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ABSTRACT

A general classical theorem is presented accortbnghich all invariant relations among the space
time metric scalars, when turned into functionstba Phase Space of full Pure Gravity (using the
Canonical Equations of motion), be-come weakly shirig functions of the Quadratic and Linear
Constraints. The implication of this result is tlffdrmal) Dirac consistency of the Quantum Operator
Constraints (annihilating the wave Function) swdficto guarantee space time covariance of the
ensuing quantum theory: An ordering for each iraatirelation will always exist such that the
emanating operator has an eigenvalue identicah¢octassical value. The example of 2+1 Quantum
Cosmology is explicitly considered: The four possitCosmological Solutions” -two for pure
Einstein's equations plus two more whem\aerm is present- are exhibited and the correspandi
models are quantized. The invariant relations desugy the geometries are explicitly calculated and
promoted to operators whose eigenvalues are theiesponding classical values.

Keywords: Space Time, Gravity, Quantum Cosmology, Canoniaar@ization

1. INTRODUCTION thus the fate of space time covariance is somewhat
obscure. Of course if one takes special care sothiea
The problem of space time covariance of a geometrical meaning of the classical constraints is
Quantum Theory of Gravity (Isham, 1995) within the maintained at the quantum level, one is justified t
context of Canonical Quantization can essentially b expect space time covariance of the ensuing theory.
described as follows: Classically, Einstein's Field Indeed as we shall see in the first section, when w
equations are known to be (not manifestly but suitably define the equivalence between two sets of
explicitly) equivalent to the Hamiltonian and state vectors emerging upon quantizing the same
Momentum constraints plus the Canonical Equationsspace time in two different foliations, then spéaicee
of motion. This is understandable since, although t covariance is indeed achieved.
canonical analysis uses objects defined on the In the next sections we present the example of 2+1
hypersurface, the momenta involve the extrinsic spatially homogeneous cosmological models in the
curvature and thus carry the information of the absence as well as in the presence df &erm. The
embedding of the hypersurface in space time. Whenclassical solutions i.e., the different “cosmoladic
we canonically quantize, the momenta becomedisguises of Minkowski space time or the maximally
functional derivatives with respect to the spatial symmetric space are explicitly given. The corresfion
metric (choice of Polarization in the phase spao®) models are quantized and the classical observaikes
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turned into operators in such a way that their migéues
coincide with the classical values. In this sensési
proven that the two pairs of state vectors arevedgit.

2. A CLASSICAL THEOREM ANDITS
QUANTUM IMPLICATIONS

As is well known (Sundermeyer, 1982), the canonical
analysis of pure Gravity consists in the following
statements Equation (2.1a to e):

Ho(g;m) =0 (2.1a)

H,(gy.m)=0 (2.1b)

g, ={g .H (2.1c)

1, ={m H} (2:1d)

H = [(N°H, + N*H, ) d’x (2.1e)
Which are explicitly equivalent to the ten

Einstein's Field Equations. If we adopt the notibat
classical observables, are all the geometrical abje
that do not depend on the gauge, i.e. the cooreinat
system, then we are led to identify these obseesbl

with invariant relations among space time scalars.

These scalars can be constructed in two ways:I¥irst
by contracting all the indices of tensor produdtshe

Riemann tensor and its covariant derivatives of any

order. Secondly, in the case of spacetimes admitin

null, covariantly constant vector field (pp waves

where all the scalars constructed in the above©f the appropriate order). The end result will

mentioned way are identically vanishing), by finglin
proportionality factors between tensors construdigd
the Riemann tensor and its covariant derivativeanyf
order. Anyway, the scalars themselves do not descri

=0

() (2.2)
The index A is at most countable. Turning these

relations into functions on the phase space weadtiat
they become weakly vanishing quantities EquatioB)(2

hA(gijldi)»O (2.3)

In implementing this step use has been made of
canonical equations of motion in order to subsgitall
higher time derivatives of the metric of the sliBat at
this point, we invoke a known theorem of constrdine
dynamics (Sundermeyer, 1982):

Theorem

“Every weakly vanishing function in Phase Space is
strongly equal to some expression containing the
Constraints (which define a surface in Phase Space)

Moreover the expression under discussion ought to
vanish on-mass shell (i.e., when the constrairgssat to
zero). Thus Equation (2.4):
h* =" (H, . H,) (2.4)

The translation of the above result in the velocity
phase space reads as follows: Consider an invariant
relation (Q;) = 0 of any space time geometry which
satisfies Einstein's Field Equations. Evaluate ldie
hand side for the generic space time metric. Then,
eliminate from the resulting expression all higtiere
derivatives of the metric (on the slice) using the
spatial Einstein equations (and their time deriedi
battf*
will become such a function of th@},G) k constraints

so that it vanishes when the constraints are seeto.
The proof rests on the fact that the constraingsthe
only quantities of the spatial metric and its time

the space time in an invariant manner since theirderivative that vanish, a thing that is guarantbgdhe
functional form in terms of the coordinates changesconsistency of the Field Equations; Any other fiorct

when the coordinate system is altered. A way to
generate invariant relations among these scaltsijta
not the most efficient one, would be to take a bafsé
scalars (say Q...Qs) and solve for the coordinates.
Then, any other scalar (say)®ecomes expressible in
terms of the 4 scalars chosens(©f(Qq,...,Qs)). Now
this relation is characteristic of the geometry, idoes
not change form under coordinate transformations. |
this sense a geometry is complectly characterized b
set of relations Equation (2.2):
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on the velocity Phase Space which vanishes byeviofu
the Field Equations, such 45 fs necessarily expressible
in terms of the constraints.

The implications of this for the quantum theory are
obvious and important: Adopting the point of vielat
the quantum observables are to be the operatovgres
of the classical observables, we are assuredftimagach
and every such observable, there will exist a facto
ordering such that all ensuing operators, whemgain
the appropriate states defined by Equation (2.8aban
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(2.5a)

(2.5b)
Will have vanishing eigenvalues Equation (2.6):

h*w=0 (2.6)

manifoldsX;,. Usually the group G is not only continuous,
but also a Lie group -thus denoted by Bhere r is the
dimension of the space of its parameters. Avoidimg
details on these issues {these matters can beg éagiid

in every standard reference see e.g., (Eisentg88)iwe
simply state that spatially homogeneous models waith
simply transitive action of the symmetry group are
described (apart the topology Bj) by an invariant basis
of one formso? (x)dx' . By invariant we mean that their

This establishes the (formal) space time covariarice | je Derivative with respect to the generators of thie

the quantum theory described by (2.5) above.

3. PRELIMINARIESON SPATIALLY
HOMOGENEOUS SPACE-TIMES

We are now interested in exemplifying the theorem o =( N () N, (1) - Nz(t)) de+ 2N, (o7 ( ¥ did
and its implications by means of a concrete, finite
dimensional Quantum Cosmology example. To this end,+Vas(t)0ia(X)0?(x)
we wish to manufacture a situation in which a sieci

space time admits two different homogeneous foleti
This is generically impossible in 3+1 Cosmology,eng
the imposition, on the hypersurface, of the varidu«m

Lie Groups as symmetry groups of motion, leadshto t

distinct Bianchi models. The very rare exceptioaseh

Group G are zero. The case of Groups which act
multiply transitively will not concern us.

The line element of such a space time can be casted
into the form Equation (3.1):

o (3.1)

dx' dx

With Equation (3.2):
ai; (x) =gy (x) =2C07 (x)of (x) (3.2)

where,yqg(t) is the metric induced on the surfagggand

to do with limiting cases, such as Milne's solution consiant on them), N(t) is the lapse function(tNis the
(Milne, 1932) which is 4-dim Minkowski geometry gpitt vector (I\‘i'(t)=\/"3(t)Ng(t),\/’B(t) being the inverse of

disguised as a Type V cosmology, or the trivialecas

Kasner's universes with two of the three scaleofact

constant. A suitable situation that comes to mmdhe
case of 2+1 dimensions: There, the pure EinstEielsl

Equations admit only the Minkowski geometry as a
solution, while when aA term is present, the only

possibility is a maximally symmetric space. Thdswe
solve the general Field Equations under the réistnicof

Yep(t)) and C;, are the structure constants for the

corresponding Lie Algebra. Greek indices count the
difierent one-forms, while the Latin are world iods;
both kind of indices range in the interval (Ishakf95;
Sundermeyer, 1982). In 2 dimensions, there are tordy
distinct Lie Algebras; the Abelian(l) , where ahet
structure constant vanistj, =0and the Non Abelian

spatial homogeneity, we are bound to end up with(Il), where there is only one independent non vaEnis

“cosmological” descriptions of either Minkowski geetry
or a space of maximal symmetry, correspondingly.

structure constant-sa@;, =1; every other choice for the
non vanishing structure constants can be transfibrme

Before proceeding with the examples, it is deenged a into this, under a linear mixing of the initial $&., using

appropriate to exhibit some basic assumptions.

Spacetime, is assumed to be the pair (M, g) where M

is a 3-dimensional, Hausdorff, connected, timerded
and C1 manifold and g is a (0, 2) tensor field bglty
defined, C1, non degenerate and Lorentzian i.ehas
signature {,+, +). In the spirit of 2+1 analysis, M = Rx
where the 2-dimensional orientable sub manifolis
(surfaces of simultaneity), are spacelike surfaoés
constant time; their evolution in time, resultghe entire
spacetime. The assumption of spatial

homogeneitythorough

a new set of the formC] =Y;AA,C, where
AjOGL(2R)and Y; its inverse. Thus, two

“cosmological” models emerge for the pure gravitge
and two more when A term is present.

At this point, a question arises; is there anyipalidr
class of General Coordinate Transformations (G:€).T.
which can serve to simplify the form of EinsteiRigld
Equations (E.F.E.'s)? The answer is positive and a
investigation of this problem and its

corresponds to the imposition of the action of a consequences, is given in (Christodouladtisl., 2001);

symmetry group of transformations G upon

////A Science Publications 114

the indeed, not only there is a class of G.C.T.'s which
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preserve the manifest spatial homogeneity of the li
element (3.1), but also forms a continuous (antliaily,
Lie) group. This group is closely related to the
symmetries of the symmetry Lie Group; @ is its auto
orphism group. A brief account of the relevant fings
of (Christodoulakit al., 2001) is as follows:

Consider the transformations Equation (3.3a and b):

toi=te-t=t (3.3a)

X % =g (tX) = X =f (%) (3.3b)

When we insert (3.3) into (3.1), the need to preser
the manifest spatial homogeneity of the latterdéeto
the restrictions Equation (3.4a and b):

X =an(r)P (Y (3.42)
M 6 (F)A ()0 (%) (3.4b)
a)"(i a B i .

And, subsequently, to the identifications Equation
(3.5atoc):

N(t)=N(t) (3.5a)
N (6) =S5 () (N (1) + P( D) (3.5b)
Vap (1) = A% ()5 (1) v (1) (3.5¢)

where, N(t) =y"*()Np(t,), with o (x) being the matrix
inverse toof (x) Integrability conditions for the system

(3.4) i.e., Frobenious' Theorem, results in theesyqthe
dot, whenever used, denotes difierentiation witpeet
to time) Equation (3.6a and b):

ChAS (1) = CHAL (O (1) (3.6a)
R0 =cLP ()AL (Y (3.60)

And, “Time-Dependent Automorphisms Inducing
Difieomorphisms” emerge. The automorphisms of a
Lie Group G constitute a continuous group. The
members of the group which are continuously
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connected to the identity element, form a Lie Grasp

well-though the topology of the latter might be
difierent from that of the former. If one considers
parametric families of the automorphic matrices,

characterized by the parametensA;(tT)and, as
usual, demands Equation (3.7a and b):

/\g (t;Ti )‘Ti 7 6; (376)
d/\u ’ i
o) g, (3.7b)

where, Ay are the generators with respect to the

parameten’, of the Lie Algebra of the Automorphisms,
then from the first of (3.6), after a difierenti@ti with
respect ta', will have Equation (3.8):

Asi)Clo =M o + 25, G (3.8)

For an extensive treatment on these issues see
(Christodoulakist al., 2002a), while for the relation and
usage of these generators with conditional symeeetri
(Kuchar, 1982; Christodoulakes al., 2002b).

In n+1 analysis (here n = 2), the E.F.E.'s in vacuu
when the cosmological constafyt exists, take the form
Equation (3.9a to c):

ES = KIKE -K?+(R+2A,) =0 (3.92)
ES = K!Cy, —KLC), =0 (3.9b)
Eq = K§ — NKK§ +N(R§ +i/\cég)
n-1 (3.9¢)
+2N° (KSCy, — K3Cl ) =0
With Equation (3.10a to d):

Ke () =y (t)K 5 (t) (3.10a)
RS (1) =y** (1) R (1) (3.10Db)
Ve () + 2Yqy (1) Cog N2 (

Kaﬁ(t):_ 1 yaB( ) yav( )CBQ ( ) (310C)

2N(1) | +2yy, (1) C, N (1)
AJSS
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Ras (1) = Coe G Ve (Ve ()Y (Y™ (1)
+2Ch G + 2C, Gy (Y (3
+2C Qe (9Y (9 + 2G, G Y (IY™ (1

(3.10d)

where, &; is the Kronecker's Delta.

Since G.C.T.'s , in general, are covariances of the/A; OGL(2,R)

E.F.E.'s, the same must hold true for the Time Ddpsat
A.l.D.'s. Indeed, under the “gauge” transformati¢®.$)

one can readily proof (with the help of 3:6) Eqoati
(3.11ato c):

E=E (3.11a)
B2 = APES (3.11b)
El =SALE (3.110)

where, S} is the matrix inverse to\;. The effect of a

time reparameterization can also be trivially seehe a
covariance of (3.9). Using the freedom containeB’{t)
one can always set the shift to zero which, togethith

the choice of timeN(t)=,/y(t) considerably simplifies
the E.F.E.'s (3.9) which become Equation (3.123:to

. \2
VYV Vin +m ~ay(R+20,)=0 (3.12a)
VYo Con ~ VY G = 0 (3.12b)
(V*¥s) —2v(RE + 20 85) = 0 (3.12¢)

where, tildes have been omitted. Finally some teofoby
may prove helpful; (3.9a) is called Quadratic Craist,
(3.9b) are called Linear Constraints and (3.9¢)samply
the Equations of Motion.

4. THE ABELIAN MODEL-CLASSICAL
CONSIDERATION

This model is characterized by the vanishing of all

the structure constants of the corresponding

Lie Algebra. In particular, sincec;, =0, it is also a
Class A model. A choice for the basis one-formghim
spatial coordinate basis (x, y), is/(x)=8" i.e., the
Kronecker's Delta. In matrix notation Equation §4.1

///// Science Publications 116

(4.1)

ORI

The solution to the system (3.6) is Equation (4.2a
and b):

(4.2a)

P*(9=(x(1).%(9)

A suitable basis, which spans the space of solsition
to (3.8) is Equation (4.3):

. (1 0)., (01,
"s@)‘(o _J"s(z)‘[o o}"s(a)
(1 0, _(00
lo 1) {1 o

It is noteworthy that t) contains the entire freedom
carried by the Time Dependent A.LD.'s, i.e., theot
arbitrary functions of time. Thus, since the matng is
constant, the only possible use of this “gaugeddoen is,

according to (3.5), to set the shift zero. Choo#iregabove
mentioned time gauge, we have Equation (4.4a to c):

(4.2b)

(4.3)

N2

_yauyﬁvyasyw +(zj _8y/\c =0 (443)
Linear Constraints are identically sétiisd (4.4b)
(V¥ ) —4VAS; = 0 (4.4c)

4.1. Abelian Model with Vanishing Cosmological
Constant

The previous set of equations assumes the form
Equation (4.5a to c):

(82)" -9298 =0 (4.5a)
Linear Constraints are Identically Sati (4.5b)
Y — 95 =0 (4.5¢)

where, §; is a constant matrix. The integration of (4.5) is
straightforward. The quadratic constraint, simpétes that
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the determinant of the matri; vanishes; thus the initial

number of the independent components, is at moBuB.
the equations of motion, can be rewritten as Equd#.6):

Vap = YoeD5 (4.6)

And a consistency requirement, emerges Equati@j (4.

Vap = You = Vue'ss = Vpeﬁf 4.7)

An exhaustive consideration of all the cases
concerning a matrixd;, with vanishing determinant,

plus the consistency requirement, results in omlg t
following two distinct-at first sight-solutions tdhe
previous system Equation (4.8):

(10
yuB_O:L

with associated line element Equation (4.9 and)4.10

(4.8)

(ds ) =—(dt) +( ax)"+( d¥)° (4.9)
And:
yap(r)z[; ;],BDRD (4.10)

where, R*=R-[0], with associated line element
Equation (4.11):
(ds) =-€"( ) +(ay)’+ &( f)” 6OR" (4.11)

The transformation (t, x%) - (1, y*, y°) Equation

(4.12):
(: cos){egzj &2y

Takes the line element @5to (ds)2

4.2. Abelian Model with
Cosmological Constant

g sinéef] %’2] (4.12)

Non Vanishing

Contraction of the equations of motion resultsha t
integral of motion Equation (4.13):
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N2
(VJ -16yA, = Zo= cons (4.13)
Y

Under the “conformal” change of depended variable
yaB:VaBW the equations of motion become Equation

(4.14);

YV, =95 =0 (4.14)
And contraction of this set, results in
(sincey= 395 = C. Substitution of the quadratic

constraint and usage of the integral of motion 3.1
yield Equation (4.15):

w=939% = w=29; + 9397 (4.15)

Since 9 =0.

Again, consideration of the equations of motion in
terms of y,, for all the traceless matrices;, plus the
consistency requirement (i.ey,, =V, ) produce the
following two solutions Equation (4.16 and 4.17):

_ 1 0) .
Vap Z(O lJ,wnh w=0 (4.16)
And:
ot 0
Vs (T) = [eo e_ah],withoo: 2(9)°>0010R"  (4.17)

Since, for all the cases=>0 the integral of motion
(4.13) dictates tha\>0. Inversion of the conformal
transformation and integration of (4.13) for eadhthe
two solutions, yield Equation (4.18):

53

With associated line element Equation (4.19):

1
2t/A,

(4.18)

Yo (1) =

2_ 1 2, 1 2+ 2
(o) =g (& s (@) + (o)) @19)
And Equation (4.20):
AJSS
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g (eF o Thus the initial set of “dynamical” variables, cits
Vo (1) =—F= i S OR" (4.20) of a scale factor matrix of the previous form, ptushift
NI vector (N(t),N%(t)). Insertion of this set into both (3.9b)
and (3.10d) results in respectively Equation (fd 2.5):
With associated line element Equation (4.21):

N°(t)=0 (5.4)
1 2 eT 2
(9) =gy (@) () .
4N sintf (T 2. /A _sinh And:
} ) VA sint(x) (4.21)
e 2
+7(dy2) «_ 4 [1 Oj
i R; = 5.5
2\//\7CSInh(T) B va()lo 1 (5.5)
where, 9, not being an essential constant  Th,g g judicious use of the gauge freedom caritresu
(Christodoulakiset al., 2001), has been absorbed. in both a very simple form of the scale factor rixaand
It is obvious that the two line elements are coteteby  the vanishing of the shift. The equations of motaimit
a time reparameterization of the formt: t = sinhf)e™. the integral of motion Equation (5.6):
5. THE NON ABELIAN MODEL- ¥ ) 2
CLASSICAL CONSIDERATION (yj {160+ 4\yi) = 0= cons (5:6)
This model is characterized k}, =1; any other choice The quadratic constraint assumes the form

can be cast into this. A choice for the basis aned, inthe  Equation (5.7):
spatial coordinate basis'(x?) is Equation (5.1):

L\2
2 Yi| —(16y,+ 4\ ¥2) = 0 5.7
o (X) - [e Oj (5.1) (ynj ( Vi cyll) (5.7
0 1
Now, the solution to the system (3.6) is Equation  and thus not only sets the constant w equal to, zero
(5.1a and b): but also demandsA>0-if this term exists. The
integration of (5.6) withy = 0, is a trivial matter:
AL (1) :(x(t) y(t)j (5.2a) WhenA. = 0 the result is Equation (5.8):
0 1
1
t)=— 5.8
_(y(®) y()x(t)  x(t) valt) 4t (5-8)
P (t) =) 2 -t (5.2b)
2 2x(t) T o2x(1)

with corresponding line element Equation (5.9):
This time, both the automorphic matrica§(t) and .
. . . . _ 1 gt 2 1 2 o
the triplet P(t) carry the freedom contained in the time (0|32)——ﬁ(0|12)+ T (dxl) +E( df) OR (5.9)
dependent A.l.D.'s. It is wiser to exploit this dom
contained inAg (t) in order to simplify the initial form of The transformation (t, % 3@ (T.X, Y ) Equation

the scale factor matriy,g(t) rather than use the same (5.10):
freedom contained in°R) to set the shift vector equal to

zero. Accordingly, an initial full scale factor mat can 12 22
be brought to the form Equation (5.3): COS'( 2)8) +2(X ) © , s'mﬁ 2%)
(T.X,Y)= (‘“)2 A at (5.10)
Vn(t) 0 xt) e xle 2
t)= 5.3 -
ya[}( ) ( 0 yu(t)] ( ) +2 2t ,—2 2t

///// Science Publications 118 AJSS



Christodoulakis, T. and G.O. Papadopoulosy / Anagridournal of Space Science 1 (2): 112-128, 2013

Takes the standard Minkowski spacetime form to theconsistency of the quantum algebra is, somehoveated

line element above.
WhenA 6 = 0 the result reads Equation (5.11):

4

Vu(t)

The associated line element being Equation (5.12):

2 2
4 46
(ds)’ = -[mz —/\c] (d)?+ 16;_/\0 (o)’

4
+ —
168 - A,

With RU:R—[—\//\_CM,\//\_C /4} _

6. QUANTUM DESCRIPTION OF The
MODELS

(5.12)
(ax)’ tOR,

In trying to quantize gravity, one faces the prablef
guantizing a constrained system. The main stepshase
to follow are:

+ Define the basic operatorg, and 7 and the
canonical commutation relation they satisfy
« Define quantum operatorsH, whose classical

counterparts are the constraint functions H
e Define the quantum statéigg] as the common null
eigenvector ofH,_, i.e., those satisfyingd, W[g] =

0. (As a consequence, one has to check that

to guarantee that the final wave functional will be
independent of the 4 dimensional coordinate system.

In the absence of a full solution to the problem, a
partial solution, generally known as quantum cosmyg|
has been employed. This is an approximation to tguan
gravity in which one freezes out all but a finitenmber
of degrees of freedom and quantizes the rest.isnathy
one is left with a much more manageable problernitha
essentially quantum mechanics with constraints.
principle, the dynamical variables are the comptseh
a 2x2 symmetric scale factor matryxg(t)'s, the lapse
function N(t) and the shift vector®t). The presence of
the linear constraints-along with the conditional
symmetries of the corresponding Hamiltonian-enable
reduction of the initial configuration space to awér
dimensional one, spanned by the curvature scalar
characterizing the 2-geometry. The ultimate jusdifion
of this reduction is the fact that {from the pobftview
of the 2-geometry-the omitted degrees of freedorm, a
not physical but gauge (Christodoulakisal., 2002a). It
is true that at the classical level, the scaleofantatrix,
can be diagonalized on mass-shell-through a constan
matrix e.g., (Christodoulakigt al., 2001) for the 3-
dimensional analogous case-while the shift can die s
equal to zero. However, if one intends to give \heig
all states, one has to start with the most gerferah
which is described by the 3 scale factayg(t)'s and the
lapse function N(t). The absence of'$1due to the
vanishing of theCg,'s, implies that in principle aNyg's
are candidates as arguments for the wave functfoohw
solves the quadratic constraint (Wheeler-DeWitt
equation). This is in contrast to what happenfiénNon

In

form a closed algebra under the basic CanonicalAbelian case, where one combinatiorygfs andC; s,

Commutation Relations (CCR)

» Find the states and define the inner product in the

space of these states.

Concerning point (iii) it is pertinent to clarifyhe
meaning of the imposition of the quantum constgaint
upon W[g]. A straightforward (modulo regularization
prescriptions) but tedious calculation shows thay a
functional which is not a scalar functional of thevature
and/or higher derivative curvature scalars doessobte
the linear operator constraints. Therefore, theoiitn
of these conditions, ensures that the wave furatiaill
be a (scalar) functional of the 3-geometry andafdahe
coordinate system on it. Then, the dynamical eigiuis

parameterize the reduced configuration space.
6.1. Quantization of the Abelian Model

In this section, we present a complete reduction of
the initial configuration space for the Abelian
geometry-by extracting as many gauge degrees of
freedom, as possible. Two separate cases are
considered; when the cosmological constant is jptese
and when is not. In either case, a wave functioickvh
depends on one degree of freedom is found, by
imposing on it, the quantum versions of all clasgkic
integrals of motion as additional conditions.

provided by the quadratic operator constraint; the N(t)Ho+N®(t)H,, where Equation (6.1):

////A Science Publications
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Ho=iLquTl“Bn“"+\/§(R +2A) (6.1) Wheeler-DeWitt equatiorH, W =0, will produce a wave
3y function, initially residing on a 3-dimensional
configuration space-spanned byg's. If the linear

is the quadratic constraint, with Equation (6.2): constraints existed, a first reduction of the aliti

configuration space, would be possible (Kuchar,2)98
L apo = YauYpo + Yoo Veu ~ 2y BV 6.2) New variables, instead of the 3 scale factors, doul

R=C, G YV V™ + 2G5 oY’ + 4G, € v” emerge-say qi, with i<3. Then a new “physical” rietr
would be induced Equation (6.7):

y being the determinant g§z and Equation (6.3):

i 99’ 9q
9'=Logu (6.7)
Hy =4CE, v, T (6.3) ™ 0ap OV

Are the linear constraints. For all Class A Types, According to Kuchar's and Hajicek's (Kuchar, 1982)
the canonical equations of motion, following from prescription, the “kinetic” part of {iwould have to be
(6.1), are equivalent to Einstein's equations damtiv realized as the conformal Laplacian (in order foe t
from line element-see (Sneddon, 1976) for the 3+lequation to respect the conformal covariance of the
dimensional analogous. classical action), based on the physical metriz)(@n

The quantities & H, are weakly vanishing (Dirac, the presence of conditional symmetries, further
1950), i.e. =0, H, = 0. For the Class A, =0) reduction can take place, a new physical metriclavou

Abelian Model, it can be seen {using the basic Rwis then be defined similarly and the above mentioned

; - — Qv _ prescription, would have to be used after the final
Brackets Relations (PBR's)y#m"} =9 -that these reduction (Hajtek and Kuchs 1990).

constraints are first class, obeying the followaigebra The Abelian case, is an extreme example in which
Equation (6.4): all the linear constraints, vanish identically; shno
initial physical metric, exists -another peculigrit
{Ho.H}=0 5 reecting the high spatial symmetry of the modelarnd
{Ha,Hp}:‘ZCZ(pHV: (6.4) con_siderat_ion. In compensation, a lot o_f inte_grafs_
motion exist ant the problem of reduction, finds it
solution through the notion of “Conditional
Symmetries”. These linear in momenta integrals of
_ : motion, if seen as vector field on the configuratgpace
If we follow Dirac's general proposal (Dirac, 1950) spanned byyg's, induce {through their integral curves-
for quantizing this action, we have to turg, H,, into motions of the formy,, :AﬁAgyuv,ADGL(z,R) (section 2

operators annihilating the wave functigh . . :
P In the Schrodinge% representation Equation (6.5);  ©f Christodoulakiset al., (2002a)) which not only are
identical to the action of spatial difieomorphisnimjt
Yoo = Yap =Vep also desgribe the action qf the automorphism gisinpe
3 (6.5) GL(2,R) is the Aut(G) which corresponds to the Adel
P L P =—j , ' models.
Oyap The generators of this automorphism group, are (in

_ o ~ collective form and matrix notation) the followidgone
With the relevant operators, satisfying the basic {5 each parameter Equation (6.8):

Canonical Commutation Relations (CCR's) which
correspond to the classical ones Equation (6.6):

Which ensures their preservation in time, i.e.,
H, =0,H, = 0and establishes the consistency of the action.

i )\E’I)B:[g EJ 10{1,....4 (6.8)
[Vop Tt =18 =E(aga; +343,) (6.6)

With the defining property Equation (6.9):
In the Abelian case(C;, =0, thus the only operator

which must annihilate the wave function,Hg; and the  C{,A; =CAy + Gl (6.9)
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Exponentiating all these matrices, one obtains thequantities, are first-class. Out of the three dtiastE,,
outer automorphism group of the Abelian model, sinc only two are (functionally) independent , if weoall for the
there is not Inner Automorphism subgroup (all coefficients of the linear combination to be fuons of the

structure constants vanish). Yas'S; if the coefficients are only allowed to be nm, all
For full pure gravity, Hajiek and Kucha (1990) three are (linearly) independent.
has shown that there are no other first-class fonst The algebra of [ can be easily seen to be

homogeneous and linear in the momenta, except thé&quation (6.15):

linear constraints-ditto in 2+1 analysis. If howgvee

impose extra symmetries, such quantities may emerge 1

as it will be shown. We are therefore-according to {EUJ'E(J)}‘_EC%I B LI M L.
Dirac (Dirac, 1950) -justified to seek the generatof

these extra symmetries; their quantum-operatoryhere, Equation (6.16):
analogues will be imposed as additional conditions

the wave function. The justification for such aniag, M

. . . . Aoy Aoyt = CoAng s LI, MO{ L., 6.16

is obvious since these generators correspond tilabpa { 0 “)} BT () {1..3 (6.16)
diffeomorphisms-which are the covariance of the ) ) )
theory. Thus, these additional conditions are etgzec The square brackets denoting matrix commutation.
to lead us to the final reduction, by revealing thee The non vanishing structure constants of the afgebr
degrees of freedom. Such quantities are, generally(6.16), are found to be Equation (6.17):

called in the literature “Conditional Symmetries”

(6.15)

(Hajicek and Kuch&1990). C:,=2C},=- 2C,=1 (6.17)
From matrices (6.8), we can construct the linear-in
momenta-quantities Equation (6.10): At this point, in order to achieve the desired i,
we propose that the quantitieg&ith 10{4,...,3} -must
Eq) =NV 11,4 (6.10)  be promoted to operational conditions acting on the

requested wave functiodV-since they are first class
In order to write analytically these quantitieseth quantities and thus integrals of motion (6.14). the

following base is chosen Equation (6.11): Schrodinger representation Equation (6.18):
1 0 01 0 1 - ot oy _
Al:(o _1};\2:(0 O],Af( 1 3)\4:[ 5 3 (6.11) E(,)w-—m(l)uym%-K(l)w, oL...3 (6.18)
It is straightforward to calculate the Poisson Beds In general, systems of equations of this type, must
between f and H Equation (6.12): satisfy consistency conditions decreed by the Frioies

Theorem Equation (6.19):
{Ep Ho} == 2ANYWAG, (6.12)
E W=K ¥ = E E,W=K,K W
But, it holds that Equation (6.13): v v 0o v (6.19)

EnyP=Ky¥Y= EuE)¥=KyKy¥

E JHE == 2ANYYAG, 6.13
('){ o H]} Ny @ ( ) Subtraction of these two and usage of (6.15), tesul

in Equation (6.20):
-The last equality emerging by virtue of (6.12).ugh d ( )
Equation (6.14): KSE(M) Y=0=C! K =0 (6.20)

E“){E““H’}_O: By = Ky = constants[{ 1.3 (6.14) This relation constitutes a selection rule for the
numerical values of the integrals of motion. Inwief
We therefore conclude that, when the cosmologicalthe Lie Algebra (6.17), selection rule (6.20) $€ts= K,
constants is non vanishing, only the first thrge &e first- = K; = 0. This fact restores the action of the
class and thus integrals of motionAlfzanishes, all the four  difieomorphisms as covariances of the quantum theor
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in the sense that now, we have conditions of thienfo
E(I)LP =0. On the contrary, if we also had E(4) (as is the

case/\ = 0) then K4 would remain arbitrary. With this

H, - Ho=2yoy(yay) + 2y (6.26)

So, the Wheeler-DeWitt equation -by virtue of (§-21

outcome and using the method of characteristics, reads Equation (6.27):

(Carabedian, 1986), the system of the two functigna
independent P.D.E.'s (6.18), can be integrated.réat
is Equation (6.21):

W=w(y) (6.21)

i.e., an arbitrary function of-the determinant of the
scale factor matrix. Note that the solution (6.240uld
have not changed if another base for the generatas

affected the form of the system (6.18).

The next step, is to construct the Wheeler-DeWitt
equation which is to be solved by the wave func{@l).
The degree of freedom, is 1; the qy=According to
Kuchar's proposal (Kuchar, 1982), upon quantizatiba
kinetic part of Hamiltonian is to be realized as th
conformal Beltrami operator-based on the inducegiphl
metric {according to (6.7), with q yEquation (6.22):

first of (6.2)
vV p—

oy 0

gll: O(Buviyiy:Lct[mvyzya[}yu _4y2 (622)
a ap aypv

In the Schrodinger representation Equation (6.23):

1 y 1

where, Equation (6.24):
1

0 2=0%=——0y{ /g, o} (6.24)

Jou

Is the 1-dimensional Laplacian based on gfig(g=
1). Note that in 1-dimension the conformal groutotally
contained in the G.C.T. group, in the sense that an
conformal transformation of the metric cannot piElu
any change in the-trivial-geometry and is thus mahte
by some G.C.T. Therefore, no extra term in needed i
(6.24), as it can also formally be seen by takirglimit n
=1, R =0 in the general definition Equation (§:25

2_2
o.=o+

(6.25)

Thus Equation (6.26):

////A Science Publications 122

Ho W=y?W" + W'+ yAW =0 (6.27)

The general solution to this equation, is Equ&io28):
W(y)=c,3(2/¥A)+ ¢ Y( 2/vA)

(6.28)

where, {4 and Y,, are the Bessel Functions of the first

8nd second kind respectively -both of zero orded @,

C,, arbitrary constants. Some comments on this wave
function. Indeed, at first sight, the fact thdtdepends
only on one argument and particularly gnseems to
point to some undesirable degeneracy regarding
anisotropy; classically can be gauged to et and thus it
seems as though the anisotropy parameter doestest e
Y at all. If, however, we reflect thoroughly, we il
realize that this objection rests strongly on at-no
generally accepted-mingling of the classical notafn
anisotropy and the interpretation of the wave figmct
Indeed if we adopt the interpretation that the wave
functionW (along with a suitable measure), is to give
weight to all configurations parameterized Yy, then
the anisotropic configuration will, in general, aog
different probabilities. The degeneracy occurs only
between two different anisotropic configurationshathe
same determinanty. In compensation the scheme
proposed here, avoids the gauge degrees of freadom
much as possible. The final probabilistic interptiein
must await the selection of a proper measure.

If the cosmological constant is zero, some changes
will take place. The first concerns the obviougmtion
to the potential in the Hamiltonian; it vanisheshist
consequently, causes an alteration to the PoissackBt
(6.12), which takes the form Equation (6.29):

{Ey H}=01{1....3 (6.29)

while, (6.15) still holds. Thus in the present cabere
are four integrals of motion-instead of three. Alsioe
P.D.E. system (6.18) consists of four members datbt
of three), but now out of the four quantitieg,Eonly
three are functionally independent; the previou®,tw
plus E4. Again, using the method of characteristics
(Carabedian, 1986), the system of the three funalip
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independent P.D.E.'s (6.18), can be integrated.rét w=cy"+cy (6.36)
is Equation (6.30):
The constants i¢ ¢, remain arbitrary and may be
W=c,y (6.30) fixed after._the se]ection of a proper measure via
normalizability requirements.

where,y is the determinant of the scale factor and K4, the6.2. Quantization of the Non Abelian M odel
remaining constant {according to selection rul@@3.

The fact that fis wave function does not depend Ofapefian model, is exhibited. This model is a Clss
any comoination Of/“B.S inan ?r itrary manner (18 is since Ct #0. Class B Cosmological Models, have a
not an arbitrary function of,g's), might be taken as an e o i ]
indication that no reduced Wheeler-DeWitt equatan  Peculiarity; if the simplifying hypothesis of homengity,
be written. On the other hand, this wave functimesi IS inserted in the Einstein-Hilbert action, the ueed
contain an arbitrary constant which, at the clasdevel actio_n obtained, will res_ult in equations of_ motiehich
is not essential (the model is 2+1 Minkowski spage}. ~ &re in general, not equivalent to the equatioresgets by
Thus, it would not be harmful if the value of this the imposition of the same hypothesis, directlytiwnfull
constant were to be fixed by the quantum dynamiCS_Einstein's Field Equations. This situation does amtur
These thoughts lead to the following compromise th for the case of Class A models. Suppose that ooptad
initial configuration space, should be the mini- the canonical analysis in the framework of the
superspace i.e., we should write the Wheeler-DewittHamiltonian —description. Then, the problem of the
equation, based on the supermetf®L existence of a “valid” Hamiltonian (i.e., of a Hadtonian

In the Schrodinger representation Equation (6.31): which produces equations of motion equivalent te th

corresponding Einstein equations), arises. A greaty of
1 1 works have dealt with the problem (Christodoulaktsal.
E'-qgwﬂ“ﬁﬂ“v - —*ZDCZ (6.31)  (1996) and the references therein). The conclus@sthat

for Class B spacetimes, with a general scale faogrix

Thus using (A.11), (A.13), (A.14) for n = 2 and D Yap(t), & valid Hamiltonian is not known-a seriousvidpack

= 3, one may find respectively-see appendix Equatio since one major aim of the Hamiltonian approachthés
(6 3’2 and 6.33): guantization of the system under discussion.

Though it is extremely difficult to attack this jptem,
partial solutions have been given in (Christodoslak al.,

In the present section, the quantization of the Non

R=2 (6.32) 1996). Indeed, in that work, a Hamiltonian condrdcout
ot of the scale factor matriy,g(t) and the structure constants
Lagnl ™ = Yia (6.33) C?,, which resembles in form the Hamiltonian for the

()
Class A models, is constructed and sufficient ciorm
on the various parts of that Hamiltonian are givien,
order for it to be valid. The set of these conditids
2= GBWL +kai+1 (6.34) large, the conditions themselves a little compédaand
c 0YopYy oo 4 auxiliary quantities enter the scheme. But, in 2+1
analysis, not all are needed; the equations ofanptre
Then Kuchar's proposal for the Hamiltonian reads nothing but the derivatives of the linear constisin fact

And Equation (6.34):

Equation (6.35): which simplifies the system of the conditions to be
satisfied and the procedure of identifications.
_ 1 9 d 1 Thus, following the entire procedure described in
Ho ~ HO:_Z(LGBWM Yo gy 4} (6:35)  (Christodoulakis et al., 1996), the following results

are obtained.

- . . Th lid Hamiltonian for the Non Abelian Model, i
Substitution of the wave function (6.30) in the Equat?oﬁé.ﬂiml onian for the Fon Abellan Model, 1S

Wheeler-DeWitt equationH,W =0, with H, given by

the previous relation, determines the constapt e H= N(t [}@ TEP +Vj+4Np NC v (t 6.37
outcome is Equation (6.36): ()] 3 O (OCa¥in (O (6:37)
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where, Equation (6.38a to d):

Oupy :qu(zwvw +Z w yuB)

L (6.38a)
-g(vwvsv + VauVou ) + YapYiu
> 6 =Cre (CiVag + CipVaa )V (6.38b)
q=C, Gy (6.38c)
V=-12R- 3 (6.38d)

The quantity g is scalar under the action of the
automorphism group, corresponds to the unique
curvature scalar of the spatial surfaces of simeity

Zt[q= i

EJ and thus exhibits the only true degree of
freedom-as far as the 2-geometry is concerned.

The corresponding scalar (under the action of the

automorphism group) Lagrangian is Equation (6.39):

1

L= 0K K ) -N [t )V 6.39
ZN(t)( ap HV) ( ) ( )
where®®™ is the inverse 00qe,v Equation (6.40):
OO, =81 (6.40)
Given by Equation (6.41a to k):
o =™ 1 (ST + & &)
(6.41a)
+c,(s*8Y)+ ¢ @)
1
== 6.41b
=g (6.41b)
o(1+T w)
= 6.41c
b1+ A+ M’ - G ( )
Gw’
= 6.41d
C T 4 e+ T - GRS ( )
2
=0 (6.41e)

G (1w’
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ACBRY =‘§(W”VBV +yavygu)+£;yaayw (6.411)

SP=pT (6.419)

G = pPy (6.41h)

S=A"WE 3, (6.41i)

G =AMy, ., (6.41j)

M =Ay,.5 (6.41k)
And Equation (6.42):

K (1) = Ve (£) ~2N°(t) (CG + GV (6.42)
While Equation (6.43):

™ = @K, (6.43)

By inversion of the equation Equation (6.44):

_oH

Vop = = (6.44)

Again upon gquantization, following Kuchar's prodpsa
in the Schrodinger representation Equation (6.45):

1

v 1
Where Equation (6.46):
|:|c2=|:|2=i6y{ gng“av} (6.46)
Jo.

is the 1-dimensional Laplacian based on the “playsic
metric” g1 Equation (6.47):

dq 0q _
ayq[} ayuv

11
= Mappv

(6.47)

2,
3q

With gtgy; = 1-similarly to the Abelian case. It has been
mentioned that in 1-dimension the conformal grosp i
totally contained in the G.C.T. group, in the sethsd any
conformal transformation of the metric cannot paany
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change in the-trivial-geometry and is thus reachdhy
some G.C.T. Therefore, no extra term in neede®.46],
as it can also formally be seen by taking the lmit1, R =

0 in the general definition Equation (6.48):

Thus Equation (6.49):

Hy ~ Fo= =200, (.) - Y 49+ 1)

(6.48)

(6.49)

So, the Wheeler-DeWitt equation now, reads

Equation (6.50):

2

q

AW =L w(q)-Jwi(a)-1200( g~ aw(g= ¢ (6.50)

3

The general solution to this equation, for# 0, is

Equation (6.51):

qJ(y) = Cl‘JsiJX(lz‘/a) t6 ‘}_siJK ( laﬁ)‘

(6.51)

where, 4, is the Bessel Function of the first kind and ¢

C,, arbitrary constants.

If A vanishes, the solution is Equation (6.52):

W(y)=c,(12/q+ ¢ ¥( 13/

where, Y, is the Bessel Function of the second kind and

Cs, G4, @rbitrary constants.

6.3. The Equivalence of the State Spaces

(6.52)

Now, in Gauss normal coordinates, a three
dimensional spatially homogeneous metric takes the
form Equation (6.54):

-1 0 O

=] 0 g, G (6.54)
0 912 922

where, the spatial parf §5 Equation (6.55):
9 =070 Vg (6.55)

For the scale factor matriy,s we assume three
arbitrary functions of time, i.e., we depart fromet
classical solutions yet keeping ourselves withie th
class of spatially homogeneous three-geometrieself
now use the one-forms appropriate for the Abeliad a
non-Abelian symmetry group, we get, as expectenhfro
the theorem of section 2, the following results
concerning the pair designated by the vanishin¢hef
cosmological constant(containing the two cosmolabic
parameterizations of 3d Minkowski space).

Abelian,\ = 0 Equation (6.56a to c):

Q, =-2G; (6.56a)

Q,=2(c) (6.56b)
3

Q= —%)(GE)S (6.56¢)

Non Abelian,A = 0 Equation (6.57a to c):

Q, =-2G; (6.57a)

In our examples the classical Geometries are either
Minkowski spaces or Spaces of Constant curvature,szg(Gg)z_zyaBGoc,‘f (6.57b)
which in three dimensions implies maximal symmetry.
Thus, the 3 curvature invariants suffice to chamaze
the space. We therefore take the following set of QSZ_%)(G?))3+3/GBG;JC£ (6.57¢)

invariant relations Equation (6.53a to c):
Q =R} (6.53a)
A R?
Q=ReR - (6.53b)
A B R3
Q, = RBRFR/—A_? (6.530)
///// Science Publications 125

a

While, when a cosmological constant exists, the
corresponding pair (containing the two cosmological
parameterizations of 3d Maximally Symmetric space)
gives the following set of relations.

Abelian,\ # 0 Equation (6.58a to c):

Q =-2(G+A) (6.58a)
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270 2 the various curvature or higher derivative curvatur
Q. _§(G°+A) (6.58b) scalars of a given geometry. Each such relationt ineis
turned into an entity living on the phase space by
_ 107 o, A\ 2 eliminating the time derivatives of the extrinsiorature
Q= E(Gf’”\) +4A(Gg+/\) (6.58¢c) (through use of the spatial equations of motion, if
necessary). The appeal to a well known theorem of
Non AbelianA # 0 Equation (6.59a to c): Constrained Dynamics permits us to conclude thiat al
these entities are homogeneous polynomials of the
Q1=—2(G‘;+/\) (6.59a) Quadratic and the Linear constraints. Thereforegrwh
we wish to turn each and every such entity intorafoe
(Quantum Observable), there will be many factor
Qz=g(G3+/\)2—2v“BG§C§ (6.59b) orderings (namely all these that keep at least one
3 constraint to the far right) which will enable tluperator
to annihilate the states defined as the common null
__10 3 2 eigenstates of the Quantum Constraints. Conseguentl
=-=(Gy+A) + (G +A _ ; )
< 9 (G5+n) (G+n) (6.59c) the use of many different slices as bases for daaliy

quantizing one and the same space-time can have no
effect on the sol defined quantum observables. &pac
time covariance is thus observed at the quantural.lev
The above considerations are not meant to impliywiea
claim we have constructed a Dirac Consistent quantu

+3(Gg +/\)y“'362€§— 12Wv* G G

Now, it is a fact thatG) and G2 become, upon
transition to a Hamiltonian formulation, linear
combinations of iand H,. This, in turn, permits us to theory of General Relativity. They rather point ttee
conclude that, upon canonically quantizing the pair  claim that, if a consistent imposition of the quamt
the two cases above mentioned, there will alwaystex constraints is achieved, we expect to encounter no
an entire host of factor orderings for each ofgbhantum additional problems concerning space-time covadanfc
analogues of QQ,Q; such that their eigenvalues the ensuing theory. In that sense, our resultdérpiure
become 0 or A (for Q). This establishes the gravity is formal. It is seen to be explicitly rizad in the
equivalence of the corresponding quantum stategrund case of 2+1 cosmology considered.
non-trivial space-time coordinate transformatioNste
that, when an arbitrary gauge is used, the previous
relations simply become more complicated; the
qualitative result that (XQ,,Qs; are functions of the
constraints, remains of course valid.
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We have discussed the issue of space-time covariancframework of “PYTHAGORAS II- SUPPORT OF
of Canonical Quantization of General Relativity. To RESEARCH GROUPS IN UNIVERSITIES".
many this is known as the problem of time. At the
classical level, the well established canonicalyais of
the Einstein-Hilbert action leaves no room for dsub In this appendix, we give some useful formulae,

The formulation is explicitly space-time generally concerning the mini-superspace. Using the resufts o
covariant. Upon canonically quantizing the problem ¢anonical analysis in a (n+1)-dimensional manifold,
seems to reappear as all the ingredients of theyhee.,  gnhqowed with the line element, one arrives at the

the quantum constraints and consequently the quRNtu oo of mini-superspace spanned lyg's (co-
states concern the three-geometry and not the djpaee

7. DISCUSSION

Appendix

in which it is embedded. An answer to the problem ?c:ﬁé)rx;egS)Eqig?io:?XT)g as ‘covariant” metric the
presupposes a commitment about what will constthee '

set of observables. Motivated by the very essefidbeo

notion of a geometry, we adopt the point of vieattthis | oBu :}(yuvyﬁu +yyB _Zyuﬁyuv) (A1)

set must be identified by all invariant relatioretveeen 4
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While the “contravariant metric”, is defined as
Equation (A2):

With the help of (A.10) and (A.2) the \Ricci" scala
found to be Equation (A11):

2
L apu =[vwvgv *+ Yoo Ypu —mvagvuv) (A2) R = Ly, R :%(n3 +n’ - 2n) (A.11)
In the sense that Equation (A3): Finally, the \conformal Beltrami" operator, is
Equation (A12):
K, —_ N0p — 1 o o
LWL = O =5(5u55 +5:8) (A.3)
a2, D=2 _ 9’
=0+ - La[}p\l
The “Christoffel” symbols are defined as Equatiaa) 4(D-1 WNogVio (A.12)
apy O D-2
I A v
rOKr)L\%uv :%LKApU{LpGWIaﬁ FLOBPORY | uBuvm} (A.4) Yio ( )

. where, D is the dimension of the general metriccepa
where, Equation (A5):

D =w, i.e., the number of the independgpts.
apuv
Lot 00 50;7” (A5) One can find that Equation (A13);
Yoo
3_ 2
Combined usage of (A.1), (A.2), (A.3) and (A.4), Lo = n_”l Vi (A.13)

gives Equation (A6):

1 Thus (A.12), takes the form Equation (A14):

P == (Yol + v B+ yo + V1o ) (A.6)

2| 0 _3-n* 9 , D=2

In the same spirit, “Riemann” tensor is defined as ©~ WogYin n-1'% o 4D-1
follows Equation (A7):

R (A.14)
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