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ABSTRACT 

G proteins, one of the most important transmembrane signal transducers, contain four subfamilies. Gαq is the α 
subunit of Gq protein subfamily. The Gαq containing protein initially attracted attention for its physiological 
significance is in cardiovascular system. In recent years, its role in immune regulation has been indicated. 
Studies domenstrated that Gαq plays crucial role in regulating both innate and adaptive immune cells function 
and it is involved in the development of autoimmune disease. In this review, we summarized recent data in the 
role of Gαq containing protein in regulating immune cells function and the possible mechanisms. 
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1. INTRODUCTION 

Gαq, the α subunit of Gq protein, is ubiquitously 
expressed in mammalian cells and couples a huge 
variety of receptors to channel proteins, enzymes and 
other effector molecules (Wettschureck and Offermanns, 
2005; Mizuno and Itoh, 2009). The heterotrimeric G-
proteins, are one of the most important transmembrane 
signal transducers. There are a large number of 
heterotrimeric guanine nucleotide-binding proteins 
which interact with the cytoplasmic domains of 
membrane embedded receptors (G Protein-Coupled 
Receptors, GPCR). They transduce extracellular signals 
that affect many biological actions. G-proteins consist of 
an α-subunit that binds and hydrolyses GTP as well as a 
β- and a γ-subunit that form an undissociable complex. 
Based on the types of their α subunits, G proteins can be 
grouped into four subfamilies, they are Gαi, Gαs, Gαq/11 
and G12/13, each subfamily contents several member of G 
proteins. The Gαq/11 subfamily consists of four members 
designated Gαq, Gα11, Gα14, Gα15/16, these G-proteins 
couple a large number of GPCRs for activation of PLC-
β (Oldham and Hamm, 2008).  

The Gαq containing protein initially attracted 
attention for its physiological significance in 
cardiovascular system in 1990s (D’Angelo et al., 1997; 
Adams et al., 1998). In recent years, studies have 
indicated the important roles of Gq in regulating both 
innate and adaptive immunity, which supply us a new 

insight into the mechanism of immune regulation and 
autoimmune disease. This review aims to provide a brief 
review on the role of Gαq containing protein in 
regulating immune cell function and the possible 
mechanisms involved in the regulation. 

1.1. Basic Principles of Mammalian Gαq Protein 

The Gαq/11 family members were first identified by 
affinity purification (Pang and Sternweis, 1990) and 
molecular cloning strategies (Pang and Sternweis, 1989; 
Strathmann and Simon, 1991). The Gαq protein is the 
product of Gnaq gene and composed of a GTPase 
domain and an α-helical domain. The GTPase domain of 
Gαq participates in the hydrolysis of GTP to GDP. The 
domain has three flexible loops, named switch regions I, 
II and III, whose conformations are dependent upon 
GDP or GTP binding. The helical domain contains six 
helices and is unique to G protein α subunit, but the 
function of helical domain in G protein signaling 
remains to be fully clarified (Oldham and Hamm, 2008). 

The Gαq couples receptors to activate PLC-β (β-
isoforms of phospholipase C) (Rhee, 2001). To 
dynamically couple activated receptors to effectors, it 
shares the same activation-inactivation cycle with all of 
the four families of the heterotrimeric G proteins. In the 
basal state, the GDP-bound α-subunit is associated with 
the βγ-complex. When the G protein-coupled receptors 
bind to its appropriate ligands (physiological ligands 
of Gαq protein-coupled receptors are summarized in 
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Table 1), the activated receptor couples to the 
heterotrimeric G protein and promotes the exchange of 
GDP to GTP on the α-subunit. Then the GTP-bound α-
subunit dissociates from the other subunits and becomes 
an activated α-subunit and a βγ-complex, which 
transduces signals individually. Signaling is terminated 
upon the hydrolysis of GTP mediated by the GTPase 
activity, which is inherent to the G protein α-subunit. 
The resulting GDP-bound α-subunit reassociates with the 
βγ-complex to enter a new cycle if activated receptors are 
present (Wettschureck and Offermanns, 2005).  

1.2. Gαq in Regulating Innate Immune Cell 

Function 

The innate immune system is a universal and ancient 
form of host defense against infection. It provides the 
first line of host defense and controls the initiation and 
determination of the effector classes of the adaptive 
immune response. Cells involved in innate immune 
system include macrophages/monocytes, dendritic cell, 
granulocytes and natural killer cells.  

The best known about G proteins in the innate immune 
system is its role in the chemokine receptor signaling 
pathway. Directed cell movement in response to an 
increased concentration of chemokines underlies the correct 
targeting of leukocytes to lymphatic organs during antigen 
surveillance and also allows them to migrate to sites of 
infection or inflammation (Vicente-Manzanares and 
Sanchez-Madrid, 2004). Many of the key intracellular 
proteins and second messengers that control cell migrations 
have been identified and a consensus chemokine receptor 
signal transduction model has been proposed. One of the 
critical components of this chemokine receptor signaling 
model is the heterotrimeric G protein complex. It directly 
associates with chemokine receptors and transduces signals 
from these receptors to other key intracellular signaling 
molecules. Many studies have elucidated the essential role 
of Gαi in the chemokine receptor signaling pathway. 
Despite the critical importance of Gαi in chemokine induced 
cell trafficking, it has been known for many years that 
chemokine receptors can also couple to Gαq family 
members (Amatruda et al., 1993; 1995; Arai and Charo, 
1996; Wittmann et al., 2002). Arai and Charo (1996) 
proved that type A and type B Monocyte Chemoattractant 
Protein-1 (MCP-1) receptors and macrophage 
inflammatory protein-1alpha/RANTES receptor (C-CR1) 
coupled to Gαq in COS-7 cells and HEK-293 cells via 
cotransfection experiments. Using selectively Gnaq 
knockout mice, Borchers and his colleague have shown 
that Gαq subunit was required in allergen-induced 
recruitment of eosinophils to the lung. However, this effect 
was not dependent on Gαq signaling in eosinophils 
themselves, because murine eosinophils did not express Gαq 
detected by Western blot or sequencing of RT-PCR 
products using degenerate primers for Gnaq transcripts. 

The unique loss of GM-CSF production in the lung of 
Gnaq-/- mice was responsible for the recruitment of 
eosinophils. However, the potential effects of the Gnaq 
deficiency in the target cell have not been resolved, T 
cells and/or alveolar macrophages might be involved 
(Borchers et al., 2002). In one of our previous study, we 
have proved that Gαq is as important as Gαi in some 
chemokine receptors signaling, such as mFPR1 and 
CCR1. In those chemokine receptor activation induced 
neutrophil and DC migration, although Gαi2 was 
necessary, but it was not sufficient to induce chemotaxis of 
primary leukocytes to a large array of chemoattractants and 
alternative Gαq-coupled pathway must be engaged in the 
migration of primary neutrophils and DCs (Shi et al., 
2007). Gαq and CD38 coordinately sustained the calcium 
response by activating calcium entry. This novel alternative 
chemokine receptor signaling pathway appeared to be 
critically important for the initiation of inflammatory 
responses, as Gαq was required for the migration of DCs 
from the skin to draining lymph nodes after fluorescein 
isothiocyanate sensitization and the emigration of 
monocytes from the bone marrow into inflamed skin after 
contact sensitization (Shi et al., 2007). Chemokine 
receptors dependent on Gαq are summarized in Table 2. 

1.3. Gαq in Regulating the Function of T and B 

Cells 

The adaptive immune response is a specific immune 
response. Adaptive immune responses depend on 
lymphocytes including T lymphocytes and B 
lymphocytes. To participate in an adaptive immune 
response, T cells need to proliferate and differentiate 
into active CD4

+
 helper T cells (Th) and CD8

+
 cytotoxic 

cells from their naïve states after encountering antigen. 

1.4. Gαq and B Cell 

Studies on the regulation of Gαq in B cell are quite 
few. Bence and his colleagues showed that Gαq involved 
in the activation of Bruton’s tyrosine kinase, a protein 
that is required for normal B-cell development and 
activation (Bence et al., 1997), suggesting that Gαq may 
be involved in B cell development and activation 
regulation. Our previous study directly demonstrated 
that Gαq-containing G protein regulates B cell selection 
and survival and it was required to prevent B cell-
dependent autoimmunity (Misra et al., 2010). Gαq was 
not required for B cell development in the bone marrow, 
However, Gαq did modulate the development of 
peripheral B cell. Gαq appeared to control the numbers of 
transitional T1 B cells (T1 cell), T1-derived Marginal 
Zone B cell (MZB) precursors, as well as mature MZB 
and Follicular B cells (FOB). The proliferation between 
WT B cell and Gnaq-/- B cells showed no difference 
under the sitimulation of anti-IgM or anti-CD40 Abs.  
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Table 1. Physiological ligands of Gαq protein-coupled receptors 

Endogenous  Coupling to G 
Ligand Receptor protein subclass References 
Glutamate mGluR1, 5 Gαq (Conn and Pin, 1997) 
α-Ketoglutarate GPR99 Gq/11 (He et al., 2004) 
Succinate GPR91 Gq/11 (He et al., 2004) 
L-Arginine, L-lysine GPRC6A Gq/11? (Wellendorph et al., 2005) 
Acetylcholine M1,M3,M5 Gαq (Wess, 2004) 
Epinephrine,norepinephrine α1A,α1B,α1D Gq/11 (Wu et al., 1992) 
Histamine H1 Gq/11 (Bakker et al., 2001) 
Serotonin 5-HT2A/B/C Gαq (Tanis et al., 2008) 
Ca2+ CaSR Gq/11 (Goodman, 2004) 
ADP/ATP P2Y1 Gq/11 (Fredholm et al., 1997) 
ATP P2Y11 Gq/11 (Fredholm et al., 1997) 
UDP P2Y6 Gq/11 (Fredholm et al., 1997) 
UTP/ATP P2Y2, P2Y4 Gq/11 (Fredholm et al., 1997) 
Fatty acids GPR40,GPR41 Gαq (Lee et al., 2008) 
 GPR43 Gq/11 (Brown et al., 2003) 
 GPR120 Gq/11 (Hirasawa et al., 2004) 
LTC4, LTD4 CysLT1 Gαq (Parmentier et al., 2012) 
Lysophosphatidic acid LPA1/2/3 Gαq (Lynch, 2002) 
Platelet-activating factor PAF Gαq (Prescott et al., 2000) 
Prostaglandin F2α (PGF) FP Gαq (Liu and Clipstone, 2007) 
Prostaglandin E2 (PGE2) EP1,EP3 Gq/11 (Hata and Breyer, 2004) 
Thromboxane A2 (TxA2) TP Gαq (Narumiya et al., 1999; 
    Hata and Breyer, 2004) 
Angiotensin II AT1 Gαq (Gasparo et al., 2000) 
Bradykinin B1, B2 Gαq (Leeb-Lundberg et al., 2005) 
Calcitonin CT Gq/11 (Poyner et al., 2002) 
Calcitonin gene-related peptide (CGRP) CGRP1 Gq/11 (Poyner et al., 2002) 
Cholecyctokinin (CCK-8) CCK1, CCK2 Gq/11 (Shulkes and Baldwin, 1997) 
Endothelin-1, -2, -3 ETA , ETB Gαq (Cramer et al., 2001) 
Gastrin CCK2 Gαq (Shulkes and Baldwin, 1997) 
Gastrin-releasing peptide (GRP), bombesin BB2 Gαq (Battey and Wada, 1991) 
Ghrelin GHS-R Gq/11 (Kojima et al., 1999) 
Gonadotropin-releasing hormone GnRH Gαq (Millar et al., 2004) 
Kisspeptins, metastin GPR54 Gαq (Roux et al., 2003;  
   Seminara et al., 2003) 
Melanin-concentrating hormone MCHR1 Gαq (Fry et al., 2006) 
Motilin GPR38 Gαq (Feighner et al., 1999) 
Neurokinin-A/-B NK2, NK3 Gαq (Pennefather et al., 2004) 
Neuromedin-B NMB-R Gαq (Shapira et al., 1994) 
Orexin A/B OX1, OX2 Gq/11 (Mieda and Yanagisawa, 2002) 
Oxytocin OT Gαq (Qian et al., 1998) 
Parathyroid hormone (related peptide) PTH/PTHrP Gαq (Offermanns et al., 1996) 
Prokineticin-1,2 PKR1, PKR2 Gq/11 (Soga et al., 2002) 
Prolactin-releasing peptide PrRP (GPR10) Gq/11 (Sun et al., 2005) 
Substance P (SP) NK1 Gαq (Macdonald et al., 1996) 
Thyrotropin (TSH) TSHR Gq/11 (Vassart and Pardo, 2004) 
Thyrotropin-releasing hormone (TRH) TRHR Gαq (Aragay et al., 1992) 
Urotensin II UT-II (GPR14) Gαq (Russell, 2004) 
Thrombin PAR-1, PAR-3, PAR-4 Gαq (Vaidyula and Rao, 2003) 
Trypsin Trypsin receptor Gq/11 (Shapira et al., 1998) 
Estrogen  mER Gαq (Qiu et al., 2003) 

 
Table 2.Chemokine receptors coupled to Gαq 

Recpetor Cell type  Gαq dependent References  

MCP-1 receptor COS-7 and HEK-293 cell Y (Arai and Charo, 1996) 

CCR1 COS-7 and HEK-293 cell Y (Arai and Charo, 1996) 

 BM neutrophil(mice) Y (Shi et al., 2007) 

CCR2 Immature DC(mice) ? (Shi et al., 2007) 

CCR7 DC(mice) Y (Shi et al., 2007) 

CXCR4 DC(mice) Y (Shi et al., 2007) 

mFPR1 BM neutrophil(mice) Y (Shi et al., 2007) 

mFPR2 BM neutrophil(mice) Y (Shi et al., 2007) 
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However, Gnaq-/- B cells proliferated more strongly in 

response to LPS than their WT counterparts, suggesting 

that either a higher proportion of Gnaq-/- B cells were 

responsive to LPS or that Gnaq-/- B cells were 

hyperresponsive to TLR4 ligands. The survival rate of 

Gnaq-/- B cells was far greater than the survival rate of 

wide type B cells at all stages of transitional and mature 

B cells. Gnaq-deficient B cells was more resistant to 

BAFF withdrawal. Furthermore, Gnaq-deficient B cells 

constitutively expressed higher levels of activated Akt, 

PLCγ2 and ERK, suggesting the increased activation of 

BCR-mediated signaling in Gnaq-/- B cells. Most 

importantly, Gnaq-deficient mice rapidly developed an 

autoreactive B cell repertoire and systemic 

autoimmunity. These data showed that Gαq-containing G 

proteins, working in concert with the BCR and BAFFR 

signaling networks, regulate B cell development and 

peripheral tolerance induction (Misra et al., 2010). 

1.5. Gαq and T Cell 

Role of Gαq in lymphocyte migration seems contrary 
to that in innate immune cells. Data from one of our 
previous study showed that Gαq regulates CCR7 and 
CXCR4 signaling in DCs but not in T cells. Chemotaxis 
of Gnaq-/- T cells to these two chemokines was 
completely normal (Shi et al., 2007). However, Ngai 
reported that Gnaq knockdown T cells showed significantly 
enhanced migration induced by CXCL12 and the signals 
conveyed by Gαq appear to be mediated through a SHP-1 
pathway (Ngai et al., 2009). These data suggest that the 
role of Gαq in chemokine receptor signaling regulation is 
cell type and chemokine receptor specific. 

Members of Gq/G11 family are repeatedly to be 

indicated in T cell activation. Activation of primary T 

cells with anti-CD3/anti-CD28 leads to recruitment of 

Gαq to lipid rafts indicate that Gαq may be involved in T 

cells activation (Abrahamsen et al., 2004). Another 

study using Gnaq knockout mice demonstrated a role 

of Gαq in proximal TCR signaling at the level of Lck 

(Ngai et al., 2008). Jurkat TAg T cells with Gnaq 

knockdown displayed reduced activation of Lck and 

LAT phosphorylation, but paradoxically showed 

sustained ERK1/2 phosphorylation and increased 

NFAT-AP-1-reporter activity implicating Gαq in the 

negative control of downstream signaling and IL-2-

promoter activity. Primary T cells isolated from Gnaq-

deficient mice have a similar TCR signaling response 

with reduced proximal LAT phosphorylation, sustained 

ERK1/2 phosphorylation and augmented immune 

responses, including increased secretion of IL-2, IL-5, 

IL-12 and TNF-α. The effects on NFAT-AP-1-reporter 

activity were sensitive to the Src family kinase inhibitor 

PP2 and were reversed by transient expression of 

constitutively active Lck. Furthermore, expression of 

constitutively active Gαq Q209L elevated Lck activity 

and Zap-70 phosphorylation. These data indicated the 

role of Gαq in the fine-tuning of proximal TCR signals at 

the level of Lck and a negative regulatory role of Gαq in 

transcriptional activation of cytokine responses (Ngai et al., 

2008). These signals conveyed by Gαq appear to be 

mediated through a SHP-1 pathway (Ngai et al., 2009).  

1.6. Gαq and Autoimmune Disease 

In 2010, we first demonstrated the role of Gαq in 

autoimmune disease in Gnaq-/- chimeric mice by 

reconstituting lethally irradiated C57BL/6J recipient 

mice with Gnaq-/- bone marrow. Gnaq-/- chimeric mice 

spontaneously developed autoimmunity with multi-

organ involvement and joints swelling (Misra et al., 

2010). Furthermore, we found that Gαq expressions at 

mRNA and protein levels in the peripheral blood 

lymphocytes (PBLs) from patients with rheumatoid 

arthritis (RA) were significantly decreased in 

comparison of which in healthy individuals. The 

expression levels of Gαq mRNA in PBLs from patients 

with RA were correlated with RA Disease Activity 

(DAS28), anti-cyclic citrullinated protein antibodies, C-

reactive protein and rheumatoid factor. These data 

suggest that Gαq might be involved in the pathogenesis 

of RA (Wang et al., 2011). 

1.7. The Molecular Mechanisms of Gαq in 

Regulatint Immune Cell Functions 

1.8. Gαq and PI3K/Akt Pathway 

Phosphatidylinositol 3-Kinase (PI3K) mediates many 

of the cellular actions of receptor tyrosine kinases, 

including effects on glucose metabolism, cell survival 

and cytoskeletal rearrangements (Katso et al., 2001). 

The serine/threonine protein kinase Akt, also termed 

Protein Kinase B (PKB), an important downstream 

effector of PI3K, is involved in regulating a similarly 

wide array of cellular processes as PI3K (Brazil et al., 

2004). The PI3K/Akt pathway has broad and distinct 

roles in both innate and adaptive immune cells, it is 

activated by a broad array of different stimuli via 

specific receptors, including the BCR, TCR, cytokine 

receptors (e.g., interleukin 2), insulin receptor, insulin-

like growth factor I receptor, as well as Toll-Like 

Receptors (TLRs) (Weichhart and Saemann, 2008). 
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Table 3. Role of Mitogen-Activated Protein (MAP) kinase family in immune cells regulation 

MAPK members Immune cells Effect References 

ERK Macrophages mice with selective ERK activation deficits  (Dumitru et al., 2000) 

  exhibited deficient in LPS-induced TNF-α production, 
  ERK inhibitor PD98059 had a similar effect 

 T cell ERK1-deficient mice exhibited defective (Pages et al., 1999) 

  thymocyte maturation 
  Regulate T cell activation, deficient ERK activation (Li et al., 1996; Kane et al., 2000) 

  exist in clones that are anergized 

  Regulate Th2 differentiation 
  Study using dominant H-RAS transgenic mice and (Yamashita et al., 1999) 

  inhibitors against MEKs showed that ERK pathway  

  is required for Th2 differentiation 
JNK T cell Required in negative selection Rincon et al., 1998a) 

  T cell activation and IL-2 expression 

  No effect  (Dong et al., 1998; Yang et al., 1998) 
    IL-2 expression defect in mixed lymphocyte (Sabapathy et al., 1999;  

  of Jnk1-/- mice and Jnk2-/- mice, absence of JNK2 Sabapathy and Kallunki, 2001) 

  alone can result in resistance to anti-CD3-induced  
  thymocyte apoptosis and defective mature  

  T cell proliferation. 

  Regulate apoptosis, JNK1-/- T cells exhibited reduced  (Dong et al., 1998) 
  activation-induced cell death  

  JNK1 inhibit Th2 differentiation by using Jnk1-/- mice (Dong et al., 1998) 

  JNK2 is required for Th1 differentiation (Yang et al., 1998) 
  by using Jnk2-/- mice 

p38 Macrophages p38-specific inhibitors reduced LPS-induced IL-12 (Lu et al., 1999) 

 Dendritic cells and IL-1 production, genetic disruption of MKK3-p38 
  pathway resulted in a selective defect in IL-12 production  

 T cell Regulates activation-induced cell death, activation of the  (Merritt et al., 2000) 

  p38MAPkinase pathway in vivo induces apoptosis in 
   CD8+ T cells, but not in CD4+ T cell 

  Required for Th1 differentiation inhibitors of the p38 (Rincon et al., 1998b) 

  kinases block IFN-γ production by Th1 cells in a  
  dose-dependent manner and transgenic mice in which a  

  dominant negative p38αshowed reduced IFN-γ cytokine 

  T cells from mice deficient in the p38 upstream kinase  (Lu et al., 1999) 
  MKK3 have a defect in IFN-γ production 

  Regulates IFN-γ production in CD8+ T cells (Merritt et al., 2000) 

 

Studies regarding regulation of PI3K and/or Akt by 

Gαq coupled receptors are somewhat controversial. Some 

studies suggest that Gαq can activate PI3K/Akt by using 

ligands of Gαq coupled receptors, summarized in Table 1. 

Graness suggest that receptor of bradykinin might 

couple to Gαq to activate PI3K (Graness et al., 1998). 

Endothelin-1 was also proved to activate PI3K via Gαq/11 

(Imamura et al., 1999). Saward proved another ligand of 

Gαq coupled receptor, angiotensin II, can activate PI3K 

in vascular smooth muscle cells (Saward and Zahradka, 

1997) and it can also activate Akt in vascular smooth 

muscle cells (Eguchi et al., 1999; Takahashi et al., 

1999). Tang et al. (2002) showed that muscarinic 

receptor is coupled to Gαq to activate Akt in 1321N1 

astrocytoma cells. 

There are also some evidences suggested that 

activated Gαq inhibit rather than activate PI3K/Akt 

activity. Folli et al. (1997) proved that angiotensin II can 

inhibit PI3K activity in aortic smooth muscle cells.  

Jiang et al. (1999) proved that endothelin-1 inhibited 

insulin-stimulated PI3-kinase activity associated with 

IRS-2 by 50-60% and inhibited the association of p85 

subunit of PI3-kinase to IRS-2. To clarify the effects of 

Gαq on the activity of PI3K/Akt, Ballou et al. (2003) 

used a constitutively active Gαq (Q209L) mutant to study 

the role of Gαq in Akt activation, they showed that 

transient expression of Gαq (Q209L) in Rat-1 fibroblasts 

inhibited platelet-derived growth factor- or insulin-

induced the activation of Akt. Expression of Gαq 

(Q209L) also attenuated Akt activation promoted by 

coexpression of constitutively active PI3K in human 

embryonic kidney 293 cells. The inhibitory effect of Gαq 

on Akt seemed to be independent on phospholipase C 

activation and might represses P110 alpha PI3K activity 

via an physically interaction (Ballou et al., 2003). 
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Fig. 1. Gαq signaling pathways in immune cells regulation. Activated Gαq can directly activate PLC-β, resulting in generating second 

messengers IP3 and diacyl glycerol. These molecules promote the activation of conventional PKC (cPKC) and the release of Ca2+ 

from intracellular stores. Activated Gαq can regulate the PI3K/Akt activity, this effect seemed to be independent on phospholipase C 

activation. Gαq was also involved in the transduction of signals from GPCR to ERK. Activated Gαq can lead to NF-κB activation via 

PI3K and the PLC-β pathway 
 

1.9. Gαq and Mitogen-Activated Protein (MAP) 

Kinase Family 

The Mitogen-Activated Protein (MAP) kinase signaling 
cascade is one of the most ancient and evolutionarily 
conserved signaling pathways which respond to a broad 
range of extracellular and intracellular changes. The 
MAPK superfamily includes the Extracellular signal-
Regulated Kinases (ERK), c-Jun NH2-terminal kinase 
(JNK1-3) and p38 (α, β, γ and δ) families. In 
mammalian species, MAP kinases are involved in all 

aspects of immune responses, from the initiation phase 
of innate immunity, to activation of adaptive immunity 
and to cell death when immune function is completed 
(Dong et al., 2002). The main roles of Mitogen-
Activated Protein (MAP) kinase family in immune cells 
are summarized in Table 3. 

Several studies have indicated the role of Gαq in the 

regulation of Mitogen-Activated Protein (MAP) kinase 

signaling pathway. Studies on endothelin receptors and 

gonadotropin-releasing hormone receptors showed that 

these two types of receptors couple to Gαq to activate ERK 
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(Cramer et al., 2001; White et al., 2008). Another study 

showed that Gαq was involved in the transduction of 

signals from GPCR to ERK5 (Fukuhara et al., 2000; 

Marinissen et al., 2003). Gαq displayed a scaffold-like 

role in this process via independently interacting with both 

PKCδ and MEK5 (Garcia-Hoz et al., 2010). It was also 

reported that Gαq inhibit TNF alpha-stimulated JNK 

activation (McIntosh et al., 2010). 

1.10. Gαq and NF-κB 

Nuclear Factor (NF) κB is one of the most important 

transcription factors responsible for the expression of 

these proinflammatory genes. It s rapid posttranslational 

activation in response to many pathogenic signals and 

directly activates the transcription of various genes 

encoding immunologically relevant proteins. Its 

properties have been most extensively exploited in cells 

of the immune system, as reviewed in reference 98 

(Baeuerle and Henkel, 1994). 
Activated Gαq can directly activate PLC-β, resulting 

in generating second messengers IP3 and diacyl 
glycerol. These molecules promote the activation of 
conventional PKC (cPKC) and the release of Ca

2+
 from 

intracellular stores. Elevation of intracellular Ca
2+

 
further activates cPKC. Shahrestanifar et al. (1999) have 
reported that LPA-induced NF-κB activation can be 
blocked by the rise of intracellular Ca

2+
 and PKC 

inhibitors. Several PKC isoforms, including cPKC, were 
known activators of NF-κB based on early studies on the 
effects of phorbol esters in NF-κB activation 
(Shahrestanifar et al., 1999). Using cell lines with 
transfected constitutively active mutants of Gαq, it is 
demonstrated that a Q209L mutation of Gαq lead to 
activation of NF-κB. Furthermore, based on the 
inhibitory effects of IkBα repressor, the IkB kinases 
(IKK), including IKK1 (IKKα) and IKK2 (IKKβ), were 
involved in the Gαq-mediated NF-kB activation. 
Inhibitors for Phosphatidylinositol (PI) 3-kinase (PI3K), 
as well as dominant negative constructs of PI3K and its 
downstream effector Akt (PKB) partially block the Gαq-
mediated NF-κB activation (Xie et al., 2000). These 
results suggest that Gαq activates NF-κB via PI3K and 
the PLC-β pathway. The signaling pathway of Gαq in 
immune cells regulation was shown in Fig. 1. 

2. CONCLUSION 

2.1. Conclusion and Future Perspectives 

Gαq is one of the most important proteins in 

transducing extracellular signals. Their functions in 

immune responses are beginning to be revealed with 

help of Gαq-specific inhibitors and mouse genetic 

manipulation. Gαq plays crucial role in both innate 

immune cells and adaptive immune cells function 

regulation: 1. Gαq regulates the migration of neutrophils 

and DCs induced by a large array of chemokines, it also 

regulates the allergen-induced recruitment of 

eosinophils; 2. Gαq regulates B cell selection and 

survival and is required to prevent B cell-dependent 

autoimmunity; 3. Gαq regulates migration of T cell 

induced by some kinds of chemokines (at least by 

CXCL12) and it is involved in TCR signaling pathway 

to regulate T cells activation and some effector function; 

4. Gαq regulates the development of autoimmune 

disease, such as RA and the expression levels of Gαq 

mRNA in PBLs from patients with RA were correlated 

with RA disease activity. 

From what we summarized above, we can predict 

some future directions in the studies of Gαq: 
 

• Exploring the broader function of Gαq in different 

cell types of the immune system. For instance, the 

role of Gαq in macrophages, Breg, Treg or Th17 

• Defining the specific downstream targets of Gαq in a 

given stage and cell type of an immune response. 

There are multiple substrates of Gαq, which one 

mediates is function in a given cell type needs to be 

carefully characterized 

• To clarify the role of Gαq in other types of 

autoimmune disease, such as Systemic lupus 

erythematosus; Sjogren’s syndrome and 

dermotomyositis. Understanding the signaling 

mechanisms of Gαq in these autoimmune diseases 

pathogenesis 

 
These results will no doubt advance our knowledge 

of the mechanisms of Gαq signaling in immune 
responses and may help development of therapeutic 
agents to selectively modulate Gαq activity to treat 
immune disorders. 
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