covariance 
structure. The sixth one, (Setting No. 6) represents 
Banded Main Diagonal (UN(1)) covariance structure. 
The seventh one, (Setting No. 7) represents 
Unstructured (UN) covariance structure. 
 

RESULTS 
 
 The simulation results indicated that the procedure 
in the first stage selects the right multivariate model 
structure as member of the best subset hundred percent 
of the times from the class of candidate multivariate 

model structures for each of the covariance structures 
with the new Variance Information Criterion (VARIC). 
Table 2 summarizes results of the percentage of number 
of times that the procedure in the first stage selects the 
right multivariate model structure alone from the class 
of candidate multivariate model structures for each of 
the covariance structures with the new Variance 
Information Criterion (VARIC). Table 2 indicate that 
the new Variance Information Criterion (VARIC) 
showed very good performance in identifying the right 
multivariate model structure in the first stage except for 
specific models with Unstructured (UN) covariance 
structure, banded main diagonal (UN(1)) covariance 
structure and independent errors (VC) covariance 
structure that have slightly low percentage comparing to 
others which could be related to conversion difficulty. 
 The simulation results indicated that the procedure 
in the second stage selects the right covariance structure 
as  member  of  the  best  subset  hundred percent of the  
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Table 2: The percentage of number of times that the procedure in the 
first stage selects the right multivariate model structure alone 
from a class of candidate multivariate model structures for 
each one of the covariance structures with the new 
information criterion (where nominal Type I error = 0.05) 

Covariance Model The Variance Information  
structure structure Criterion (VARIC) (%) 

1 1 100.0000 
1 2 100.0000 
1 3 97.9020 
1 4 96.6670 
1 5 93.3330 
2 1 100.0000 
2 2 100.0000 
2 3 98.6580 
2 4 97.3333 
2 5 93.3330 
3 1 100.0000 
3 2 100.0000 
3 3 98.9470 
3 4 100.0000 
3 5 96.6670 
4 1 100.0000 
4 2 100.0000 
4 3 98.0000 
4 4 98.0000 
4 5 94.0000 
5 1 100.0000 
5 2 100.0000 
5 3 94.3090 
5 4 100.0000 
5 5 88.6670 
6 1 100.0000 
6 2 100.0000 
6 3 75.1820 
6 4 100.0000 
6 5 96.6670 
7 1 100.0000 
7 2 99.3330 
7 3 97.8570 
7 4 90.6670 
7 5 78.6660 

 
times from the class of candidate covariance structures 
for each multivariate model structure determined in the 
first stage as the right model structure with the five 
criteria. Table 3 present the percentage of number of 
times that the procedure in the second stage selects the 
right covariance structure alone from the class of 
candidate covariance structures for each multivariate 
model structure determined in the first stage as the right 
model structure with the five criteria. Table 3 indicate 
that although all the criteria showed very good 
performance in identifying the right covariance 
structure in the second stage, CAIC and BIC criteria 
have the best performance overall. 

Table 3: The Percentage of number of times that the procedure in the 
second stage selects the right covariance structure alone 
from a class of candidate covariance structures for each 
multivariate model structure determined in the first stage as 
the right model structure for with the five criteria (where 
nominal Type I error = 0.05)  

  The five criteria (%) 
Model Covariance ------------------------------------------------------ 
structure structure AIC BIC CAIC HQIC AICC  
1 1 99.3333 100 100 100.0000 99.3333 
1 2 99.3333 100 100 100.0000 100.0000 
1 3 100.0000 100 100 100.0000 100.0000 
1 4 99.3333 100 100 100.0000 100.0000 
1 5 95.9999 100 100 99.3333 98.0000 
1 6 98.6667 100 100 100.0000 100.0000 
1 7 100.0000 100 100 100.0000 100.0000 
2 1 100.0000 100 100 100.0000 100.0000 
2 2 98.6667 100 100 100.0000 100.0000 
2 3 100.0000 100 100 100.0000 100.0000 
2 4 99.3333 100 100 100.0000 99.3333 
2 5 98.0000 100 100 100.0000 99.3333 
2 6 99.3333 100 100 100.0000 100.0000 
2 7 100.0000 100 100 100.0000 100.0000 
3 1 100.0000 100 100 100.0000 100.0000 
3 2 100.0000 100 100 100.0000 100.0000 
3 3 100.0000 100 100 100.0000 100.0000 
3 4 100.0000 100 100 100.0000 100.0000 
3 5 98.0000 100 100 100.0000 100.0000 
3 6 98.0000 100 100 100.0000 99.3333 
3 7 100.0000 100 100 100.0000 100.0000 
4 1 100.0000 100 100 100.0000 100.0000 
4 2 99.3333 100 100 100.0000 100.0000 
4 3 100.0000 100 100 100.0000 100.0000 
4 4 100.0000 100 100 100.0000 100.0000 
4 5 98.6667 100 100 100.0000 100.0000 
4 6 99.3333 100 100 100.0000 99.3333 
4 7 100.0000 100 100 100.0000 100.0000 
5 1 98.6667 100 100 100.0000 100.0000 
5 2 100.0000 100 100 100.0000 100.0000 
5 3 100.0000 100 100 100.0000 100.0000 
5 4 100.0000 100 100 100.0000 100.0000 
5 5 95.3333 100 100 100.0000 97.3333 
5 6 98.6667 100 100 100.0000 100.0000 
5 7 100.0000 100 100 100.0000 100.0000 

 
DISCUSSION 

 
 In our simulation, we considered multivariate 
regression models in which the responses were 
correlated in particular ways, looking at the 
performance of a new three stages procedure that could 
be used to guide the selection of the best multivariate 
regression model that has the right covariance structure 
and in the same time has the right multivariate model 
structure from both standard and non-standard 
multivariate model structures. The main result of our 
article is that the performance of the new three stages 
procedure in identifying the best multivariate regression 
model that has the right covariance structure and in the 
same time the right multivariate model structure was 
excellent overall in terms of identified the right 
multivariate model structure in the first stage then 
identifying the right covariance structure in the second 
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stage for the multivariate model structure that was 
determined in the first stage. Finally, the best 
multivariate regression model that has the right 
covariance structure and in the same time has the right 
multivariate model structure is fitted in the third stage 
using MIXED procedure. Hence, the new procedure is 
recommended to be used to guide the selection of the 
best multivariate regression model that has the right 
covariance structure and in the same time has the right 
multivariate model structure from both standard and 
non-standard multivariate model structures, taking into 
consideration that if the MCB procedure suggested the 
best subset of model structures (covariance structures) 
contains more than one model structure (covariance 
structure), then we recommend selecting the right 
model structure (covariance structure) as the one with a 
simplest structure since the careful examination of 
simulation results showed that in such case the others 
model structures (covariance structures) in the best 
subset are just overfitted structures. In case of the first 
stage of the procedure, the overfitted model structures 
contain the predictors of the right model, plus any 
additional predictors. I.e., if the best subset of model 
structures consists of more than model structure then 
they could be for example the first multivariate model 
structure considered as the overfitted model structure 
and the second multivariate model structure considered 
as the right model structure. In case of the second stage 
of the procedure, the overfitted covariance structure 
contains the same parameters of the right covariance 
structure, plus any additional parameters. I.e., if the best 
subset of covariance structures consists of more than 
one covariance structure then they could be for example 
Heterogeneous Compound Symmetry covariance 
structure as the overfitted covariance structure and 
compound symmetry covariance structure as the right 
covariance structure. Also, the careful examinations of 
the whole simulation results reveal that proceeding with 
the second stage using other than the right selected 
model structure that was determined in the first stage 
could be resulted with misleading selection for the 
covariance structure or sometimes with conversion 
problem in MIXED procedure in the second stage 
therefore it is important to follow the right sequences 
suggested in the three stage procedure to insure 
selecting the best multivariate regression model that has 
the right covariance structure and in the same time has 
the right multivariate model structure.  
 

CONCLUSION 
 

 The evaluation of the new three stages procedure 
indicate that its performance in identifying the right 

multivariate regression model that has the right 
covariance structure and in the same time the right 
multivariate model structure was excellent for both 
standard and non-standard multivariate model 
structures. Therefore, the new procedure is 
recommended to be used as stander tools to guide the 
selection of the best multivariate regression model that 
has the right covariance structure and in the same time 
has the right multivariate model structure. 
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