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ABSTRACT 

A general classical theorem is presented according to which all invariant relations among the space 
time metric scalars, when turned into functions on the Phase Space of full Pure Gravity (using the 
Canonical Equations of motion), be-come weakly vanishing functions of the Quadratic and Linear 
Constraints. The implication of this result is that (formal) Dirac consistency of the Quantum Operator 
Constraints (annihilating the wave Function) suffices to guarantee space time covariance of the 
ensuing quantum theory: An ordering for each invariant relation will always exist such that the 
emanating operator has an eigenvalue identical to the classical value. The example of 2+1 Quantum 
Cosmology is explicitly considered: The four possible “Cosmological Solutions” -two for pure 
Einstein's equations plus two more when a Λ term is present- are exhibited and the corresponding 
models are quantized. The invariant relations describing the geometries are explicitly calculated and 
promoted to operators whose eigenvalues are their corresponding classical values. 
 
Keywords: Space Time, Gravity, Quantum Cosmology, Canonical Quantization 

1. INTRODUCTION 

The problem of space time covariance of a 
Quantum Theory of Gravity (Isham, 1995) within the 
context of Canonical Quantization can essentially be 
described as follows: Classically, Einstein's Field 
equations are known to be (not manifestly but 
explicitly) equivalent to the Hamiltonian and 
Momentum constraints plus the Canonical Equations 
of motion. This is understandable since, although the 
canonical analysis uses objects defined on the 
hypersurface, the momenta involve the extrinsic 
curvature and thus carry the information of the 
embedding of the hypersurface in space time. When 
we canonically quantize, the momenta become 
functional derivatives with respect to the spatial 
metric (choice of Polarization in the phase space) and 

thus the fate of space time covariance is somewhat 
obscure. Of course if one takes special care so that the 
geometrical meaning of the classical constraints is 
maintained at the quantum level, one is justified to 
expect space time covariance of the ensuing theory. 
Indeed as we shall see in the first section, when we 
suitably define the equivalence between two sets of 
state vectors emerging upon quantizing the same 
space time in two different foliations, then space time 
covariance is indeed achieved. 

In the next sections we present the example of 2+1 
spatially homogeneous cosmological models in the 
absence as well as in the presence of a Λ term. The 
classical solutions i.e., the different “cosmological” 
disguises of Minkowski space time or the maximally 
symmetric space are explicitly given. The corresponding 
models are quantized and the classical observables are 
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turned into operators in such a way that their eigenvalues 
coincide with the classical values. In this sense it is 
proven that the two pairs of state vectors are equivalent. 

2. A CLASSICAL THEOREM AND ITS 
QUANTUM IMPLICATIONS 

As is well known (Sundermeyer, 1982), the canonical 
analysis of pure Gravity consists in the following 
statements Equation (2.1a to e): 
 

( )ij
0 ijH g , 0π ≈  (2.1a) 

 

( )k
ij

ijH g , 0π ≈  (2.1b) 

 

{ }ij ijg g ,H=ɺ  (2.1c) 

 

}{ ij
ij ,Hπ = πɺ  (2.1d) 

 

( )0 k 3
0 kH N H N H d x= +∫  (2.1e) 

 
Which are explicitly equivalent to the ten 

Einstein's Field Equations. If we adopt the notion that 
classical observables, are all the geometrical objects 
that do not depend on the gauge, i.e. the coordinate 
system, then we are led to identify these observables 
with invariant relations among space time scalars. 
These scalars can be constructed in two ways: Firstly, 
by contracting all the indices of tensor products of the 
Riemann tensor and its covariant derivatives of any 
order. Secondly, in the case of spacetimes admitting a 
null, covariantly constant vector field (pp waves 
where all the scalars constructed in the above 
mentioned way are identically vanishing), by finding 
proportionality factors between tensors constructed by 
the Riemann tensor and its covariant derivatives of any 
order. Anyway, the scalars themselves do not describe 
the space time in an invariant manner since their 
functional form in terms of the coordinates changes 
when the coordinate system is altered. A way to 
generate invariant relations among these scalars, albeit 
not the most efficient one, would be to take a base of 4 
scalars (say Q1,…Q4) and solve for the coordinates. 
Then, any other scalar (say Q5) becomes expressible in 
terms of the 4 scalars chosen (Q5 = f(Q1,…,Q4)). Now 
this relation is characteristic of the geometry i.e., does 
not change form under coordinate transformations. In 
this sense a geometry is complectly characterized by a 
set of relations Equation (2.2): 

( )A
if Q 0=   (2.2) 

 
The index A is at most countable. Turning these 

relations into functions on the phase space we notice that 
they become weakly vanishing quantities Equation (2.3): 
 

( )A ij
ijh g ,p »0 (2.3) 

 
In implementing this step use has been made of 

canonical equations of motion in order to substitute all 
higher time derivatives of the metric of the slice. But at 
this point, we invoke a known theorem of constrained 
dynamics (Sundermeyer, 1982): 

Theorem 

“Every weakly vanishing function in Phase Space is 
strongly equal to some expression containing the 
Constraints (which define a surface in Phase Space)” 

Moreover the expression under discussion ought to 
vanish on-mass shell (i.e., when the constraints are set to 
zero). Thus Equation (2.4): 
 

( )A A
0 kh h H ,H=  (2.4) 

 
The translation of the above result in the velocity 

phase space reads as follows: Consider an invariant 
relation fA(Qi) = 0 of any space time geometry which 
satisfies Einstein's Field Equations. Evaluate the left-
hand side for the generic space time metric. Then, 
eliminate from the resulting expression all higher time 
derivatives of the metric (on the slice) using the 
spatial Einstein equations (and their time derivatives 
of the appropriate order). The end result will be that fA 
will become such a function of the 0 0

0 kG ,G  k constraints 

so that it vanishes when the constraints are set to zero. 
The proof rests on the fact that the constraints are the 
only quantities of the spatial metric and its time 
derivative that vanish, a thing that is guaranteed by the 
consistency of the Field Equations; Any other function 
on the velocity Phase Space which vanishes by virtue of 
the Field Equations, such as fA, is necessarily expressible 
in terms of the constraints. 

The implications of this for the quantum theory are 
obvious and important: Adopting the point of view that 
the quantum observables are to be the operator analogues 
of the classical observables, we are assured that, for each 
and every such observable, there will exist a factor 
ordering such that all ensuing operators, when acting on 
the appropriate states defined by Equation (2.5a and b): 
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0Ĥ 0Ψ =  (2.5a) 

 

kĤ 0Ψ =  (2.5b) 

 
Will have vanishing eigenvalues Equation (2.6): 

 
Aĥ 0Ψ =  (2.6) 

 
This establishes the (formal) space time covariance of 

the quantum theory described by (2.5) above. 

3. PRELIMINARIES ON SPATIALLY 
HOMOGENEOUS SPACE-TIMES 

We are now interested in exemplifying the theorem 
and its implications by means of a concrete, finite-
dimensional Quantum Cosmology example. To this end, 
we wish to manufacture a situation in which a specific 
space time admits two different homogeneous foliations. 
This is generically impossible in 3+1 Cosmology, where 
the imposition, on the hypersurface, of the various 3-dim 
Lie Groups as symmetry groups of motion, leads to the 
distinct Bianchi models. The very rare exceptions have 
to do with limiting cases, such as Milne's solution 
(Milne, 1932) which is 4-dim Minkowski geometry 
disguised as a Type V cosmology, or the trivial case of 
Kasner's universes with two of the three scale factors 
constant. A suitable situation that comes to mind is the 
case of 2+1 dimensions: There, the pure Einstein's Field 
Equations admit only the Minkowski geometry as a 
solution, while when a Λ term is present, the only 
possibility is a maximally symmetric space. Thus, if we 
solve the general Field Equations under the restriction of 
spatial homogeneity, we are bound to end up with 
“cosmological” descriptions of either Minkowski geometry 
or a space of maximal symmetry, correspondingly. 

Before proceeding with the examples, it is deemed as 
appropriate to exhibit some basic assumptions. 

Spacetime, is assumed to be the pair (M, g) where M 
is a 3-dimensional, Hausdorff, connected, time-oriented 
and C1 manifold and g is a (0, 2) tensor field, globally 
defined, C1, non degenerate and Lorentzian i.e., it has 
signature (-,+, +). In the spirit of 2+1 analysis, M = R×Σt, 
where the 2-dimensional orientable sub manifolds Σt 
(surfaces of simultaneity), are spacelike surfaces of 
constant time; their evolution in time, results in the entire 
spacetime. The assumption of spatial homogeneity 
corresponds to the imposition of the action of a 
symmetry group of transformations G upon the 

manifolds Σt. Usually the group G is not only continuous, 
but also a Lie group -thus denoted by Gr, where r is the 
dimension of the space of its parameters. Avoiding the 
details on these issues {these matters can be easily found 
in every standard reference see e.g., (Eisenhart, 1933)- we 
simply state that spatially homogeneous models with a 
simply transitive action of the symmetry group are 
described (apart the topology of Σt) by an invariant basis 
of one forms ( ) i

i x dxασ . By invariant we mean that their 

Lie Derivative with respect to the generators of the Lie 
Group Gr are zero. The case of Groups which act 
multiply transitively will not concern us. 

The line element of such a space time can be casted 
into the form Equation (3.1): 
 

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )

2 2 2 i
i

i j
i j

ds N t N t N t dt 2N t x dtdx

t x x dx dx

α α
α α

α β
αβ

= − + σ

+γ σ σ
 (3.1) 

 
With Equation (3.2): 

 
( ) ( ) ( ) ( )v

i, j j,i i jvx x 2C x xα α µα
µσ − σ = σ σ  (3.2) 

 
where, γαβ(t) is the metric induced on the surfaces Σt (and 
constant on them), N(t) is the lapse function, Nα(t) is the 
shift vector (Nα(t) = γαβ(t)Nβ(t),γαβ(t) being the inverse of 
γαβ(t)) and vCα

µ  are the structure constants for the 

corresponding Lie Algebra. Greek indices count the 
difierent one-forms, while the Latin are world indices; 
both kind of indices range in the interval (Isham, 1995; 
Sundermeyer, 1982). In 2 dimensions, there are only two 
distinct Lie Algebras; the Abelian(I) , where all the 
structure constant vanishvC 0α

µ = and the Non Abelian 

(II), where there is only one independent non vanishing 
structure constant-say 112C 1= ; every other choice for the 

non vanishing structure constants can be transformed 
into this, under a linear mixing of the initial set i.e., using 
a new set of the form k

v vC Cα α λ β
µ β µ κλ= ϒ ∆ ∆ɶ  where 

( )GL 2,α
β∆ ∈ ℝ and α

βϒ  its inverse. Thus, two 

“cosmological” models emerge for the pure gravity case 
and two more when a Λ term is present. 

At this point, a question arises; is there any particular 
class of General Coordinate Transformations (G.C.T.'s) 
which can serve to simplify the form of Einstein's Field 
Equations (E.F.E.'s)? The answer is positive and a 
thorough investigation of this problem and its 
consequences, is given in (Christodoulakis et al., 2001); 
indeed, not only there is a class of G.C.T.'s which 
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preserve the manifest spatial homogeneity of the line 
element (3.1), but also forms a continuous (and virtually, 
Lie) group. This group is closely related to the 
symmetries of the symmetry Lie Group Gr; it is its auto 
orphism group. A brief account of the relevant findings 
of (Christodoulakis et al., 2001) is as follows: 

Consider the transformations Equation (3.3a and b): 
 
t t t t t→ = ⇔ =ɶ ɶ  (3.3a) 

 

( )i i i j i i jx x g (t,x ) x f t,x→ = ⇔ =ɶ ɶ  (3.3b) 

 
When we insert (3.3) into (3.1), the need to preserve 

the manifest spatial homogeneity of the latter, leads to 
the restrictions Equation (3.4a and b): 
 

( ) ( )
i

if
f P t

t
α

α
∂ = σ
∂

 (3.4a) 

 

( ) ( ) ( )
i

i
jj

f
f t x

x
α β

α β
∂ = σ Λ σ
∂

ɶ
ɶ

 (3.4b) 

 
And, subsequently, to the identifications Equation 

(3.5a to c): 
 

( ) ( )N t N t=ɶ  (3.5a) 

 

( ) ( ) ( ) ( )( )N t S t N t P tα α β β
β= +ɶ  (3.5b) 

 
( ) ( ) ( ) ( )t t t tµ ν

αβ α β µνγ = Λ Λ γɶ  (3.5c) 

 
where, Nα(t) =γαβ(t)Nβ(t,), with ( )i xασ being the matrix 

inverse to ( )i xασ Integrability conditions for the system 

(3.4) i.e., Frobenious' Theorem, results in the system (the 
dot, whenever used, denotes difierentiation with respect 
to time) Equation (3.6a and b): 
 

( ) ( ) ( )vC t C t tα λβ α κ
µν β κλ µΛ = Λ Λ  (3.6a) 

 

( ) ( ) ( )v1
t C P t t

2
α α µ
β µν βΛ = Λɺ  (3.6b) 

 
And, “Time-Dependent Automorphisms Inducing 

Difieomorphisms” emerge. The automorphisms of a 
Lie Group Gr constitute a continuous group. The 
members of the group which are continuously 

connected to the identity element, form a Lie Group as 
well-though the topology of the latter might be 
difierent from that of the former. If one considers 
parametric families of the automorphic matrices, 
characterized by the parameters ( )i i, t;α

βτ Λ τ and, as 

usual, demands Equation (3.7a and b): 
 

( )i
i 0

t;α α
β βτ =

Λ τ = δ  (3.7a) 

 

( )
( )

i

ii j i 0

d t;

d

α
β α

β≠τ =

Λ τ
= λ

τ
 (3.7b) 

 
where, ( )i

α
βλ , are the generators with respect to the 

parameter τi, of the Lie Algebra of the Automorphisms, 
then from the first of (3.6), after a difierentiation with 
respect to τi, will have Equation (3.8): 
 

( ) ( ) ( )i i iC C Cα β ρ α ρ α
µνβ µ ρν µρνλ = λ + λ  (3.8) 

 
For an extensive treatment on these issues see 

(Christodoulakis et al., 2002a), while for the relation and 
usage of these generators with conditional symmetries 
(Kuchar, 1982; Christodoulakis et al., 2002b).  

In n+1 analysis (here n = 2), the E.F.E.'s in vacuum, 
when the cosmological constant Λc exists, take the form 
Equation (3.9a to c): 
 

( )0 2
0 cE K K K R 2 0α β

β α= − + + Λ =  (3.9a) 

 
0E K C K C 0µ ν µ ν
α ν ααµ µν= − =  (3.9b) 

 

( )
c

2
E K NKK N R

n 1

2N K C K C 0

α α α α α
β β β β

ρ α ν ν α
ν βρ β νρ

β
 = − + + Λ δ − 

+ − =

ɺ

 (3.9c) 

 
With Equation (3.10a to d): 

 
( ) ( ) ( )K t t K tα αρ

β ρβ= γ  (3.10a) 

 
( ) ( ) ( )R t t R tα

β
αρ

ρβ= γ  (3.10b) 

 

( ) ( )
( ) ( ) ( )

( ) ( )
t 2 t C N t1

K t
2N t 2 t C N t

ρ

αβ ν ρ

ν
αβ αν βρ

βν αρ

 γ + γ
 = −
 + γ 

ɺ

 (3.10c) 
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( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )v

R t C C t t t t

2C C 2C C t t

2C C t t 2C C t t

κ λ
αβ

µ
ακ

µ µ

στ
σν τµ

µν ακ βλ

λ κ ν κλ
ακ βλ βλ µν

λ κ κν
ακ µν βλ βκ µν αλ

= γ γ γ γ

+ + γ γ

+ γ γ + ϒ ϒ

 (3.10d) 

 
where, α

βδ  is the Kronecker's Delta. 

Since G.C.T.'s , in general, are covariances of the 
E.F.E.'s, the same must hold true for the Time Dependent 
A.I.D.'s. Indeed, under the “gauge” transformations (3.5) 
one can readily proof (with the help of 3:6) Equation 
(3.11a to c): 
 

0 0
0 0E E=ɶ  (3.11a) 

 
0 0E Eβ
α α β= Λɶ  (3.11b) 

 
E S Eα α λ κ

β κ β λ= Λɶ  (3.11c) 

 
where, Sα

β  is the matrix inverse to α
βΛ . The effect of a 

time reparameterization can also be trivially seen to be a 
covariance of (3.9). Using the freedom contained in Pα(t) 
one can always set the shift to zero which, together with 

the choice of time ( ) ( )N t t= γ considerably simplifies 

the E.F.E.'s (3.9) which become Equation (3.12a to c): 
 

( )
2

c4 R 2 0αµ βν
αβ µν

 γ−γ γ γ γ + − γ + Λ = γ 

ɺ
ɺ ɺ  (3.12a) 

 
V VC C 0µρ

ρα µν
µρ

ρν αµγ γ − γ γ =ɺ ɺ  (3.12b) 

 

( ) ( ).

c2 R 2 0αρ α α
βρ β βγ γ − γ + Λ δ =ɺ  (3.12c) 

 
where, tildes have been omitted. Finally some terminology 
may prove helpful; (3.9a) is called Quadratic Constraint, 
(3.9b) are called Linear Constraints and (3.9c) are simply 
the Equations of Motion. 

4. THE ABELIAN MODEL-CLASSICAL 
CONSIDERATION 

This model is characterized by the vanishing of all 
the structure constants of the corresponding 
Lie Algebra. In particular, since C 0α

µα = , it is also a 

Class A model. A choice for the basis one-forms, in the 
spatial coordinate basis (x, y), is ( )i ixα ασ = δ  i.e., the 

Kronecker's Delta. In matrix notation Equation (4.1): 

( )i

1 0
x

0 1
α  

σ =  
 

 (4.1) 

 
The solution to the system (3.6) is Equation (4.2a 

and b): 
 

( )GL 2,α
βΛ ∈ ℝ  (4.2a) 

 
( ) ( ) ( )( )P t x t , y tα =  (4.2b) 

 
A suitable basis, which spans the space of solutions 

to (3.8) is Equation (4.3): 
 

( ) ( ) ( )

( )

1 2 3

4

1 0 0 1

0 1 0 0

1 0 0 0

0 1 1 0

α α α
β β β

α
β

   
λ = λ = λ   −   

   
= λ =   
   

 (4.3) 

 
It is noteworthy that Pα(t) contains the entire freedom 

carried by the Time Dependent A.I.D.'s, i.e., the two 
arbitrary functions of time. Thus, since the matrix α

βΛ  is 

constant, the only possible use of this “gauge” freedom is, 
according to (3.5), to set the shift zero. Choosing the above 
mentioned time gauge, we have Equation (4.4a to c): 
 

2

c8 0αµ βν
αβ µν

 γ−γ γ γ γ + − γΛ = γ 

ɺ
ɺ ɺ  (4.4a) 

 
Linear Constraints are identically satisftied  (4.4b) 
 

( ).

c4 0αρ α
βρ βγ γ − γΛ δ =ɺ  (4.4c) 

 

4.1. Abelian Model with Vanishing Cosmological 
Constant 

The previous set of equations assumes the form 
Equation (4.5a to c): 
 

( )2
0α α β

α β αϑ − ϑ ϑ =  (4.5a) 

 
Linear Constraints are Identically Satised  (4.5b) 
 

0α
β

αω
ωβγ γ − ϑ =ɺ  (4.5c) 

 
where, α

βϑ  is a constant matrix. The integration of (4.5) is 

straightforward. The quadratic constraint, simply states that 
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the determinant of the matrix αβϑ  vanishes; thus the initial 

number of the independent components, is at most 3. But 
the equations of motion, can be rewritten as Equation (4.6): 
 

e
eαβ βαγ = γ ϑɺ  (4.6) 

 
And a consistency requirement, emerges Equation (4.7): 

 
e e

e eαβ βα β αα βγ = γ ⇒ γ ϑ = γ ϑɺ ɺ  (4.7) 

 
An exhaustive consideration of all the cases 

concerning a matrix α
βϑ , with vanishing determinant, 

plus the consistency requirement, results in only the 
following two distinct-at first sight-solutions to the 
previous system Equation (4.8): 
 

1 0

0 1αβ
 

γ =  
 

 (4.8) 

 
with associated line element Equation (4.9 and 4.10): 

 

( ) ( ) ( ) ( )2 2 22 1 2
1ds dt dx dx= − + +  (4.9) 

 
And: 

 

( ) 1 0
,

0 e
∗

θταβ
 

γ τ = θ∈ 
 

ℝ  (4.10) 

 
where, [ ]* 0= −ℝ ℝ , with associated line element 

Equation (4.11): 
 

( ) ( ) ( ) ( )2 2 22 1 2
2ds e d dy e dy ,θτ θτ ∗= − τ + + θ∈ℝ  (4.11) 

 
The transformation (t, x1, x2)→(τ, y1, y2) Equation 

(4.12): 
 

( )
2 2

1 2 /2 1 /22 y 2 y
t,x ,x cosh e ,y , sinh e

2 2
θτ θτ    θ θ=      θ θ    

 (4.12) 

 
Takes the line element (ds1)

2 to (ds2)
2. 

4.2. Abelian Model with Non Vanishing 
Cosmological Constant 

Contraction of the equations of motion results in the 
integral of motion Equation (4.13): 

2

c16 2 const
 γ − γΛ = ω = γ 

ɺ
 (4.13) 

 
Under the “conformal” change of depended variable 

αβ αβγ = γ γ  the equations of motion become Equation 

(4.14): 
 

0α
β

αω
ωβγ γ − ϑ =ɺ  (4.14) 

 
And contraction of this set, results in 

( )sin ce 1 0α
αγ = ϑ = . Substitution of the quadratic 

constraint and usage of the integral of motion (4.13), 
yield Equation (4.15): 
 

1 1 2
1 2 12α β

β αω = ϑ ϑ ⇒ ω = ϑ + ϑ ϑ  (4.15) 

 
Since 0α

αϑ = . 

Again, consideration of the equations of motion in 
terms of αβγ for all the traceless matrices ααϑ , plus the 

consistency requirement (i.e., αβ βαγ = γɺ ɺ ) produce the 

following two solutions Equation (4.16 and 4.17): 
 

1 0
,with 0

0 1αβ
 

γ = ω = 
 

 (4.16) 

 
And: 

 

( ) ( )
1
1

1
1

21 1
1 1

e 0
,with 2 0,

0 e

ϑ τ
∗

αβ ϑ τ−

 
 γ τ = ω = ϑ > ϑ ∈
 
 

ℝ  (4.17) 

 
Since, for all the cases, ω≥0 the integral of motion 

(4.13) dictates that Λc>0. Inversion of the conformal 
transformation and integration of (4.13) for each of the 
two solutions, yield Equation (4.18): 
 

( )
c

1 01
t

0 12t
αβ

 
γ =  

Λ  
 (4.18) 

 
With associated line element Equation (4.19): 

 

( ) ( ) ( ) ( )( )2 2 22 1 2
1 2

c c

1 1
ds dt dx dx

4t 2t
= − + +

Λ Λ
 (4.19) 

 
And Equation (4.20): 
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( )
1

11
1

c

1
1

1
1

e 0
,

2 0 e
αβ

ϑ τ
∗

−ϑ τ

 ϑ  γ τ = ϑ ∈
 Λ
 

ℝ  (4.20) 

 
With associated line element Equation (4.21): 

 

( ) ( ) ( )
( )

( )

( )
( )

2 22 1
2 2

c c

22

c

1 e
ds d dy

4 sinh 2 sinh

e
dy

2 sinh

τ

−τ

= − τ +
Λ τ Λ τ

+
Λ τ

 (4.21) 

 
where, 1

1ϑ , not being an essential constant 

(Christodoulakis et al., 2001), has been absorbed. 
It is obvious that the two line elements are connected by 

a time reparameterization of the form t→τ: t = sinh(τ)e-τ. 

5. THE NON ABELIAN MODEL-
CLASSICAL CONSIDERATION 

This model is characterized by 112C 1= ; any other choice 

can be cast into this. A choice for the basis one-forms, in the 
spatial coordinate basis (x1, x2) is Equation (5.1): 
 

( )
22x

i

e 0
x

0 1

−
α  

σ =   
 

 (5.1) 

 
Now, the solution to the system (3.6) is Equation 

(5.1a and b): 
 

( ) ( ) ( )x t y t
t

0 1
α
β

 
Λ =  

 
 (5.2a) 

 

( ) ( ) ( ) ( )
( )

( )
( )

y t y t x t x t
P t ,

2 2x t 2x t
α  

= − −  
 

ɺ ɺ ɺ
 (5.2b) 

 
This time, both the automorphic matrices ( )tα

βΛ  and 

the triplet Pα(t) carry the freedom contained in the time 
dependent A.I.D.'s. It is wiser to exploit this freedom 
contained in ( )tα

βΛ in order to simplify the initial form of 

the scale factor matrix γαβ(t) rather than use the same 
freedom contained in Pα(t) to set the shift vector equal to 
zero. Accordingly, an initial full scale factor matrix, can 
be brought to the form Equation (5.3): 
 

( ) ( )
( )

11

11

t 0
t

0 tαβ

 γ
γ =   γ 

 (5.3) 

Thus the initial set of “dynamical” variables, consists 
of a scale factor matrix of the previous form, plus a shift 
vector (N1(t),N2(t)). Insertion of this set into both (3.9b) 
and (3.10d) results in respectively Equation (5.4 and 5.5): 
 

( )N t 0α =  (5.4) 

 
And: 

 

( )11

1 04
R

0 1t
α
β

 
=  γ  

 (5.5) 

 
Thus, a judicious use of the gauge freedom can result 

in both a very simple form of the scale factor matrix and 
the vanishing of the shift. The equations of motion admit 
the integral of motion Equation (5.6): 
 

( )
2

211
11 c 11

11

16 4 const
 γ − γ + Λ γ = ω = γ 

ɺ
 (5.6) 

 
The quadratic constraint assumes the form 

Equation (5.7): 
 

( )
2

211
11 c 11

11

16 4 0
 γ − γ + Λ γ = γ 

ɺ
 (5.7) 

 
and thus not only sets the constant w equal to zero, 

but also demands Λc>0-if this term exists. The 
integration of (5.6) with ω = 0, is a trivial matter: 

When Λc = 0 the result is Equation (5.8): 
 

( )11 2

1
t

4t
γ =  (5.8) 

 
with corresponding line element Equation (5.9): 

 

( ) ( ) ( ) ( )
24x

2 22 2 1 2
2 2 2

1 e 1
ds dt dx dx t

16t 4t 4t

−
∗= − + + ∈ℝ  (5.9) 

 
The transformation (t, x1, x2)→(T,X, Y ) Equation 

(5.10): 
 

( )
( ) ( ) ( )

( )

2

2
2

2 2x12 2

2 2x1 2x1

x ecosh 2x sinh 2x
2 ,

4t 4t 4tT,X,Y
x e x e

2 , 2
4t 4t

−

− −

 
 +
 

=  
 

+ − 
 

 (5.10) 
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Takes the standard Minkowski spacetime form to the 
line element above. 

When Λc 6 = 0 the result reads Equation (5.11): 
 

( )11 2
c

4
t

16t
γ =

− Λ
 (5.11) 

 
The associated line element being Equation (5.12): 

 

( ) ( ) ( )

( )

2
22 2 1

2 2

22
2

24x

cc

c

4 4e
ds dt dx

16t 16t

4
dx t

16t

−

∗

 
= − + − Λ − Λ 

+ ∈
− Λ

ℝ

 (5.12) 

 

With c c/ 4, / 4∗
 = − − Λ Λ
 

ℝ ℝ . 

6. QUANTUM DESCRIPTION OF The 
MODELS 

In trying to quantize gravity, one faces the problem of 
quantizing a constrained system. The main steps one has 
to follow are: 
 
• Define the basic operators ijg

⌢  and ijπ⌢ and the 

canonical commutation relation they satisfy 
• Define quantum operators mH

⌢
 whose classical 

counterparts are the constraint functions Hm 
• Define the quantum states Ψ[g] as the common null 

eigenvector of mH
⌢

, i.e., those satisfying mH
⌢ Ψ[g] = 

0. (As a consequence, one has to check that mH
⌢

, 

form a closed algebra under the basic Canonical 
Commutation Relations (CCR) 

• Find the states and define the inner product in the 
space of these states. 

 
Concerning point (iii) it is pertinent to clarify the 

meaning of the imposition of the quantum constraints 
upon Ψ[g]. A straightforward (modulo regularization 
prescriptions) but tedious calculation shows that any 
functional which is not a scalar functional of the curvature 
and/or higher derivative curvature scalars does not solve 
the linear operator constraints. Therefore, the imposition 
of these conditions, ensures that the wave functional will 
be a (scalar) functional of the 3-geometry and not of the 
coordinate system on it. Then, the dynamical evolution is 
provided by the quadratic operator constraint; the 

consistency of the quantum algebra is, somehow, expected 
to guarantee that the final wave functional will be 
independent of the 4 dimensional coordinate system. 

In the absence of a full solution to the problem, a 
partial solution, generally known as quantum cosmology, 
has been employed. This is an approximation to quantum 
gravity in which one freezes out all but a finite number 
of degrees of freedom and quantizes the rest. In this way 
one is left with a much more manageable problem that is 
essentially quantum mechanics with constraints. In 
principle, the dynamical variables are the components of 
a 2×2 symmetric scale factor matrix γαβ(t)'s, the lapse 
function N(t) and the shift vector Nα(t). The presence of 
the linear constraints-along with the conditional 
symmetries of the corresponding Hamiltonian-enable a 
reduction of the initial configuration space to a lower 
dimensional one, spanned by the curvature scalar 
characterizing the 2-geometry. The ultimate justification 
of this reduction is the fact that {from the point of view 
of the 2-geometry-the omitted degrees of freedom, are 
not physical but gauge (Christodoulakis et al., 2002a). It 
is true that at the classical level, the scale factor matrix, 
can be diagonalized on mass-shell-through a constant 
matrix e.g., (Christodoulakis et al., 2001) for the 3-
dimensional analogous case-while the shift can be set 
equal to zero. However, if one intends to give weight to 
all states, one has to start with the most general form 
which is described by the 3 scale factors γαβ(t)'s and the 
lapse function N(t). The absence of Hα's due to the 
vanishing of the C 'sα

βγ , implies that in principle all γαβ's 

are candidates as arguments for the wave function which 
solves the quadratic constraint (Wheeler-DeWitt 
equation). This is in contrast to what happens in the Non 
Abelian case, where one combination of γαβ's and C 'sα

βγ , 

parameterize the reduced configuration space. 

6.1. Quantization of the Abelian Model 

In this section, we present a complete reduction of 
the initial configuration space for the Abelian 
geometry-by extracting as many gauge degrees of 
freedom, as possible. Two separate cases are 
considered; when the cosmological constant is present 
and when is not. In either case, a wave function which 
depends on one degree of freedom is found, by 
imposing on it, the quantum versions of all classical 
integrals of motion as additional conditions. 

The Hamiltonian of the a Class A, spatially 
homogeneous cosmological system is H = 
N(t)H0+Nα(t)Hα, where Equation (6.1): 
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( )0 2

1
H L R 2αβ µν

αβµν= π π + γ + Λ
γ

 (6.1) 

 
is the quadratic constraint, with Equation (6.2): 

 
L 2

R C C 2C C 4C C

αβµν αµ βν αν βµ γα µν

β α θλ τµ α δ βν µ β νλ
λµ θτ αβ βδ να µν βλ

= γ γ + γ γ − βγ

= γ γ γ + γ + γ
 (6.2) 

 
γ being the determinant of γαβ and Equation (6.3): 

 
H 4Cµ βρ

α αρ βµ= γ π  (6.3) 

 
Are the linear constraints. For all Class A Types, 

the canonical equations of motion, following from 
(6.1), are equivalent to Einstein's equations derived 
from line element-see (Sneddon, 1976) for the 3+1 
dimensional analogous. 

The quantities H0, Hα are weakly vanishing (Dirac, 
1950), i.e. H0 ≈ 0, Hα ≈ 0. For the Class A (C 0α

βγ = ) 

Abelian Model, it can be seen {using the basic Poisson 
Brackets Relations (PBR's) {γαβ,πµv} = vSµ

αβ -that these 

constraints are first class, obeying the following algebra 
Equation (6.4): 
 

{ }
{ }

0H ,H 0

H ,H 2C H ,

α

γ
α β αβ γ

=

=−
 (6.4) 

 
Which ensures their preservation in time, i.e., 

0H 0,H 0α≈ ≈ɺ ɺ and establishes the consistency of the action. 

If we follow Dirac's general proposal (Dirac, 1950) 
for quantizing this action, we have to turn H0, Hα, into 
operators annihilating the wave function Ψ. 

In the Schrodinger representation Equation (6.5): 
 

ˆ

ˆ i ,

αβ αβ αβ

αβ αβ

λαβ

γ → γ = γ

∂π → π =−
∂

 (6.5) 

 
With the relevant operators, satisfying the basic 

Canonical Commutation Relations (CCR's) which 
correspond to the classical ones Equation (6.6): 
 

( )i
ˆ , i

2
ν
β

ν
α

µν µν µ µ
αβ αβ α β γ π = δ = δ δ + δ δ   (6.6) 

 
In the Abelian case, vC 0α

µ = , thus the only operator 

which must annihilate the wave function, is 0H
⌢

; and the 

Wheeler-DeWitt equation 0H 0Ψ =
⌢

, will produce a wave 

function, initially residing on a 3-dimensional 
configuration space-spanned by γαβ's. If the linear 
constraints existed, a first reduction of the initial 
configuration space, would be possible (Kuchar, 1982). 
New variables, instead of the 3 scale factors, would 
emerge-say qi, with i<3. Then a new “physical” metric 
would be induced Equation (6.7): 
 

i j
ij q q

g Lαβµν
αβ µν

∂ ∂=
∂γ ∂γ

 (6.7) 

 
According to Kuchar's and Hajicek's (Kuchar, 1982) 

prescription, the “kinetic” part of H0 would have to be 
realized as the conformal Laplacian (in order for the 
equation to respect the conformal covariance of the 
classical action), based on the physical metric (6.7). In 
the presence of conditional symmetries, further 
reduction can take place, a new physical metric would 
then be defined similarly and the above mentioned 
prescription, would have to be used after the final 
reduction (Hájíček and Kuchař, 1990). 

The Abelian case, is an extreme example in which 
all the linear constraints, vanish identically; thus no 
initial physical metric, exists -another peculiarity 
reecting the high spatial symmetry of the model under 
consideration. In compensation, a lot of integrals of 
motion exist ant the problem of reduction, finds its 
solution through the notion of “Conditional 
Symmetries”. These linear in momenta integrals of 
motion, if seen as vector field on the configuration space 
spanned by γαβ's, induce {through their integral curves-
motions of the form ( )v

v , GL 2,µ
αβ α β µγ = Λ Λ γ Λ ∈ɶ ℝ (section 2 

of Christodoulakis et al., (2002a)) which not only are 
identical to the action of spatial difieomorphisms, but 
also describe the action of the automorphism group-since 
GL(2,R) is the Aut(G) which corresponds to the Abelian 
models. 

The generators of this automorphism group, are (in a 
collective form and matrix notation) the following 4-one 
for each parameter Equation (6.8): 
 

( ) { }I , I 1,...,4α
β

α β 
λ = ∈ δ ε 

  (6.8) 

 
With the defining property Equation (6.9): 

 
.C C Cκ

σν
α κ σ σ σ
µν α µσ ν µλ = λ + λ  (6.9) 
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Exponentiating all these matrices, one obtains the 
outer automorphism group of the Abelian model, since 
there is not Inner Automorphism subgroup (all 
structure constants vanish). 

For full pure gravity, Hájíček and Kuchař (1990) 
has shown that there are no other first-class functions, 
homogeneous and linear in the momenta, except the 
linear constraints-ditto in 2+1 analysis. If however, we 
impose extra symmetries, such quantities may emerge-
as it will be shown. We are therefore-according to 
Dirac (Dirac, 1950) -justified to seek the generators of 
these extra symmetries; their quantum-operator 
analogues will be imposed as additional conditions on 
the wave function. The justification for such an action, 
is obvious since these generators correspond to spatial 
diffeomorphisms-which are the covariance of the 
theory. Thus, these additional conditions are expected 
to lead us to the final reduction, by revealing the true 
degrees of freedom. Such quantities are, generally, 
called in the literature “Conditional Symmetries” 
(Hájíček and Kuchař 1990). 

From matrices (6.8), we can construct the linear-in 
momenta-quantities Equation (6.10): 
 

( ) ( ) { }I 1E , I 1,...,4α ρβ
αρβ=λ γ π ∈  (6.10) 

 
In order to write analytically these quantities, the 

following base is chosen Equation (6.11): 
 

1 2 3 4

1 0 0 1 0 0 1 0
, , ,

0 1 0 0 1 0 0 1

       
λ = λ = λ = λ =       −       

 (6.11) 

 
It is straightforward to calculate the Poisson Brackets 

between E(I) and H0 Equation (6.12): 
 

{ }( I) 0 (1)E ,H 2 N α
α=− Λ γλ  (6.12) 

 
But, it holds that Equation (6.13): 

 

{ }(I) (I) 0 (1)E E ,H 2 N α
α=− Λ γλɺ  (6.13) 

 
-The last equality emerging by virtue of (6.12). Thus 

Equation (6.14): 
 

{ } { }(I) (I) 0 (I) ( I)E E ,H 0 E K cons tan ts, I 1,2,3= ⇒ = = ∈ɺ  (6.14) 

 
We therefore conclude that, when the cosmological 

constants is non vanishing, only the first three E(I), are first-
class and thus integrals of motion. If Λ vanishes, all the four 

quantities, are first-class. Out of the three quantities E(I), 
only two are (functionally) independent , if we allow for the 
coefficients of the linear combination to be functions of the 
γαβ's; if the coefficients are only allowed to be numbers , all 
three are (linearly) independent. 

The algebra of E(I) can be easily seen to be 
Equation (6.15): 
 

{ } ( ) { }M
(I) (J) IJ M

1
E ,E C E , I,J,M 1,...,4

2
= − ∈  (6.15) 

 
where, Equation (6.16): 
 

{ } ( ) { }M
(I) (J) IJ M, C , I,J,M 1,...,4λ λ = λ ∈  (6.16) 

 
The square brackets denoting matrix commutation. 
The non vanishing structure constants of the algebra 

(6.16), are found to be Equation (6.17): 
 

2 3 1
12 13 23C 2C 2C 1= =− =  (6.17) 

 
At this point, in order to achieve the desired reduction, 

we propose that the quantities E(I)-with I∈{ 1,…,3} -must 
be promoted to operational conditions acting on the 
requested wave function Ψ-since they are first class 
quantities and thus integrals of motion (6.14). In the 
Schrodinger representation Equation (6.18): 
 

( ) ( ) ( ) { }I IIE i K , I 1,...,3τ
τβα

αβ

∂ΨΨ =− λ γ = Ψ ∈
∂γ

⌢
 (6.18) 

 
In general, systems of equations of this type, must 

satisfy consistency conditions decreed by the Frobenious 
Theorem Equation (6.19): 
 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

J J I I I J

I I J I J I

E K E E K K

E K E E K K

Ψ = Ψ ⇒ Ψ = Ψ

Ψ = Ψ ⇒ Ψ = Ψ

⌢ ⌢ ⌢

⌢ ⌢ ⌢  (6.19) 

 
Subtraction of these two and usage of (6.15), results 

in Equation (6.20): 
 

( ) ( )
M M
IJ IJM MK E 0 C K 0Ψ = ⇒ =
⌢

 (6.20) 

 
This relation constitutes a selection rule for the 

numerical values of the integrals of motion. In view of 
the Lie Algebra (6.17), selection rule (6.20) sets K1 = K2 
= K3 = 0. This fact restores the action of the 
difieomorphisms as covariances of the quantum theory, 
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in the sense that now, we have conditions of the form 

( )IE 0Ψ =
⌢

. On the contrary, if we also had E(4) (as is the 

case Λ = 0) then K4 would remain arbitrary. With this 
outcome and using the method of characteristics 
(Carabedian, 1986), the system of the two functionally 
independent P.D.E.'s (6.18), can be integrated. The result 
is Equation (6.21): 
 

( )Ψ =Ψ γ  (6.21) 

 
i.e., an arbitrary function of γ-the determinant of the 

scale factor matrix. Note that the solution (6.21) would 
have not changed if another base for the generators had 
been chosen. However, such a choice would have had 
affected the form of the system (6.18). 

The next step, is to construct the Wheeler-DeWitt 
equation which is to be solved by the wave function (6.21). 
The degree of freedom, is 1; the q = γ. According to 
Kuchar's proposal (Kuchar, 1982), upon quantization, the 
kinetic part of Hamiltonian is to be realized as the 
conformal Beltrami operator-based on the induced physical 
metric {according to (6.7), with q = γ Equation (6.22): 
 

11 2 2
first of (6.2)

g L L 4αβ µν
αβµν αβµν

αβ µν

∂γ ∂γ= = γ γ γ = − γ
∂γ ∂γ

 (6.22) 

 
In the Schrodinger representation Equation (6.23): 

 
2v

v c

1 1
L

2 2
αβ µ

αβµ π π → − □  (6.23) 

 
where, Equation (6.24): 
 

{ }11
11

11

2 2
c

1
g g

g
= = ∂γ ∂γ□ □  (6.24) 

 
Is the 1-dimensional Laplacian based on g11 (g11g11 = 

1). Note that in 1-dimension the conformal group is totally 
contained in the G.C.T. group, in the sense that any 
conformal transformation of the metric cannot produce 
any change in the-trivial-geometry and is thus reachable 
by some G.C.T. Therefore, no extra term in needed in 
(6.24), as it can also formally be seen by taking the limit n 
= 1, R = 0 in the general definition Equation (6.25): 
 

( )
( )

2 2 2
c

d 2
R

4 d 1

−
= + =

−
□ □ □  (6.25) 

 
Thus Equation (6.26): 

( )0 0H H 2 2→ = γ∂γ γ∂γ + Λγ
⌢

 (6.26) 

 
So, the Wheeler-DeWitt equation -by virtue of (6.21)-

, reads Equation (6.27): 
 

2
0H 0′′ ′Ψ = γ Ψ + γΨ + γΛΨ =
⌢

 (6.27) 

 
The general solution to this equation, is Equation (6.28): 

 

( ) ( ) ( )1 0 2 0c J 2 c Y 2Ψ γ = γΛ + γΛ  (6.28) 

 
where, Jn and Yn, are the Bessel Functions of the first 
and second kind respectively -both of zero order- and c1, 
c2, arbitrary constants. Some comments on this wave 
function. Indeed, at first sight, the fact that Ψ depends 
only on one argument and particularly on γ, seems to 
point to some undesirable degeneracy regarding 
anisotropy; classically γ can be gauged to et and thus it 
seems as though the anisotropy parameter does not enter 
Ψ at all. If, however, we reflect thoroughly, we will 
realize that this objection rests strongly on a -not 
generally accepted-mingling of the classical notion of 
anisotropy and the interpretation of the wave function. 
Indeed if we adopt the interpretation that the wave 
function  Ψ (along with a suitable measure), is to give 
weight to all configurations parameterized by γαβ, then 
the anisotropic configuration will, in general, acquire 
different probabilities. The degeneracy occurs only 
between two different anisotropic configurations with the 
same determinant γ. In compensation the scheme 
proposed here, avoids the gauge degrees of freedom as 
much as possible. The final probabilistic interpretation 
must await the selection of a proper measure. 

If the cosmological constant Λ is zero, some changes 
will take place. The first concerns the obvious alteration 
to the potential in the Hamiltonian; it vanishes. This 
consequently, causes an alteration to the Poisson Bracket 
(6.12), which takes the form Equation (6.29): 
 

{ } { }( I) 0E ,H 0, I 1,...,4= ∈  (6.29) 

 
while, (6.15) still holds. Thus in the present case, there 
are four integrals of motion-instead of three. Also, the 
P.D.E. system (6.18) consists of four members (instead 
of three), but now out of the four quantities E(I), only 
three are functionally independent; the previous two, 
plus E(4). Again, using the method of characteristics 
(Carabedian, 1986), the system of the three functionally 
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independent P.D.E.'s (6.18), can be integrated. The result 
is Equation (6.30): 
 

1

iK /24cΨ = γ  (6.30) 

 
where, γ is the determinant of the scale factor and K4, the 
remaining constant {according to selection rule (6.20).  

The fact that this wave function does not depend on 
any combination of γαβ's in an arbitrary manner (i.e. Ψ is 
not an arbitrary function of γαβ's), might be taken as an 
indication that no reduced Wheeler-DeWitt equation can 
be written. On the other hand, this wave function does 
contain an arbitrary constant which, at the classical level 
is not essential (the model is 2+1 Minkowski spacetime). 
Thus, it would not be harmful if the value of this 
constant were to be fixed by the quantum dynamics. 
These thoughts lead to the following compromise; the 
initial configuration space, should be the mini-
superspace i.e., we should write the Wheeler-DeWitt 
equation, based on the supermetric Lαβµv. 

In the Schrodinger representation Equation (6.31): 
 

v 2
v c

1 1
L

2 2
αβ µ

αβµ π π → − □  (6.31) 

 
Thus using (A.11), (A.13), (A.14) for n = 2 and D 

= 3, one may find respectively-see appendix Equation 
(6.32 and 6.33): 
 
R 2=  (6.32) 

 

kL αβµν
αβµν κλ λΓ =− γ  (6.33) 

 
And Equation (6.34): 

 
2

kvc
v

1
L

4λαβµ
αβ µ κλ

∂ ∂= + γ +
∂γ γ ∂γ

□  (6.34) 

 
Then Kuchar's proposal for the Hamiltonian reads 

Equation (6.35): 
 

0 0 v
v

1 1
H H L

2 4κλαβµ
αβ µ κλ

 ∂ ∂→ =− + γ +  ∂γ γ ∂γ 

⌢
 (6.35) 

 
Substitution of the wave function (6.30) in the 

Wheeler-DeWitt equation 0H 0Ψ =
⌢

, with 0H
⌢

 given by 

the previous relation, determines the constant K4. The 
outcome is Equation (6.36): 

1/4 1/4
1 2c c −Ψ = γ + γ  (6.36) 

 
The constants c1, c2, remain arbitrary and may be 

fixed after the selection of a proper measure via 
normalizability requirements. 

6.2. Quantization of the Non Abelian Model 

In the present section, the quantization of the Non 
Abelian model, is exhibited. This model is a Class B 
since vC 0µ

µ ≠ . Class B Cosmological Models, have a 

peculiarity; if the simplifying hypothesis of homogeneity, 
is inserted in the Einstein-Hilbert action, the reduced 
action obtained, will result in equations of motion which 
are, in general, not equivalent to the equations one gets by 
the imposition of the same hypothesis, directly on the full 
Einstein's Field Equations. This situation does not occur 
for the case of Class A models. Suppose that one adopts 
the canonical analysis in the framework of the 
Hamiltonian description. Then, the problem of the 
existence of a “valid” Hamiltonian (i.e., of a Hamiltonian 
which produces equations of motion equivalent to the 
corresponding Einstein equations), arises. A great many of 
works have dealt with the problem (Christodoulakis  et al. 
(1996) and the references therein). The conclusion was that 
for Class B spacetimes, with a general scale factor matrix 
γαβ(t), a valid Hamiltonian is not known-a serious drawback 
since one major aim of the Hamiltonian approach, is the 
quantization of the system under discussion. 

Though it is extremely difficult to attack this problem, 
partial solutions have been given in (Christodoulakis  et al., 
1996). Indeed, in that work, a Hamiltonian constructed out 
of the scale factor matrix γαβ(t) and the structure constants 

vCα
µ , which resembles in form the Hamiltonian for the 

Class A models, is constructed and sufficient conditions 
on the various parts of that Hamiltonian are given, in 
order for it to be valid. The set of these conditions is 
large, the conditions themselves a little complicated and 
auxiliary quantities enter the scheme. But, in 2+1 
analysis, not all are needed; the equations of motion, are 
nothing but the derivatives of the linear constraints-a fact 
which simplifies the system of the conditions to be 
satisfied and the procedure of identifications. 

Thus, following the entire procedure described in 
(Christodoulakis  et al., 1996), the following results 
are obtained. 

The valid Hamiltonian for the Non Abelian Model, is 
Equation (6.37): 
 

1
H N(t) V 4N (t)C (t)

2
ραβ µν κ

αβµν ρα κβ αβ
 = Θ π π + + γ π 
 

 (6.37) 
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where, Equation (6.38a to d): 
 

( )
( )

1

6q

1

6

αβµν µν µναβ αβ

αµ βν αν βµ αβ µν

Θ = γ + γ

− γ γ + γ γ + γ γ

∑ ∑
 (6.38a) 

 

( )C C C
αβ

τ ω ω ξφ
τξ φα ωβ φβ ωα= γ + γ γ∑  (6.38b) 

 
q C Cα β µν

βµ αµ= γ  (6.38c) 

 
V 12R 3=− − Λ  (6.38d) 

 
The quantity q is scalar under the action of the 

automorphism group, corresponds to the unique 
curvature scalar of the spatial surfaces of simultaneity 

t

R
q

8
 = 
 

∑  and thus exhibits the only true degree of 

freedom-as far as the 2-geometry is concerned. 
The corresponding scalar (under the action of the 

automorphism group) Lagrangian is Equation (6.39): 
 

( ) ( )1
L K K N t V

2N(t)
αβµν

αβ µν= Θ −  (6.39) 

 
where Θαβµv is the inverse of Θαβµv Equation (6.40): 
 

µνκλ
αβµν αβ

κλΘ Θ =δ  (6.40) 

 
Given by Equation (6.41a to k): 

 

( )
( ) ( )

1

2 3

c S G S G

c S S c G G

αβµν αβµν αβ µν µν αβ

αβ µν αβ µν

Θ = ∆ + +

+ +
 (6.41a) 

 
1

6q
ω =  (6.41b) 

 
( )

1 2 2 2

1
c

1 2 GS

ω + Γω
= −

+ Γω + Γ ω − ω
 (6.41c) 

 
2

2 2 2 2

G
c

1 2 GS

ω=
+ Γω + Γ ω − ω

 (6.41d) 

 

( )
2

3 22

S
c

Gs 1

ω=
ω − + Γω

 (6.41e) 

( )v3 9

2 5
αβµν αµ β αν βµ αβ µν∆ = − γ γ + γ γ + γ γ  (6.41f) 

 
Sαβ αβµν

µν= ∆ Σ  (6.41g) 

 
Gαβ αβµν

µν= ∆ γ  (6.41h) 

 
S αβµν

αβ µν= ∆ Σ Σ  (6.41i) 

 
G αβµν

αβ µν= ∆ γ γ  (6.41j) 

 
αβµν

αβ µνΓ = ∆ γ Σ  (6.41k) 

 
And Equation (6.42): 

 
( ) ( ) ( )( )K t t 2N t C Cφ ρ ρ

αβ αβ φα φβ ρα= γ − + γɺ  (6.42) 

 
While Equation (6.43): 

 
Kαβ αβµν

µνπ = Θ  (6.43) 

 
By inversion of the equation Equation (6.44): 

 
H

αβ αβ

∂γ =
∂π

ɺ  (6.44) 

 
Again upon quantization, following Kuchar's proposal, 

in the Schrodinger representation Equation (6.45): 
 

2
c

1 1

2 2
αβ µν

αβµνΘ π π → − □  (6.45) 

 
Where Equation (6.46): 
 

}{2 2 11
c 11

11

1
g g

g
γ γ= = ∂ ∂□ □  (6.46) 

 
is the 1-dimensional Laplacian based on the “physical 

metric” g11 Equation (6.47): 
 

11 2q q 2
g q

3αβµν
αβ µν

∂ ∂= Θ =
∂γ ∂γ

 (6.47) 

 
With g11g11 = 1-similarly to the Abelian case. It has been 

mentioned that in 1-dimension the conformal group is 
totally contained in the G.C.T. group, in the sense that any 
conformal transformation of the metric cannot produce any 



Christodoulakis, T. and G.O. Papadopoulosy / American Journal of Space Science 1 (2): 112-128, 2013 

 
125 Science Publications

 
AJSS 

change in the-trivial-geometry and is thus reachable by 
some G.C.T. Therefore, no extra term in needed in (6.46), 
as it can also formally be seen by taking the limit n = 1, R = 
0 in the general definition Equation (6.48): 
 

( )
( )

2 2 2
c

d 2
R

4 d 1

−
≡ + =

−
□ □ □  (6.48) 

 
Thus Equation (6.49): 

 

( ) ( )0 0 q q

1ˆH H q q 3 4q
3

→ = − ∂ ∂ − + Λ  (6.49) 

 
So, the Wheeler-DeWitt equation now, reads 

Equation (6.50): 
 

( ) ( ) ( ) ( )
2

0

q q
Ĥ " q ' q 12q q 3 q 0

3 3
Ψ = Ψ − Ψ − Ψ − ΛΨ =  (6.50) 

 
The general solution to this equation, for Λ ≠ 0, is 

Equation (6.51): 
 

( ) ( ) ( )1 26i 6i
c J 12 q c J 12 q

Λ Λ
Ψ γ = + −  (6.51) 

 
where, Jn, is the Bessel Function of the first kind and c1, 
c2, arbitrary constants. 

If Λ vanishes, the solution is Equation (6.52): 
 

( ) ( ) ( )3 0 4 0c J 12 q c Y 12 qΨ γ = +  (6.52) 

 
where, Yn is the Bessel Function of the second kind and 
c3, c4, arbitrary constants.  

6.3. The Equivalence of the State Spaces 

In our examples the classical Geometries are either 
Minkowski spaces or Spaces of Constant curvature, 
which in three dimensions implies maximal symmetry. 
Thus, the 3 curvature invariants suffice to characterize 
the space. We therefore take the following set of 
invariant relations Equation (6.53a to c): 
 

A
1 AQ R=  (6.53a) 

 
2

A B
2 B A

R
Q R R

3
= −  (6.53b) 

 
3

A B
3 B A

R
Q R R R

9
Γ

Γ= −  (6.53c) 

Now, in Gauss normal coordinates, a three 
dimensional spatially homogeneous metric takes the 
form Equation (6.54): 
 

AB 11 12

12 22

1 0 0

g 0 g g

0 g g

− 
 =  
 
 

 (6.54) 

 
where, the spatial part gij is Equation (6.55): 
 

ij i jg α β
αβ= σ σ γ  (6.55) 

 
For the scale factor matrix γαβ we assume three 

arbitrary functions of time, i.e., we depart from the 
classical solutions yet keeping ourselves within the 
class of spatially homogeneous three-geometries. If we 
now use the one-forms appropriate for the Abelian and 
non-Abelian symmetry group, we get, as expected from 
the theorem of section 2, the following results 
concerning the pair designated by the vanishing of the 
cosmological constant(containing the two cosmological 
parameterizations of 3d Minkowski space).  

Abelian, Λ = 0 Equation (6.56a to c): 
 

0
1 0Q 2G= −  (6.56a) 

 

( )20
2 0

2
Q G

3
=  (6.56b) 

 

( )30
3 0

10
Q G

9
= −  (6.56c) 

 
Non Abelian, Λ = 0 Equation (6.57a to c): 

 
0

1 0Q 2G= −  (6.57a) 
 

( )20 0 0
2 0

2
Q G 2 G G

3
αβ

α β= − γ  (6.57b) 

 

( )30 0 0
3 0

10
Q G 3 G G

9
αβ

α β= − + γ  (6.57c) 

 
While, when a cosmological constant exists, the 

corresponding pair (containing the two cosmological 
parameterizations of 3d Maximally Symmetric space) 
gives the following set of relations. 

Abelian, Λ ≠ 0 Equation (6.58a to c): 
 

( )0
1 0Q 2 G= − + Λ  (6.58a) 
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( )20
2 0

2
Q G

3
= + Λ  (6.58b) 

 

( ) ( )3 20 0
3 0 0

10
Q G 4 G

9
= − + Λ + Λ + Λ  (6.58c) 

 
Non Abelian, Λ ≠ 0 Equation (6.59a to c): 

 

( )0
1 0Q 2 G= − + Λ  (6.59a) 

 

( )20 0 0
2 0

2
Q G 2 G G

3
α

αβ
β= + Λ − γ  (6.59b) 

 

( ) ( )
( )

3 20 0
3 0 0

0 0 0 0 0
0

10
Q G 4 G

9

3 G G G 12 G Gαβ αβ
α β α β

= − + Λ + Λ + Λ

+ + Λ γ − Λγ
 (6.59c) 

 
Now, it is a fact that 0

0G  and 0Gα  become, upon 

transition to a Hamiltonian formulation, linear 
combinations of H0 and Hα. This, in turn, permits us to 
conclude that, upon canonically quantizing the pairs in 
the two cases above mentioned, there will always exist 
an entire host of factor orderings for each of the quantum 
analogues of Q1,Q2,Q3 such that their eigenvalues 
become 0 or 6Λ (for Q1). This establishes the 
equivalence of the corresponding quantum states under 
non-trivial space-time coordinate transformations. Note 
that, when an arbitrary gauge is used, the previous 
relations simply become more complicated; the 
qualitative result that Q1,Q2,Q3 are functions of the 
constraints, remains of course valid. 

7. DISCUSSION 

We have discussed the issue of space-time covariance 
of Canonical Quantization of General Relativity. To 
many this is known as the problem of time. At the 
classical level, the well established canonical analysis of 
the Einstein-Hilbert action leaves no room for doubts: 
The formulation is explicitly space-time generally 
covariant. Upon canonically quantizing the problem 
seems to reappear as all the ingredients of the theory, i.e., 
the quantum constraints and consequently the quantum 
states concern the three-geometry and not the space-time 
in which it is embedded. An answer to the problem 
presupposes a commitment about what will constitute the 
set of observables. Motivated by the very essence of the 
notion of a geometry, we adopt the point of view that this 
set must be identified by all invariant relations between 

the various curvature or higher derivative curvature 
scalars of a given geometry. Each such relation must be 
turned into an entity living on the phase space by 
eliminating the time derivatives of the extrinsic curvature 
(through use of the spatial equations of motion, if 
necessary). The appeal to a well known theorem of 
Constrained Dynamics permits us to conclude that all 
these entities are homogeneous polynomials of the 
Quadratic and the Linear constraints. Therefore, when 
we wish to turn each and every such entity into operator 
(Quantum Observable), there will be many factor 
orderings (namely all these that keep at least one 
constraint to the far right) which will enable this operator 
to annihilate the states defined as the common null 
eigenstates of the Quantum Constraints. Consequently, 
the use of many different slices as bases for canonically 
quantizing one and the same space-time can have no 
effect on the sol defined quantum observables. Space-
time covariance is thus observed at the quantum level. 
The above considerations are not meant to imply that we 
claim we have constructed a Dirac Consistent quantum 
theory of General Relativity. They rather point to the 
claim that, if a consistent imposition of the quantum 
constraints is achieved, we expect to encounter no 
additional problems concerning space-time covariance of 
the ensuing theory. In that sense, our result for full pure 
gravity is formal. It is seen to be explicitly realized in the 
case of 2+1 cosmology considered. 
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Appendix 

In this appendix, we give some useful formulae, 
concerning the mini-superspace. Using the results of 
canonical analysis in a (n+1)-dimensional manifold, 
endowed with the line element, one arrives at the 
notion of mini-superspace spanned by γαβ's (co-
ordinates) and having as “covariant” metric the 
following Equation (A1): 
 

( )1
L 2

4
αβµν αν βµ αν βµ αβ µν= γ γ + γ γ − γ γ  (A.1) 
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While the “contravariant metric”, is defined as 
Equation (A2): 
 

2
L

n 1 αβαβµν βµαµ βν αν µν
 = γ γ + γ γ − γ γ − 

 (A.2) 

 
In the sense that Equation (A3): 

 

( )v

1
L L

2
αβ α β α β
µν µ ν µ

αβκλ
κλµν = δ ≡ δ δ + δ δ  (A.3) 

 
The “Christoffel” symbols are defined as Equation (A4): 

 

}{ , , ,1
L L L L

2
ρσµν αβ αβρσ µν αβµν ρσαβµν

κλ κλρσΓ = + −  (A.4) 

 
where, Equation (A5): 
 

, L
L

αβµν
αβµν ρσ

ρσ

∂≡
∂γ

 (A.5) 

 
Combined usage of (A.1), (A.2), (A.3) and (A.4), 

gives Equation (A6): 
 

( )v v1

4
αβµν αµ βµ βν αµ βµ
κλ κλ κλ

α β αµ
κλ κλΓ = − γ δ + γ δ + γ δ + γ δ  (A.6) 

 
In the same spirit, “Riemann” tensor is defined as 

follows Equation (A7): 
 

, ,Rαβρσµν αβρσ µν αβµν ρσ αβρσ ωξµν αβµν ωξρσ
κλ κλ κλ ωε κλ ωξ κλ= Γ − Γ + Γ Γ − Γ Γ  (A.7) 

 
where, Equation (A8): 
 

,

ρσ

αβµν
κλαβµν ρσ

κλ

∂Γ
Γ ≡

∂ϒ
 (A.8) 

 
Contraction of (ρ,σ) with (κ,λ) results in the “Ricci” 

tensor Equation (A9): 
 

,,R αβµν κλ
κλ

αβµν αβκλ µν αβκλ ωξµν αβµν ωξκλ
κλ ωξ κλ ωξ κλ= Γ − Γ + Γ Γ − Γ Γ  (A.9) 

 
A lengthy but straightforward calculation, gives 

Equation (A9): 
 

( )1
R n n 2

8
βµαβµν αµ βν αν αβ µν= γ γ + γ γ − γ γ  (A.10) 

With the help of (A.10) and (A.2) the \Ricci" scalar is 
found to be Equation (A11): 
 

( )3 21
R L R n n 2n

4
αβµν

αβµν= = + −  (A.11) 

 
Finally, the \conformal Beltrami" operator, is 

Equation (A12): 
 

( )

( )

2
2 2
C

D 2
L

4 D 1

D 2
L R

4 D 1

αβµν
αβ µν

κλ
αβµν

αβµν
κλ

− ∂≡ + =
− ∂γ γ

∂ −− Γ +
∂γ −

□ □

 (A.12) 

 
where, D is the dimension of the general metric space: 

( )n n 1
D

2

+
= , i.e., the number of the independent γµv's. 

One can find that Equation (A13): 
 

23 n
L

n 1
αβµν

αβµν κλ κλ
−Γ = γ
−

 (A.13) 

 
Thus (A.12), takes the form Equation (A14): 

 

( )
2 2

2
C

3 n D 2
L R

n 1 4 D 1αβµν
αβ µν

κλ
κλ

∂ − ∂ −≡ − γ +
∂γ γ − ∂γ −

□  (A.14) 

 
9. REFERENCES 

Christodoulakis, T., E. Korfiatis and A. Paschos, 1996. 
New method for constructing valid Hamiltonians for 
class-B spacetimes and the quantization of the 
general type-V cosmology. Phys. Rev. D, 54: 2691-
2698. DOI: 10.1103/PhysRevD.54.2691 

Christodoulakis, T., E. Korfiatis and G.O. Papadopoulos, 
2002a. Automorphism inducing diffeomorphisms, 
¶invariant characterization of homogeneous 3-
spaces and hamiltonian dynamics of Bianchi 
cosmologies. Commun. Math. Phys., 226: 377-391. 
DOI: 10.1007/s002200200611 

Christodoulakis, T., T. Gakis and G.O. Papadopoulos, 
2002b. Conditional symmetries and the quantization 
of Bianchi Type I vacuum cosmologies with and 
without cosmological constant. Class. Quantum 
Grav., 19: 1013-1025. DOI: 10.1088/0264-
9381/19/6/301 



Christodoulakis, T. and G.O. Papadopoulosy / American Journal of Space Science 1 (2): 112-128, 2013 

 
128 Science Publications

 
AJSS 

Christodoulakis, T., G. Kofinas, E. Korfiatis, G.O. 
Papadopoulos and A. Paschos, 2001. Time-
dependent automorphism inducing diffeomorphisms 
in vacuum Bianchi cosmologies and the complete 
closed form solutions for types II and V. J. Math. 
Phys., 42: 3580-3580. DOI: 10.1063/1.1386637 

Dirac, P.A.M., 1950. Generalized hamiltonian dynamics. 
Canad. J. Math., 2: 129-148. DOI: 10.4153/CJM-
1950-012-1  

Eisenhart, L.P., 1933. Continuous Groups of 
Transformations. 1st Edn., Princeton Univ. Press. 

Hájíček, P. and K.V. Kuchař, 1990. Constraint 
quantization of parametrized relativistic gauge 
systems in curved spacetimes. Phys. Rev. D, 41: 
1091-1104. DOI: 10.1103/PhysRevD.41.1091  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Isham, C., 1995. Structural issues in quantum gravity. 
Imperial College of Science. http://arxiv.org/pdf/gr-
qc/9510063v1.pdf 

Kuchar, K.V., 1982. J. Math. Phys., 23: 1647-1661 
Milne, 1932. Nature, 130: 9.  
Sneddon, G.E., 1976. Hamiltonian cosmology: A further 

investigation. J. Phys. A, 9: 229-229. DOI: 
10.1088/0305-4470/9/2/007 

Sundermeyer, K., 1982. Constrained Dynamics. 1st Edn., 
Springer-Verlag, Berlin, ISBN-10: 0387119477, pp: 
318. 


