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ABSTRACT

The simulation of nanometric cutting of copper with diamond cutting tools, with the Molecular Dynamics
method is considered. A 2D model of orthogonal nano-scale cutting is presented and the influence of the
depth of cut and tool rake angle on chip morphology and cutting forces is investigated. For the analysis,
three different depths of cut, namely 10A, 15A and 20 A and four tool rake angles, namely 0°, 10°, 20° and
30° are tested. Results indicate that with increasing depth of cut, cutting forces also increase, while with
increasing tool rake angle, cutting forces decrease. Furthermore, the effect of Lennard-Jones and Morse potentials
on final results of the simulation is studied and discussed. The proposed model can be successfully used for the
modeling and simulation of cutting operations that continuum mechanics cannot be applied or experimental and
measurement techniques are subjected to limitations or it is difficult to be carried out.
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1. INTRODUCTION

In recent years, the development of nanotechnology has
been extremely high. With nanotechnology, a big variety of
miniaturized mechanical parts can be produced. These
mechanical parts can be used in a wide range of
applications, including computer systems, communication
systems, aerospace, medical equipment.

In order to manufacture parts with dimensions of
nanometres, high-technology equipment and cutting tools
are required. These manufacturing processes cost a lot and
aim to extremely small dimensions. The ultra-precision
machining with diamond tools can be used in order to
produce sub-micrometer form accuracy and a few
nanometers surface roughness at acceptable cost levels.

There is a big need to study the nanometric cutting
mechanisms and all the new phenomena that may appear
in this scale. This is extremely difficult via experiments, as
they cost a lot and may not be sufficiently efficient for the
aimed dimensions. Another way is to study the
aforementioned manufacturing processes and phenomena

using computational methods. Nanoscale cutting involves
workpiece deformation in only a few atomic layers at the
surface. On this scale, the continuum theory cannot be
used, so methods like finite elements cannot be used, too.
On this scale, a method that can be used for study on the
atomic level is Molecular Dynamics.

In Molecular Dynamics, the workpiece and the
cutting tool are analysed in atoms, taking into
consideration the structure of each material and
applying specific boundary conditions. The method of
Molecular Dynamics uses specific interatomic potentials
and Newtonial dynamics. The Newtonian equations of
motion are applied to each atom of the system and then they
are solved using numerical methods. The forces that are
developed on the atoms are calculated from the interatomic
potential used. In order to compute the force acting on a
specific atom of the system, all the forces contributed by the
surrounding atoms are summed (Rapaport, 2004).

Several researchers use Molecular Dynamics
simulation to study nanometric cutting; Komanduri and
Raff (2001) offer a thorough review. Komanduri et al.
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(1998; 1999; 2000; 2001) studied nanometric cutting of
single-crystal aluminum and tried to understand the
effects of crystal orientation and tool geometry on the
cutting mechanisms. lkawa et al. (1991) and Shimada
(1995) investigated the effect of tool edge radius and
depth of cut on the chip formation mechanism using a
two-dimensional system. Kim and Moon (1996) used the
Morse potential in order to simulate the -cutting
mechanism of copper and aluminium using a diamond
tool. Ye et al. (2003) used the EAM potential in order to
study the single-crystal copper and compute the
interatomic forces. Pei e al. (2006) compared the use of
Morse potential and EAM potential on Molecular
Dynamics simulation of cutting copper using different
tool rake angles. A large number of the existing studies
use two-dimensional systems and study the developed
energy and cutting forces, as well as the chip formation
mechanism and the various phenomena.

In the present study, based on finding and data of
previous works, a nano-scale model of cutting of copper
with diamond tools is presented. The models are realized
in Matlab” and several simulations are performed in order
to investigate the influence of depth of cut and tool rake
angle on the cutting forces and chip geometry.
Furthermore, the use of different potentials pertaining to
the interactions between the atoms of the analysis is
investigated and useful conclusions are drawn.

2. MATERIALS AND METHODS

The 2D simulation model presented consists of a
copper workpiece and a diamond tool as shown in Fig. 1.
It is a relatively small system, with the workpiece
consisting of 800 atoms, following the fcc structure of
copper and using the lattice constant of copper, which is
3.62 A. The tool consists of 120 atoms and the edge of
the tool is straight and perpendicular to the direction of
motion. Tool clearance angle B is kept at 0°. In this
study, four different tool geometries with the rake angle
o being 0°, 10°, 20° and 30°, respectively, are used. The
cutting speed is 123 m/sec and the depth of cut is 10 nm,
15 nm or 20 nm, in order to study the influence of this
parameter on the simulation results.

For the boundary conditions which must be applied
to the simulation, two layers of atoms at the bottom of the
work material and the four layers of atoms in the left side
of the workpiece are kept fixed. Also, the initial
temperature of the workpiece is 293 K and the simulation
time step is 10 fs. The simulation time step is chosen to be
very small in order to reduce the calculation error.

///// Science Publications

18

Three different atomic interactions in the Molecular
Dynamics simulation of nanometric cutting processes
need to be calculated, which are the interactions in the
workpiece, the interactions in the tool and the
interactions between the workpiece and the tool. In this
study, the tool is considered to be rigid; diamond is
harder than copper and so it can be assumed that the
tool cannot be deformed and the atoms of the tool
maintain the tool shape. In order to calculate the forces
between the atoms of the workpiece, the interatomic
Lennard-Jones potential is employed, which is a
relatively simple potential. Morse potential is used in
order to compare the use of the two different potentials
and study their different results on the cutting forces. For
the computation of the interactions between the
workpiece and the tool, the Morse potential is used, as
the constants of the potential for a system consisting of
copper and diamond are known. For the interactions
between the atoms of the workpiece, the constants are
derived by Girifalco and Weizer (1959). Pei et al. (2006)
suggested that the equilibrium distance between atoms
shouls take the value of r, = 2.78 A, which they found
that must be used in order to make the equilibrium lattice
constant and equal to 3.62 A. For the interactions
between the workpiece and the tool, the constants are
those proposed by Zhang and Tanaka (1997). All Morse
potential constants are shown in Table 1.

In order to have an appropriate simulation and
compute the wanted quantities, a Matlab® code is
developed, in which three steps are followed, in
general. The first step is the initialization phase,
called pre-processing. The second step is the most
basic step and this is the solver of the equations. The
last step is the production of the output of the run or
the post-processor.

At the first step, the characteristics of the system
are initialized, which are those of the workpiece and
the cutting tool. Both for the workpiece and cutting
tool, the number of atoms is defined, the wanted
geometry and the initial positions at the beginning of
the simulation. The initial positions are depended on
the crystal structure of the material used. Additionally,
the initial velocities of the atoms are specified, which
depend on the initial temperature of the system and
are chosen in such a way so that the total momentum
of the system is zero; the initial accelerations of the
atoms are zero.
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Fig. 1. Molecular dynamics’ simulation model set-up
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Fig. 2. Flow diagram of the simulation method

Table 1. Value of constants for the Morse potential for Cu-Cu
and Cu-C interactions

QUANTITY Cu-Cu Cu-C

D (eV) 0.3429 0.0870
a(A™h 1.3588 5.1400
re (A) 2.8660 2.0500

At the second step, the equations of motion are
integrated and solved at a repeating procedure. In
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every repeat, the following logic is adopted: The
interaction force on every atom of the system is
computed. For each atom, this force is the sum of all
the forces that are being exerted on the atom from its
neighbors in a specific distance r.. After the total force
that is being exerted on a specific atom for a specific
moment is computed, the acceleration of the atom is
calculated using the equations of motion. After this,
the integration of motion equations follows, using a
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leapfrog-type numerical method, from which the

velocities and the positions of each atom for every
step is derived. This way, new forces on each atom

and all the wanted quantities are calculated, using the

measurements of the last step of the simulation. In

every step of integration, the simulation continuues
and the cutting tool removes material from the

workpiece. This procedure ends when the wanted
material has been removed from the workpiece. At
every repeat, all measurements are saved in order to

be collected at the end of the simulation. The above
procedure is shown in the following diagram of Fig. 2.

3. RESULTS AND DISCUSSION

In the initial studies, Lennard-Jones potential is
used in order to compute the forces between the atoms
of the copper workpiece. Initially, the influence of the
depth of cut on the chip formation and the smoothness
of the machined surface are studied. Various values
for the depth of cut, namely 10 A, 15 A and 20 A, are
tested. The respective simulations are shown in Fig. 3

(a) to (c¢) for a tool with tool rake angle of 0°. From
the simulation results, it can be concluded that the
material of the workpiece is deformed as the tool
moves on it in a similar way to conventional
machining processes. The chip follows the shape of

the tool depending on the tool rake angle, the
unwanted material is removed and the machined
surface takes the wanted form. Phenomena like elastic

recovery of the material are obvious; atoms of uncut

material that are far away from the tool are not affected
by the machining process.

For different values of depth of cut, the simulation
results are similar, but with some distinct differences;
for higher values of depth of cut, machined surface
becomes rougher. Furthermore, many dislocations and
voids appear in the cutting region as the depth of cut
becomes larger.

In the presented Molecular Dynamics simulations,
cutting forces during the cutting process can be
predicted. Cutting forces are the sum of the
interatomic forces between the atoms of the workpiece
and the atoms of the tool; tangential force F, and
normal force F, can be calculated. In Fig. 4, the
influence of the depth of cut on both Fy and F, forces
of the cutting process for rake angle of 0° is depicted.
It is worth noticing that the tangential cutting force Fy
is always higher than the normal cutting force F,.
Furthermore, when depth of cut increases, both forces
increase, too. The variation of the ratio of the normal
force to the tangential force with the depth of cut is
presented in Fig. 5, where this ratio is increasing with
the increasing of depth of cut.

Next, different values for the tool rake angle are
used, namely 10°, 20° and 30°. The respective
simulations are shown in Fig. 6a-c with depth of cut
equal to 10 A. Once again, from simulation results,
cutting process is similar to conventional machining
processes and chip takes different shape as the tool rake
angle changes. As tool rake angle increases, fewer
dislocations and voids appear in the cutting region.
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Fig. 3. Simulation results for a tool rake angle of 0o and with depth of cut (a) 10 A, (b) 15 A and (c) 20 A

In Fig. 7, the influence of tool rake angle on both
Fy and Fy forces is depicted for depth of cut equal to 10 A.
Tangential cutting force F, is always higher than normal
cutting force Fy, as anticipated. The variation of the ratio of
the normal force to the tangential force with tool rake angle
can be seen in Fig. 8; the ratio is decreasing with the
increase in the depth of cut.

In the previous simulations Lennard-Jones
potential was used. However, the difference on the
simulation results using either the Lennard-Jones
potential or the Morse potential can be investigated.
Respective simulations with the use of Morse
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potential are shown in Fig. 9 with various tool rake
angles and a specific depth of cut at 10 A.

From the simulation results, it can be seen that there
no significant difference on the chip morphology and the
smoothness of the machined surface for the same cutting
conditions using either the Lennard-Jones or Morse
potential. However, one difference is that with the
Morse potential, the machined surface appears to be
smoother than by using the Lennard-Jones potential;
also, the dislocations and the voids are fewer. In Fig.
10a and b, various cutting forces appearing with the
use of the two different potentials are presented.
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Lennard-Jones and Morse potentials

It can be seen that under Morse potential both
tangential and normal cutting forces are smaller
compared to the ones calculated with Lennard-Jones
potential. This happens due to the different nature of
the two potentials and the different way the metallic
bond is being computated. This is an important
observation when using Molecular Dynamics
simulation to study the nanometric cutting process of
copper with a diamond tool.

4. CONCLUSION

Simulations of nanometric cutting process of copper
with diamond tool for different cutting conditions, using
Molecular Dynamics method were carried out. The
following results were obtained:

e Depth of cut has an influence on chip formation
and roughness of the machined surface. By
increasing the depth of cut, the machined surface
becomes rougher and many dislocations and voids
appear in the cutting region

e Cutting forces are influenced by the different depths
of cut. By increasing the depth of cut from 10 A to

% Science Publications

20 A, cutting forces F, and F, also increase
considerably. The same happens with the ratio of
normal to tangential cutting force

Tool rake angle has also an influence on chip
morphology and roughness of the machined surface.
By increasing tool rake angle from 0° to 30°, the
machined surface becomes smoother and the atoms
in the cutting region are still close to one another
Cutting forces appear to be influenced by the
variation of the tool rake angle, as well. As tool rake
angle increases, cutting forces decrease considerably
and the same happens with the ratio of normal to
tangential cutting force

There are no significant differences in chip
formation and roughness of the machined surface
between the Lennard-Jones and Morse potential
simulations. However, with Morse potential, the
machined surface appears to be smoother

There is a significant influence on the cutting forces
between the two different potentials. Morse potential
results in lower cutting forces than Lennard-Jones
potential for the same cutting conditions
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