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Abstract: Problem statement: The development of a potent vaccine that can help treat tumors resistant 
to conventional cytotoxic therapies remains elusive. While part of the problem may be that trials have 
focused on patients with bulky residual disease, the desire to maximize responses to the vaccine 
remains. Approach: The gamma (γ) family of cytokines offered a unique opportunity to support the 
expansion and effectors potential of vaccine-responding T-cells, as well as stimulate other effectors, 
such as Natural Killer (NK) cells, to become activated. Results: Combining vaccines with cytokines 
seems logical but can bring unwanted toxicity, as had been observed with interleukin (IL)-2. In addition, 
the nonspecific activation or expansion of unwanted cell subsets, such as regulatory T-cells, can 
contribute to global immunosuppression and limit vaccine responses. The development of IL-7 and IL-
21 for the clinic offered the promise of enhancing anti-tumor responses but with far less systemic toxicity 
and no expansion of regulatory T cells. Preclinical studies demonstrated that IL-15 could also improve T-
cell and especially NK-cell, responses as well. Conclusion/Recommendations: Future study should 
expand the use of vaccines with IL-7, IL-21 and hopefully IL-15 in high-risk patients and consider 
treatment while in a state of minimal residual disease to maximize benefit. Identifying tumors that can 
signal through gamma(c) cytokines will also be essential so that induction of relapse will be avoided. 
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INTRODUCTION 

 
 Despite the success of multimodality therapy for 
cancer including chemotherapeutic agents, radiation 
and surgery, relapse still occurs in a large percentage of 
patients. Immune effectors cells represent a powerful 
tool for eliminating residual tumor cells. The potency of 
Donor Lymphocyte Infusions (DLI) in treating chronic 
myelogenous leukemia following Hematopoietic Stem 
Cell Transplant (HSCT) is a striking example of the 
potential of cancer immunotherapy. Clinical responses 
to adoptive cell therapies administered in the 
autologous setting further illustrate the promise of 
cancer immunotherapy. The development of vaccines 
designed to elicit adaptive immune responses, mainly 
from T-cells, has occurred in parallel with adoptive cell 
therapy, but it is evident based on the clinical data 
generated with vaccines thus far that approaches to 
increase potency will be necessary. Indeed, the great 
appeal of this approach is the potential to generate 
immunotherapies that are antigen-specific, with a 
particular focus on tumor-associated antigens. One of the 

main drawbacks to this approach, however, is that tumor 
antigens represent self-proteins, which can induce 
tolerance in the host. Thus, vaccines have been examined 
in combination with other immunotherapies as a means 
of generating a potent T-cell response against tumor 
antigens while overcoming the barriers of tolerance. 
 Vaccines are being pursued for multiple types of 
cancers and are being designed using multiple 
approaches to enhance immunogenicity. Administration 
of whole cancer cells, purified peptides, or DNA 
vaccines have been given alone, or in combination, with 
professional Antigen Presenting Cells (APCs) to elicit 
immunogenic responses. Combinations of different 
types of immunotherapy with traditional modalities like 
chemotherapy, radiation and surgery, have been tested 
in clinical trials with some promise. Cytokines 
delivered with vaccines as adjuvants aim to improve 
antitumor immunity by increasing the proliferation of 
effectors cells and also improving their cytotoxicity or 
cytokine production[1]. It has been demonstrated in 
preclinical models that concurrent administration of 
cytokines with a vaccine has the potential to enhance 
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immune reactivity through the recruitment of T cells 
and APCs to lymphoid organs, as well as by activation 
of T-cells and Natural Killer (NK) cells directly. In this 
review, we will discuss clinically relevant cytokines 
that have been coupled with a vaccine or cellular 
therapy in preclinical models and in some cases clinical 
trials, to generate antitumor immune responses, with a 
focus on the so-called gamma(c) family of cytokines. 
These cytokines (Interleukin 2, Interleukin 7, 
Interleukin 15 and Interleukin 21) all utilize the 
common cytokine gamma chain for signaling and have 
potent effects on T-cells and NK cells, the major 
effectors in the anti-tumor immune response.  
 
Interleukin 2: 
Background: The first cytokine administered in a 
vaccine trial against cancer was interleukin 2 (IL-2). IL-
2 is produced mainly by T helper cells, acts on a variety 
of immune cells across the innate and adaptive immune 
system and is known to play an important role in the 
initiation and maintenance of antigen-specific immune 
responses (Fig. 1). The biology and signaling pathways 
of IL-2 have been reviewed extensively[1,2]. Because of 
the broad effects of IL-2 on a variety of immune cells, 
the specific mechanisms by which IL-2 influences the 
immune system to induce tumor regression are not 
completely understood.  
 

 
 
Fig. 1: Target lymphocyte populations of gamma(c) 

cytokines. While there is considerable overlap 
of cytokine activity on lymphocytes, effects can 
be stimulatory or inhibitory depending on the 
cytokine. IL-21 only increases proliferation of T 
cells stimulated with anti-CD3 or antigen, but 
can augment responses to other gamma(c) 
cytokines. IL-7 acts on developing B cells but 
not mature cells of this lineage. IL: Interleukin, 
NK: Natural Killer, NKT: Natural Killer-T cell, 
Treg: Regulatory T cell  

 A variety of preclinical models demonstrated 
potential therapeutic benefit of combining IL-2 with 
vaccines, leading to the study of IL-2 in clinical trials. 
The antitumor effect of IL-2 is believed to be mediated 
by lymphocyte expansion and augmentation of effector 
cell function[2]. However, while IL-2 enhances the 
activity of both NK cells and T-cells, it can also expand 
regulatory T-cells (Tregs), which contribute to tumor-
associated immunosuppression[3]. The Food and Drug 
Administration approved IL-2 as a single agent for use in 
patients with metastatic Renal-Cell Carcinoma (RCC) 
(1992) and metastatic melanoma (1998). IL-2 has also 
shown efficacy as an adjuvant for infectious vaccine 
therapy. As will be outlined below, objective tumor 
responses have been observed in clinical trials combining 
cancer vaccines with IL-2. An informative commentary 
on the history of IL-2 treatment for melanoma is 
available[4]. This review will explore IL-2 as a prototypic 
cytokine that acts as an adjuvant to vaccine therapy by 
examining the relevant clinical trials in melanoma, where 
there is the most clinical experience in adults, as well as 
in pediatric solid tumors. A review of the experience 
with IL-2 and vaccines in RCC is discussed elsewhere[5]. 
Given the diversity of clinical trial designs using IL-2 as 
an adjuvant, we will also discuss dosing, timing of 
administration and reported objective response rates as 
potential factors that may impact efficacy.  
 
Clinical Trials with Vaccines and IL-2 in 
Melanoma: When examining the literature on IL-2 
given with therapeutic vaccines for melanoma, studies 
vary by the type of vaccine administered, IL-2 dose, 
timing of IL-2 administration in relation to the vaccine 
and length of therapy (Table 1). The earliest data for 
systemic IL-2 following vaccination was reported by 
Rosenberg et al.[6] in 1998, who used high-dose IL-2 
immediately following vaccination with a modified 
gp100 (a relevant melanoma tumor-associated antigen) 
peptide vaccine in 31 patients with melanoma. A 42% 
objective response rate was reported, while the vaccine 
alone had a 5% response rate[6]. This initial observation 
led to the development of further trials with more 
advanced vaccines, but served as a “proof of principle” 
study that vaccines combined with a cytokine can 
improve objective tumor response rates over vaccines 
alone. Another report by this group with a different 
peptide vaccine and IL-2 demonstrated a 38% objective 
response rate, although it was not documented whether 
they were Partial Remissions (PRs) or Complete 
Remissions (CRs), nor how long responses were 
maintained[7]. However, other trials in melanoma 
incorporating peptide vaccines with IL-2 have shown 
either response rates similar to that seen with IL-2 alone 
(about 15-25%), or no responses at all[8,9]. One trial did 
not report a specific response rate[10]. 
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Table 1: Analysis of melanoma trials where patients received both IL-2 and a vaccine 
Vaccine IL-2 Dose/route Timing/length of IL-2 therapy Objective response rate References 
Peptide (Day+0) 
g209-2M 720,000 I U kg−1 IV Start day+1 or +5 until grade 3-4 42% [6] 
   irreversible toxicity (tolerance) 
g209-2M 720,000 IU kg−1 IV Same as above (6-10 doses) 38% [7] 
Tyrosinase + 3,600,000 IU m−2 SC Group 1: Start day+7 Not reported [10] 
gp100 +  Group 2: Start day+28. 0% [8] 
tetanus helper  Daily for 6 weeks in both groups 
g209-2M 5,000,000 IU m−2 SC Days +0 to +4 and days +7 to +12 16% [9] 

g209-2M 600,000 IU kg−1 IV Start day+1 for 5 days on: repeated  
  every 21 days 
  Weeks 1 and 3 for trial one 
  Weeks 7 and 9 for trial two 
  Weeks 1, 4, 7 & 10 for trial three 
DC or PBMCs 720,000 IU kg−1 IV Start day+0 for 3 days 0% [12] 
DC + MART-1 + g209-2M   
DC + tumor lysate 700,000 IU SC Start day+0, 3 times/week 0% [14] 
Tumor/DC hybrid cell 3,000,000 IU SC Start day+0 for 6 days 0% [15] 
DC + tumor lysate 2,400,000 IU m−2 SC Start day+1 for 3 days 0% [16] 
Tumor/DC hybrid cell 3,000,000 IU m−2  Start day+1 for 5 days 10% [17] 
PBMC + g209-2M 720,000 IU kg−1 IV Start day+0 until tolerance (4-11 doses)  0% [18] 
DC + tumor lysate 3,000,000 IU SC or  Low: Start Day+0 for 4 days 0% [13] 
 360,000 IU kg−1 IV High: Start Day+0 for 9 doses   
DC + tumor lysate or 1,000,000 IU m−2 SC Start day+1 for 5-14 days 0% (lysate) [11] 
DC + peptide cocktail   22% (peptides) 
Other 
Adenovirus + MART-1 or  720,000 IU kg−1 IV Start day+1 until tolerance 16% [20] 
Adenovirus + gp100  
Fowlpox virus + g209-2M 720,000 IU kg−1 IV Start day+0 up to 12 doses every 50% [21] 
  4 weeks 
SRL172 (Mycobacterium) 6,000,000 IU SC Start day+0 for 3 days 19% [23] 
DNP + BCG + tumor 3,000,000 IU SC  Low: Start day+0 for 5 days  42% [19] 
 or 720,000 IU kg−1 IV every 14-21 days 
  High: Start day+0 for 2 weeks,  
  1 week rest, then repeat once 
Tumor plasma membrane 1,750,000 IU m−2 SC Start day+5 from vaccine for 1 week 0% [22] 
on silica beads  
IV: Intravenous; SC: Subcutaneous 
 
 While it could be argued that peptides are 
inefficient as vaccines since they need to be expressed 
by an APC and presented with costimulatory signals to 
get a proper effector response, studies have also 
examined IL-2 given with a dendritic cell (DC) vaccine. 
In these studies, the vaccine is potentially capable of 
presenting a melanoma antigen directly and IL-2 could 
facilitate expansion of any vaccine-responding cells. 
Unfortunately the response rates in these trials were 
quite poor[11-17]. One group even adopted a similar 
approach using Peripheral Blood Mononuclear Cells 
(PBMC), instead of DCs, to patients pretreated with 
other vaccines and saw no objective clinical 
responses[18].  
 In contrast to using APCs, one report using a 
dinitrophenyl-modified autologous melanoma cell 
vaccine as either a primary treatment or as an adjuvant 
showed 42% objective tumor regression (2CR, 8PR) 
following combination with IL-2, lasting for a median 

duration of 6 months (range 3-50 months)[19]. Viruses 
have also been explored as a means of presenting over 
expressed melanoma antigens and whereas adenovirus 
vaccines yielded no responses[20], another report using a 
recombinant fowlpox virus encoding a minigene 
construct encoding a single, modified melanoma 
epitope yielded a 50% response rate (3CR, 3PR) when 
given with IL-2[21]. Regarding nonviral approaches, 
using melanoma plasma membranes on silica beads 
showed no responses[22] and giving only heat-killed 
Mycobacterium without any tumor antigens was no 
better than giving IL-2 alone[23]. Thus, no controlled 
randomized vaccine trial ± IL-2 have reported that IL-
2 improves responses to a tumor vaccine and in a 
multitude of non-controlled trials response rates to 
tumor vaccines remain low, whether or not IL-2 is co-
administered. Moreover, a meta-analysis of the 
vaccine trials at the National Cancer Institute (NCI) 
demonstrated that melanoma vaccines in general, 
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when given with IL-2, do no better than giving IL-2 
alone[24]. 
 
Clinical trials with pediatric cancers: The clinical 
experience in pediatrics with IL-2 and vaccines has 
been more limited, with neuroblastoma the most 
extensively studied. Investigators have used IL-2-
secreting autologous neuroblastoma cell lines as 
vaccines and a transgenic chemokine-cytokine 
(lymphotactin-IL-2) vaccine generated in autologous 
and allogeneic neuroblastoma cell lines[25-27]. Except for 
a few patients with PRs or CRs, all of the response rates 
were disappointing. Importantly, very recent research 
has demonstrated that IL-2 combined with GM-CSF 
and a monoclonal antibody against GD2-expressing 
neuroblastomas can lead to enhanced event-free and 
overall survival in a phase III trial[28]. This data 
demonstrates the efficacy of IL-2 as an adjuvant to 
monoclonal antibody therapy rather than as an adjuvant 
for T-cell active vaccines and illustrates the potential 
effectiveness of cytokines in cancer immunotherapy in 
the context of a large, well-designed clinical trial 
conducted at multiple centers through a cooperative 
oncology group.  
 In addition to neuroblastoma, Dagher et al.[29] 
reported in 2002 no clinical benefit of a PBMC 
vaccine pulsed with tumor peptides given with IL-2 in 
children with recurrent Ewing sarcoma and alveolar 
rhabdomyosarcoma.   A   follow  up  study  by 
Mackall et al[30] in the same patient populations gave 
autologous T-cells and DCs pulsed with peptides 
derived from tumor-specific translocation breakpoints 
and was reported in 2008 using different doses of IL-2 
administered to three cohorts. Immune responses to the 
translocation breakpoint peptides occurred in only 39% 
of patients. There was a 43% 5 year overall survival for 
patients initiating immunotherapy, which is higher than 
would be predicted for patients with this level of high-
risk disease, although no differences were seen in 
cohorts that received or did not receive IL-2. Additional 
data generated from this trial definitively demonstrated 
that in vivo administration of IL-2 results in expansion 
of Tregs. Zhang et al.[3] showed that CD4+ CD25+ Tregs 
underwent homeostatic peripheral expansion during 
immune reconstitution, that IL-2 therapy expanded this 
subset and that this expansion was further augmented 
by lymphopenia. 
 In a leukemia trial that included 7 children with 
high-risk acute myeloid leukemia or Acute 
Lymphoblastic Leukemia (ALL) in cytologic remission, 
patients received up to 6 subcutaneous injections of a 
tumor vaccine consisting of leukemic blasts admixed 
with skin fibroblasts transduced with adenoviral vectors 

encoding IL-2 and CD40 ligand. Eight patients 
remained disease-free for a range of 27-62 months after 
treatment, with a 5 year overall survival of 90%[31]. 
Thus, IL-2 therapy is well tolerated in pediatric patients 
despite being heavily pretreated for their primary 
disease and may enhance the cytotoxicity of both T-cell 
and non-T cell subsets, but Treg expansion remains an 
issue.  
 
Limitations of IL-2: There remains considerable 
debate about the dosing, schedule and timing of IL-2 
administration in relation to vaccination. In general, 
high dose IL-2 appears to be associated with better 
clinical responses in melanoma (Table 1), although 
there is minimal data directly comparing IL-2 dosing. 
What is well documented is that higher doses of IL-2 
cause appreciable toxicity, namely capillary leak[2]. In 
addition, elevation of IL-6 has been associated with IL-
2-induced mental depression[32] and IL-2 therapy can 
result in autoimmune toxicities, including vitiligo, Type 
I diabetes or autoimmune thyroiditis[33], perhaps 
indicative of the potential for these cytokines to induce 
tumor responses against self-antigens. IL-10 production 
may be a direct result of Treg stimulation and may 
hamper antitumor effects. In addition, IL-2 mediates 
activation-induced cell death, which could also hamper 
T-cell responses to a vaccine[2]. Lastly, there is some 
concern that IL-2 may signal tumors themselves[34-42], 
particularly lymphoid-derived cancers and some adult 
carcinomas (Table 2). 
 In summary, most vaccines tested with IL-2 do not 
do better than IL-2 alone, although there are many 
factors that can affect outcome, including the type of 
vaccine, dose and schedule of IL-2 and antigen 
targeted. Importantly, the relative expansion of Tregs 
may also be hampering responses. Future research will 
need to address limiting expansion of this subset. In 
addition, almost all of the patients treated in these trials 
had measurable and often bulky, tumors at the time of 
enrollment. It is possible that vaccines and IL-2 may 
work better in a Minimal Residual Disease (MRD) 
setting and future work should focus on using these two 
modalities as a means to minimize relapse. With 
regards to scheduling and timing of IL-2, in most 
clinical trials, IL-2 is usually given at the same time or 
following vaccination (Table 1). IL-2 might be more 
effective if given before vaccine administration, so the 
milieu will promote proinflammatory immune 
responses[10], or if IL-2 is delayed until after the T-cell 
contraction phase[43]. Overall, the relatively low rate of 
clinical responses to vaccines with IL-2, regardless of 
dosing or schedule, indicates that IL-2 may not be 
optimal as an adjuvant.  
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Table 2: Malignancies implicated to utilize gamma(c) cytokines 
Cytokine Malignancy Evidence References 
IL-2 Hodgkin disease IL-2R+ or CD25+ by IHC [34,35] 
 B- and T-cell lymphomas IL-2+ or IL-2R+ or CD25+ by IHC [34-37,42] 
  IL-2mRNA in CD25+ cells 
  IL-2 can signal and promotes proliferation 
 T-cell leukemias Aberrant expression CD25mRNA [38] 
 B-cell CLL CD25+ and CD122+ by antibody and mRNA analysis [39] 
  IL-2 induces proliferation of CD25+ cells 
 Head and neck carcinoma Surface IL-2+ and CD122+ and intracellular IL-2+ by flow cytometry [40,41] 
  Anti-CD25 treatment induces G1 arrest and induces apoptosis in vitro 
 Gastric carcinoma Surface IL-2+ and CD122+ and intracellular IL-2+ by flow cytometry [40] 
 Squamous cell lung carcinoma IL-2+ and CD25+ by IHC [37] 
IL-7 Acute B-cell leukemia IL-7R mRNA+, IL-7R protein+ and shows in vitro kinase activity [58,60,61,64] 
  Growth inhibition by rapamycin reversed by IL-7 
  CD127 is alternatively spliced 
 Acute T-cell leukemia Notch1 binds to IL-7R promoter, regulates 
  IL-7R transcription and CD127 expression 
 Hodgkin disease IL-7R+ by flow cytometry and IHC 
  IL-7 stimulates growth in colony assays 
  IL-7 prevents apoptosis in serum-free assays [62] 
 Lung carcinoma IL-7R mRNA+, IL-7R protein+ and in vitro kinase activity 
  IL-7 induces VEGF-D and promotes lymphangiogenesis [58,59] 
 Brain tumors IL-7R is alternatively spliced [64] 
IL-15 Large granular leukemia IL-15 stimulates proliferation [105,106] 
  IL-15 induces all known signaling deregulations 
 CLL IL-15 causes receptor signaling, proliferation  [107] 
  and prevents apoptosis  
  Cells stimulated with CD40 exhibit increased  
  expression of IL-15R 
 Pediatric ALL High IL-15 expression correlates with CNS involvement  [111] 
 Cutaneous T cell lymphoma IL-15 can signal and promote proliferation [42] 
 Renal cell carcinoma IL-15R+ by flow cytometry and RT-PCR [109] 
  IL-15 can signal IL-15R 
 Head and neck carcinoma IL-15Ra+ by RIA [108] 
IL-21 T cell leukemia IL-21R+ by flow cytometry and RT-PCR 
  IL-21 induces signaling and proliferation [140] 
 Hodgkin disease IL-21+ by flow cytometry, RT-PCR and IHC  
  IL-21R+ by flow cytometry 
  IL-21 signals STAT5 to cause proliferation [156,157] 
  IL-21 protects cells from apoptosis 
 B- and T-cell lymphomas IL-21R+ by flow cytometry [140] 
  IL-21 causes proliferation  
 Multiple myeloma IL-21 signals and is a growth factor via an  [158] 
  IGF-1 autocrine loop 
IHC: Immunohistochemistry, CNS: Central Nervous System, RT-PCR: Reverse Transcriptase-Polymerase Chain Reaction, RIA: Radioimmunoassay 
 
Interleukin-7: 
Background: IL-7 is produced by a variety of cell 
types and tissues, but not by lymphocytes themselves 
and serum IL-7 levels are inversely correlated with 
lymphocyte counts. IL-7 is involved in the maintenance 
and survival of alpha-beta T cells, the development of B 
cells and gamma-delta T cells and may play a role in 
the biology of DCs and monocytes[44,45] (Fig. 1). IL-7 
does not appear to support NK cells. Thus, IL-7 plays a 
critical role in lymphocyte homeostasis as indicated by 
markedly diminished lymphocyte counts in IL-7 and 
IL-7 receptor gene deleted mice and the severe 
combined immunodeficiency associated with IL-7 
receptor mutations in humans. An extensive review of 

IL-7 biology and signaling can be found 
elsewhere[44,46,47], but this review will focus on potential 
clinical utility of recombinant human (rh) IL-7 as an 
agent for immunorestoration or as adjuvant therapy for 
vaccines or adoptively transferred T cells. Preliminary 
data thus far demonstrates that IL-7 therapy enhances 
immune reconstitution, but without stimulating Treg 
expansion or inducing capillary leak, as occurs with IL-
2. 
 
Clinical trials with IL-7: The first rhIL-7 phase I trial 
reported 12 patients with metastatic cancers. The four 
tested doses were 3, 10, 30 and 60 µg kg−1 given 
subcutaneously every 3 days for a total of eight doses. 
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Patients also received the melanoma antigen peptide 
vaccines gp100 and MART-1 in incomplete Freund’s 
adjuvant subcutaneously. The therapy was well 
tolerated and no MTD was reached. While no anti-
tumor effects were observed, rhIL-7 was given for 
limited time combined with a limited number of 
vaccines, therefore limiting the conclusions that could 
be drawn regarding its capacity to enhance vaccine 
responses. Of note, CD4+ and CD8+ T-cell subsets 
increased in this trial in a dose-dependent manner. 
However, there was a relative decrease in regulatory T 
cells, making this cytokine distinct from IL-2. There was 
also an increase in B cell precursors in the bone marrow 
of some patients, but no changes in B cell numbers were 
noted peripherally[48]. 
  The second rhIL-7 phase I trial reported 16 patients 
with refractory malignancies using the same doses as 
the first trial, but IL-7 was given every other day for 14 
days and no vaccines were administered. The therapy 
was well tolerated and no MTD was reached. No anti-
tumor effects were observed, however rhIL-7 increased 
both CD4+ and CD8+ T cells, including central memory 
subsets, in a dose-dependent fashion and these increases 
lasted for weeks after discontinuation of the cytokine. 
The mechanism of expansion appeared to be 
augmentation of peripheral cycling with a propensity 
for cycling of naïve populations. While enhanced 
thymic output could not be definitively discerned, rhIL7 
induced increased T cell repertoire diversity as 
measured by spectratyping, presumably due to 
enhanced cycling of recent thymic emigrants. Notably, 
Tregs were not increased, making this clearly cytokine 
distinct from IL-2[49]. 
 Lastly, a phase I trial using melanoma cells 
engineered to express IL-7 lead to an increase in 
melanoma-reactive T cells in three out of six patients. 
Minor antitumor responses were observed in two 
patients[50]. While this trial is not the equivalent of 
giving IL-7 directly, it further demonstrated that IL-7 is 
well tolerated in vivo and is effective in mediating 
effector T cell expansion without associated Tregs. 
 
Potential antitumor applications of IL-7: While IL-7 
alone does not seem to eliminate tumors directly, 
rationale combination with other immunotherapies may 
be beneficial. In preclinical models, IL-7 therapy 
potently enhances vaccine-mediated immunity[51,52]. 
Combining intralesional IL-7 with other therapies, such 
as Radiofrequency Ablation (RFA), induces immune 
responses to breast tumors, inhibits tumor development 
and lung metastasis and reduces myeloid-derived 
suppressor cells[53]. Combining IL-7 with local 
hyperthermia also enhances anti-tumor activity in mice 

with melanoma[54] and combining IL-7 and 
lymphocytes results in prolonged survival from colon 
cancer[55]. In a preclinical neuroblastoma xenograft 
model, combining IL-7 and gamma-delta T cells with 
an anti-GD2 antibody significantly improved 
survival[56]. Thus in both adult and pediatric solid tumor 
models, IL-7 has the capability to be an effective 
adjuvant. Recently, adjuvant IL-7 was shown to improve 
vaccine mediated survival in a spontaneously occurring 
murine tumor model via enhanced Th17 differentiation 
and reduced T cell-intrinsic inhibitory networks[51]. 
 Finally, IL-7 may have utility after allogeneic 
HSCT, where it may enhance Graft-Versus-Leukemia 
(GVL) effects by potentiating alloreactive T cells[57]. 
Thus, the available preclinical data and limited data 
from clinical trials would indicate that via multiple 
mechanisms, IL-7 is a very promising agent to enhance 
overall immune competence and, potentially, tumor 
specific immune responses. The absence of Treg 
expansion and the lack of toxicity observed in this 
clinic would suggest that IL-7 offers definite 
advantages over IL-2 as an adjuvant. 
 
Potential limitations of IL-7 therapy: A potential 
concern regarding IL-7 therapy is that it may signal 
tumors directly[58-62],  promoting  growth/survival 
(Table 2). CD127 expression has been reported on 
some adult solid tumors[58], but not on pediatric solid 
tumors, but it is not clear if these tumors have the 
capacity to signal through IL-7. IL-7 does play a role in 
either the initiation or maintenance of some leukemias 
and lymphomas and therefore will need to be used with 
extreme caution in immunotherapy regimens involving 
lymphoid malignancies. It could be that malignant 
tissues alternatively splice IL-7, as shown in neuronal 
tumors and pediatric ALL[63,64], which suggests that 
some tumors could generate their own supply of IL-7 
for survival or possibly use an isoform as a means of 
local IL-7 receptor blockade on effector cells. Some 
neuronal tumors also alternatively splice the IL-7 
receptor, suggesting the tumor could modulate their 
ability to respond to exogenous IL-7[64].  
 While IL-7 has been shown to enhance GVL 
responses after allogeneic HSCT, it may also 
exacerbate Graft-Versus-Host-Disease (GVHD)[65,66]. 
Thus, the use of IL-7 in the allogeneic setting may be 
most effective in the setting of T cell-depleted grafts[67]. 
IL-7 over expression has been described to create an 
osteoclastogenic microenvironment within the bone 
marrow, which promotes the commitment of precursors 
towards the osteoclast lineage, leading to bone loss[68]. 
Lastly, additional pre-clinical work has shown that IL-7 
therapy may generate a suppressive DC that does not 
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present antigen effectively[45]. Careful selection of 
tumors along with close monitoring of bone density and 
the development of autoimmunity may be necessary in 
future trials. However, the overall experience with IL-7 
thus far would indicate that clinical trials with this 
cytokine in multiple settings, including as a vaccine 
adjuvant, are warranted. 
 
Interleukin-15: 
Background: IL-15 is constitutively expressed by a 
variety of cell types and tissues, but in contrast to IL-2, 
is mainly membrane bound. A thorough review of IL-
15 biology and receptor physiology has been described 
elsewhere[1,2,69]. IL-15 and IL-2 exhibit similar immune 
effects and share the IL-2 receptor subunits IL-2Rbeta 
and IL-2Rgamma(c), but each cytokine has a separate 
alpha receptor (Ra). One unique feature of IL-15 is the 
requirement for cross presentation by IL-15Ra in order 
to induce optimal biologic activity. Unlike most 
cytokines that function as soluble mediators, IL-15 
appears to function primarily as a “cell associated” 
molecule and therefore is highly dependent upon an 
available reservoir of IL15Ra+ cells for optimal biologic 
activity. It is possible that this feature of IL-15 biology 
will have important implications for how best to utilize 
this cytokine as a therapeutic agent[70]. 
 IL-15 is required for the differentiation of NK 
cells[71] and plays a role in maintaining and expanding 
CD8+ T cells (particularly memory subsets)[72-74], NK 
cells[75], NKT cells[76,77], interferon-killer DCs[78,79] and 
gamma-delta T cells[80,81]. In addition to effects on T cells 
and NK cells, IL-15 may also sustain B cells[82] and 
convert polymorphonuclear cells into APCs[83] (Fig. 1). 
Finally, there has been a number of reports exploring NK 
cell-DC cross talk and IL-15 is presented by DCs to NK 
cells to enhance survival[84,85]. Based upon these 
properties, investigators have incorporated IL-15 with or 
onto artificial APCs to expand NK cells[86-88]. IL-15 has 
not been tested in clinical trials yet, but is being 
developed by the NCI for clinical use[2]. Thus, 
exploration of preclinical data is warranted to gain a full 
understanding of the potential impact in the clinic.  
 
IL-15 and preclinical tumor models: While IL-15 
may have direct anti-tumor effects, most studies 
demonstrate that it acts as an adjuvant to enhance anti-
tumor immunity, as was described with IL-2 and IL-7. 
IL-15 is superior to IL-2 in lung adenocarcinoma 
models[89] and can improve immunity against colon 
cancer[90,91]. Moreover, IL-15 treatment increased 
amphoterin (HMGB1) secretion by colon cancer cells, 
which was associated with a depletion of tumor-
associated macrophages[92]. In melanoma, IL-15 can 

mediate regression of established tumor[93] and may 
also enhance tumor-resident CD8+ T cells rather than 
attract newly infiltrated T cells[94]. When combined 
with IL-7 or IL-12, it may even be better than the “gold 
standard” of IL-2 to enhance T cell-mediated killing of 
melanoma[95,96]. NK cells show enhanced killing of 
Ewing sarcoma cells after IL-15 administration[97]. RFA 
of breast tumors combined with intralesional IL-15 
(and IL-7) inhibits tumor development and 
metastasis[53]. IL-15 enhances NK cell cytotoxicity of 
human glioblastoma cells, which are resistant to freshly 
isolated NK cells[98]. IL-15 also can reverse the 
unresponsiveness to the antigen WT-1 in prostate 
cancer lines, leading to restored expansion and gamma 
interferon production of WT1-specific T cells[99]. Thus 
IL-15 may enhance anti-tumor immune responses to a 
wide variety of pediatric and adult malignancies. 
 There have been numerous preclinical studies 
exploring IL-15 as a vaccine adjuvant. Although the 
majority has been in infection models, a number of 
reports of the adjuvant effect of IL-15 have been 
published. One important observation is that IL-15 can 
revert tolerant T cells to become effectors[100]. Adjuvant 
use of IL-15 can enhance vaccine responses to both 
dominant and subdominant, tumor antigens[101]. 
Recently, IL-15 administered after a gene-modified 
vaccine resulted in enhanced anti-tumor activity in a 
murine melanoma model[96]. After allogeneic HSCT, IL-
15 seems to upregulate NK cell activating receptors[102] 
and administration of IL-15 with IL-2 enhanced NK-
DLI-mediated GVL[103]. Importantly, although IL-15 is 
thought to act primarily on mature T cells, it may prove 
to be beneficial after T cell-depleted HSCT[104]. Based on 
the available pre-clinical data, IL-15 would appear to be 
well suited as an adjuvant to cancer vaccines.  
 
Potential limitations of IL-15 therapy: The main 
limitation is that IL-15 is not yet readily available. 
Despite the fact IL-15 was cloned in 1994, rhIL-15 
remains under development by the NCI[2]. Some 
caution should be expressed with IL-15 administration 
in certain tumor types[42,105-108], since there is both 
evidence of IL-15R expression and involvement in 
tumoral progression (Table 2). Normal kidney 
expresses a functional IL-15 receptor[109] and human 
RCC expresses an IL-15R that seems to be directly 
involved in renal tumoral progression[110]. In pediatric 
ALL, high IL-15 expression correlates with CNS 
involvement[111], but those children with high IL-15Ra 
expression have a significantly better probability of 
survival at 5 years[112]. Mice that have transgenic 
overexpression of IL-15 also develop a fatal large 
granular leukemia[113].  
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 Besides directly stimulating tumor growth, IL-15 
may also enhance endogenous immunosuppressive 
pathways. Umbilical cord blood-derived Tregs 
stimulated with IL-2 and IL-15 express higher levels of 
Cytotoxic T Lymphocyte Antigen-4 (CTLA-4), 
glucocorticoid-induced tumor necrosis factor receptor 
superfamily member number 18 (GITR), membrane 
bound Transforming Growth Factor (TGF)-beta and 
FOXp3, leading to higher production of IL-10 and 
TGF-beta[114]. Even Tregs from peripheral blood can be 
generated and sustained partially with IL-15 in the 
absence of IL-2[115,116]. After allogeneic HSCT, trans-
presentation of donor-derived IL-15 is needed for acute 
GVHD but not for GVL effects[117]. Given the described 
effects of IL-15 in sustaining memory T cells, there is 
concern that IL-15 could potentiate GVHD by 
supporting alloreactive memory T cells[118] and IL-15 
has been shown to exacerbate xenogeneic GVHD[119]. 
Lastly there is an extensive literature on the effects of 
IL-15 on total body fat mass as well as promoting 
autoimmunity[69]. As is the case with IL-7, there is great 
promise for enhancing anti-tumor immunity with IL-15, 
but the potential to signal tumors and possibly Tregs, as 
well as to the potential for induction of autoimmunity, 
remain valid concerns. 
 
Interleukin-21: 
Background: IL-21 is homologous to IL-15, but the 
receptor for IL-21 is comprised of a unique subunit 
designated IL-21Ra and the IL-2Rgamma(c)[120,121] and 
there is no evidence that IL-21 requires trans-
presentation for biologic activity. IL-21Ra is expressed 
on most mature lymphocyte populations (Fig. 1). 
Production of IL-21 is restricted to activated CD4+ T 
helper cells[122,123]. IL-21 appears to play important 
roles in modulating responses of lymphocytes to other 
cytokines. While IL-21 alone does not affect receptor 
expression, IL-21 can synergize with IL-2 to up-
regulate several surface receptors, including NKG2A, 
CD25, CD86 and CD69[124]. In certain tumor models 
IL-21-enhanced tumor rejection is NKG2D 
dependent[125], however IL-21 does not support NK 
cells and in fact, has been shown to limit NK cell 
expansion and induce apoptosis[126,127]. IL-21 alone 
does not induce T cell proliferation, however IL-21 can 
enhance the effects of other stimuli of proliferation, 
such as other gamma(c) cytokines[128-130]. IL-21 also has 
a role in B cell proliferation[128] but may uniquely also 
induce B cell apoptosis[131]. IL-21 has also been shown 
to induce IL-10 production in models of lupus, 
suggesting that like IL-2, it can also contribute to 
immunosuppressive activity[132]. Thus, the available 
pre-clinical data would suggest that IL-21 may work 

best in combination with other gamma(c) cytokines in 
the adjuvant setting. 
 
Clinical trials with IL-21: There have been 3 clinical 
trials with IL-21. In a phase I trial of 43 patients with 
metastatic melanoma and RCC, IL-21 was 
administered in two 5-day cycles on days 1 through 5 
and 15-19, of a treatment course. Doses ranged from 3-
100 ug kg−1 dose−1 and an expanded cohort was treated 
at the MTD, estimated to be 30 ug kg−1. Twenty-eight 
patients were treated in the expanded cohort. Twelve 
patients received up to five additional two-cycle 
courses of treatment without cumulative toxicity, 
except for one patient with reversible grade IV 
hepatotoxicity. Antitumor activity was observed in both 
melanoma (1CR, 4%) and RCC (4PR, 21%)[133].  
 In another open-label, two-arm, dose escalation 
phase I trial of IL-21 involving 29 patients with 
metastatic melanoma, dose levels from 1-100 ug kg−1 
were utilized in two parallel treatment regimens: Thrice 
weekly for 6 weeks (3/week) or three cycles of daily 
dosing for 5 days followed by 9 days of rest (5+9). The 
MTD was also 30 ug kg−1 for both regimens. One PR 
was observed after the 3/week regimen and became a 
CR 3 months later[134].  
 In a phase II, open-label, single-arm, two-stage 
trial study of IL-21 (30 ug kg−1 dose−1) was 
administered in 8 week cycles (5+9) in patients with 
metastatic melanoma. No toxicity was observed and the 
best tumor response included 1 CR and 1 PR, both with 
lung metastases[135]. Pharmacodynamic studies show 
that IL-21 affects the serum levels of several cytokines, 
chemokines, acute-phase proteins and cell adhesion 
proteins in a dose-dependent fashion[136]. In the (5+9) 
regimen, IL-21 induced a dose-dependent decrease in 
circulating NK cells and T cells, followed by a return to 
baseline in resting periods. In both CD8+ T cells and 
NK cells, up-regulation of perforin and granzyme B 
mRNA was observed. Finally, cytotoxicity assays 
showed that IL-21 enhanced the ability of NK cells to 
kill sensitive targets ex vivo[137].  
 
Potential antitumor applications of IL-21: IL-21 may 
have direct anti-tumor effects. For example, the 
majority of Chronic Lymphocytic Leukemia (CLL) 
patients have surface IL-21Ra, its expression correlates 
with apoptosis[107] and IL-21 counteracts the 
proliferative and antiapoptotic signals delivered by IL-
15 to CLL B cells[138]. In addition to its pro-apoptotic 
effect, IL-21 promotes NK cell-mediated antibody-
dependent cellular cytotoxicity against rituximab-
coated CLL cells in vitro[139]. While follicular 
lymphoma cells show high levels of IL-21R, addition of 
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the cytokine inhibits proliferation and induced 
apoptosis[140]. Gene-modified melanoma cells that 
express IL-21  grow   slower  than  nonmodified  cells 
in vitro and in vivo[141]. IL-21 has also been shown to 
exert activities on vascular Endothelial Cells (ECs), 
leading to decreased angiogenesis related gene 
expression[142], decreased proliferation and sprouting of 
activated ECs after IL-21 treatment, disturbing vessel 
architecture and negatively affecting vessel outgrowth. 
A murine myeloma cell vaccine containing IL-21 
plasmid DNA induced significant tumor regression and 
prolonged survival[143]. IL-21-secreting RENCA cells 
were efficiently rejected following subcutaneous 
injection into syngeneic mice[144]. Similar results were 
seen in a mouse bladder carcinoma genetically 
modified to express IL-21[145]. Finally, using a 
glioblastoma transduced to express IL-21, 100% of the 
animals rejected the tumor and 76% of these animals 
survived a subsequent tumor re-challenge, while other 
transduced cytokine genes were not as effective[146]. 
 IL-21 may also improve the potency of effector 
cells and other gamma(c) cytokines. For instance, 
administering IL-21 locally to melanoma tumors 
enhanced the therapeutic effects of adoptively 
transferred gp100-specific T cells and was synergistic 
with IL-2, leading to an increased proliferation of local 
CD8+ T cells and decreased accumulation of Tregs 
within the tumor microenvironment[147]. IL-21 also 
improves expansion and effector function of gamma-
delta T cells and reverses expression of inhibitory 
receptors. IL-21 can be combined with IL-2 to enhance 
gamma-delta T cell-mediated antitumor responses[148]. 
Use of IL-21 and IL-2 in culture up-regulate cytokine 
production of activated tumor-draining lymph node 
cells and enhances their therapeutic efficacy against 
established pulmonary metastatic fibrosarcomas. 
Animals treated with combined IL-21 and IL-2 showed 
protective immunity against tumor rechallenge, with 
expansion of memory T cells, antibody production and 
significantly elevated serum levels of IFN-gamma and 
IL-10[149].  
 Besides enhancing IL-2 therapy, IL-21 may also 
improve the effectiveness of other cytokines and 
immunotherapies. Combining alpha interferon and IL-
21 increases NK cell and CD8+ T-cell-mediated 
cytotoxicity in an experimental model of RCC, leading 
to inhibition of tumor growth and an increased 
survival[150]. IL-21 can also significantly augment IL-7-
induced expansion of cytotoxic T cells, possibly by 
preventing the cytokine-induced down-regulation of 
CD127 on antigen-stimulated T cells, results which 
suggest that IL-21 may also play a cooperative role 
with IL-7 in modulating primary CD8+ T-cell 

responses[151]. Several monoclonal antibodies targeting 
TAAs also have improved antitumor activities in mice 
when used in combination with IL-21[152] and human 
NK cells cultured with IL-21 and human breast cancer 
cells coated with trastuzumab showed enhanced lytic 
activity[153]. Lastly, in regards to a pediatric tumor, 
vaccinating with IL-21-gene-modified cells in a 
syngeneic metastatic neuroblastoma model 
demonstrated a reduction of microvessels in late 
metastases from therapeutically vaccinated mice. A role 
of survivin as a tumor antigen was suggested since a 
specific T cell response against this antigen was 
induced[154].   
 Interestingly, the route of IL-21 administration may 
be critical. Whereas both Subcutaneous (SC) and 
Intraperitoneal (IP) routes of IL-21 administration 
significantly inhibit growth of small, established RCC 
and melanoma tumors, only SC therapy significantly 
inhibited the growth of large, established tumors. 
Greater bioavailability and significant drainage of IL-21 
to regional lymph nodes was observed following SC 
administration, which could account for the apparent 
increase in anti-tumor activity. In the RCC model, SC 
administration of IL-21 led to a significantly higher 
density of tumor infiltrating CD8+ T cells compared to 
IP[155].  
 
Limitations to IL-21 therapy: As with the other 
gamma(c) cytokines, IL-21 receptor has been observed 
on multiple tumor types[156-158] and IL-21 has 
contributed to tumoriogenesis (Table 2). IL-21 shows 
divergent effects depending on the cell origin: growth 
stimulation in B cell lymphoma cell lines and adult T 
cell leukemia/lymphoma cell lines but induction of 
apoptosis in follicular lymphoma[140]. IL-21 has also 
been implicated in the pathogenesis of autoimmunity in 
a number of models[159]. As with the other gamma(c) 
cytokines, care in selecting the relevant tumor types as 
well as care in not to enhance Treg activity or cause 
autoimmunity is warranted. 
 

CONCLUSION 
 
 Although initial clinical trials using IL-2 as a 
vaccine adjuvant demonstrated only modest effects in 
the clinic, combination immunotherapies using newer 
gamma(c) cytokines to promote NK cell and T-cell 
expansion and effector function are promising strategies 
to enhance immunotherapy of tumors. A number of 
different vaccine strategies in both preclinical and 
clinical studies have shown potentiation with 
concomitant IL-7, IL-15 and IL-21. These results have 
involved various regimens of adjuvant cytokine 
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therapy, with differences in dosing, time of 
administration and schedule leading to different 
outcomes. Further research is needed to determine the 
most potent vehicles of vaccination as well as effective 
doses and schedules for cytokine delivery. 
Combinations of cytokines may be warranted. Future T 
cell-based immunotherapies will likely combine 
regimens that optimize vaccination and/or adoptive cell 
therapy with growth-promoting cells that can augment 
anti-tumor immunity while limiting autoimmunity 
responses. Caution needs to be exercised that tumors 
themselves are not signaling by these cytokines so that 
relapse is not promoted and patients should be 
monitored for autoimmunity where possible. 
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