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Abstract: Problem statement: T cell-mediated immunosuppression has been obsdoredecades
without clarification as to which factor was respifile for this observation. The identification of
CD4'CD25' regulatory T (Tey cells represents a milestone in the filed of imoiogy and provides
an explanation for T-cell-mediated immunosuppressidthough T cells were originally identified
for their ability to prevent organ-specific autoimne disease in mice, emerging evidence suggests tha
Teg Cells play a pivotal role in tumor immunity andnédbute to tumor growth and progression,
thereby having an important impact on the outcorheamcer patientsApproach: This article
reviewed the medical literature to describe hoyy Gells affect anti-tumor immunity Results: Teq
cells suppressed anti-tumor immunity by inhibitthg effector functions of tumor-specific T cellsdan
NK cells. Importantly, tumor cells played an actirge in recruiting and generating.d cells and
creating a suppressive tumor microenvironment.t&jias to depleted; cells or inhibit their function
had yielded promising results by enhancing antiguimmunity in experimental studies as well as
clinical practice.Conclusion: A better understanding of the pathophysiology @f Tells not only
increased our knowledge in a variety of aspectsnafiunology but also potentially benefited cancer
patients.
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INTRODUCTION identified in 1995 and found to be critical in tbentrol
of self-tolerancll. In this study, Sakaguchét al.””

T cell-mediated immuno-suppression has beerdound that depletion of CDZ5T cells resulted in
observed for decades. In 1970, Gerskbal.™ found  spontaneous development of autoimmune diseases and
that there were populations of bone marrow-derivedeconstitution of CDZCD25  cells prevented these
precursors of antibody-making cells (B cells) whichautoimmune diseases in a dose-dependent fashi@. Th
could not be rendered tolerant to Sheep Red Bloofinding was subsequently confirmed by a study
Cells (SRBC) unless thymus-derived lymphocytes (Tshowing that CDACD25" T cells inhibited both the
cells) were present. In 1972, Gersheinal.””! further  induction and effector function of autoreactive dlls
found that thymocytes were capable of suppressiag t and suggested that CBZD25 T cells represent a
antigen-induced response of other thymocytes withouunique lineage of immunoregulatory cEilsSince then,
the mediation of B cells and defined these thymegyt tremendous effort has been put into investigating
as suppressor T cells. Since then, T-cell-mediate€D4'CD25 T cells in a variety of settings. In this
suppression of immune response has been investigatarticle, we will review recent advances regardihg t
under a variety of pathophysiological conditionsrole of CD4CD25 regulatory T cells in the cancer
including malignant transformation in animal motgl immunological response.
in vitro andin vivo studies. A series of studies by
North et al.! has shown that the acquisition of Characterization of regulatory T cells; Regulatory T
suppressor T cells by a tumor-bearing host iqT.g cells were originally identified as a small subse
responsible for the failure of passively transfdrre of CD4" T cells expressing IL-2 receptax-chain
tumor-sensitized T cells to cause regression of th¢CD25) and represent approximately 5-10% of
tumor. The attempt to isolate suppressor T celisgus peripheral CD4 T cells in both mice and humans. In
different methods was unsuccessful simply due to addition to sustained high surface expression o2&D
lack of phenotypic characterization in this sub3é¢tis  cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4
hurdle persisted until a subset of CD& cells and glucocorticoid-induced TNFR-related protein
expressing IL-2 receptora-chain (CD25) were (GITR) expression are features of suppressivg T
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celld®®. To date, it is generally believed that CDIZ}eg Teg Cells and is now used as a specific marker fgg T
subsets include naturally occurring.gl cells and cells.
peripherally induced [, cells. Naturally occurring g
cells have a phenotype as originally identifiedseas Regulatory property of T,e cells: CD4ACD25 Tieq
a distinct lineage from the thymus and migrate intocells have been demonstrated to suppress varipes ty
blood and peripheral tissues. ThesggTcells are of immune responses, including autoimmune,
anergicin vitro and do not proliferate in response to T- antimicrobial and antitumor immune responses by
cell receptor (TCR) stimulation. This anergy can beinhibiting T cell, B cells and NK cells. & cells were
overcome by the addition of high doses of exogenousriginally identified as a subset of CD4T cells
IL-2 or the use of mature Dendritic Cells (DCs) assuppressing the proliferation and cytokine proauctf
antigen-presenting cells. In addition to naturallyconventional CD4CD25 T cells. Further studies found
occurring Teg cells, Tey cells can be induced in the that T4 cells are also able to suppress the proliferation,
periphery under particular conditions of antigeniccytokine production and granule secretion of CO8
stimulatiod®*Y. The presence of induciblged cells in - cells. This suppression results in the preventién o
the periphery is supported by the observation inltad CD8' T cell-mediated graft rejectiéfy?Y, inhibition of
mice that depletion of J cells by means of an anti- CD8" T  cell-mediated  skin inflammatiéA,
CD25 monoclonal antibody and thymectomy ismaintenance of persistent hepatitis C virus inteta?
followed by complete reconstitution within 48 d&§)s  as well as elimination of tumor cytotoxicity by CD8
Studies have revealed that several molecules ancelld®”.
signaling pathways are involved in inducing the In addition to the suppression of T cellsegTells
development of Ty cells in the periphery. These can also suppress proliferation and immunoglobulin
include glucosteroids!, estrogef”, TGFBPY and  production of CD19 B cells. Firstly, T, cells can
IL-2%% as well as co-stimulatory molecules such asndirectly inhibit the B cell immunoglobulin respss
CD80/CD86™! and CD78%. Along with naturally by suppressing CD57GC-Ty cells, a subset of cells
occurring Teg cells, peripherally induced,d cells play  specifically present within GCs with highly efficie T
an important role in suppressing the immune respons helper function to stimulate B cells to produce
especially the anti-tumor immune response. immunoglobulin, thereby interfering with GGsTcell-
stimulated B cell immunoglobulin productioh
Foxp3 identification: The forkhead/winged helix Secondly, Jeqcells can also directly suppress the B cell
transcription factor family member Foxp3 (forkhead immunoglobulin response without having to suppress
box P3) plays a critical role in suppression of inma Ty cells. Under this circumstance g cells directly
system responses and inhibition of Foxp3 functionsuppress B cell class switch recombination andether
results in significant immune dysregulation asregulate B cell immunoglobulin productiéh
illustrated by the following findings. A mutation the In addition to suppressing adaptive immune cells,
gene Foxp3 carried by the mutant mouse strain yscurfT g Cells also have an impact on innate immune cills.
results in a CD4T cell-mediated lymphoproliferative has been reported thaggcells inhibit the cytotoxicity
disease. Mutations in the human homolog of Foxp®f CD3CD56 NK cell”*! and steer monocyte
lead to onset of a human genetic disease calleduiram differentiation ~ toward  alternatively  activated
dysregulation, polyendocrinopathy, enteropathy, X-macrophages (AAM), a subset of cells with immune
linked syndrome (IPEX) characterized by globalregulatory properties that contribute to tumor
immune dysregulation with autoimmunity. From thesepromotior”..
clinical observations, three stud©3® have The mechanisms mediating these
independently shown that Foxp3 is specificallyimmunosuppressive effects still remain to be fully
expressed in J, cells and is necessary foredcell ~ understood. Several studies suggest that the
development and function. It has been convincinglyimmunosuppression is cell contact-dependent, while
shown that ectopic expression of Foxp3 in D@25  other studies demonstrate that suppression canbalso
naive T cells by retroviral gene transfer can conve cell contact-independent. Cell contact-dependent
them to natural [glike cells functionally and mechanisms represent circumstances in whigcéll-
phenotypically. Transgenic mice lacking Foxp3 lack mediated suppression cannot be abrogated by
cells with regulatory function and have dysregulafe neutralizing soluble inhibitory cytokines angeglcells
cell proliferation resulting in a severe autoimmunecultured with CDACD25 T cells in a transwell system
disease. These results indicated that Foxp3 isstema are unable to suppress the proliferation of respond
transcriptional factor for development and functioh  celld*>* In this regard, membrane-bound T@Mas

18



Am. J. Immunol., 5 (1): 17-28, 2009

been shown to play an important role ingTcell-  tumor-mediated development ofdcells by converting
mediated, cell contact-dependent suppression afidl' a naive T cells into L4 cells.
B cells given that L4 cells express high levels of TGF- The decision of naive CDA4T cells to become

B on the cell surfa¢® and Teg cells mediate Twl7 or T4 cell has important consequences in the
immunosuppression via cell surface presentation o$uccess of an immune response and the progreskion o
TGFB to TGFSR on target cells. In contrast, soluble disease. CD4 T cell infiltration into tissue occurs
factors are involved in I, cell-mediated cell contact- whenever pathological changes are initiated. These
independent mechanism. In this regard, the proodcti pathological changes include infection, autoimmpunit
of the immunosuppressive cytokines IL-10 and TgF- and malignant cell transformation. Interestingly,
preferential IL-2 consumption by CD@D25" T infiltrating CD4™ T cells take distinct differentiation
cells, or direct lysis of T cells via perforin and directions in different pathological scenarioglT cells

granzymes are involved in suppressive effects gf T and Teg Cells are prototypical subsets of CDR cells
cells. For examp|e’ Grossmath a|_[34'35] showed that whose |_nf|Itrat|0n in tissues with each of those
human peripherally induced and naturally occuriipg ~ Pathological changes represents the result of 'CD4
cells express granzyme-B upon activation and trese  Cell differentiation affected by different pathoioal
Ty cells display perforin-dependent cytotoxicity changes. CD4 T cells migrating into tissue with
against autologous target cells, including actidate autoimmune disease adopt a pro-inflammatory
CD4" and CD8 T cells. This finding has been Phenotype while CD4T cells invading into the tissues
confirmed by other studies showing perforin-graneym With malignant disease adopt an inhibitory phenetyp
B pathway can also be served as a Suppressiv-ghe mechanism responSible for the distinct

mechanism for [, cells in the murine systdifi®’, differentiation direction of CD4 T cells is largely
unknown.

Reciprocal regulation of T, and Ty17: T4 cells and
T-helper () cells constitute two opposing immune
responses. Newly-identified IL-17-secreting CD4
helper T cells expand the family ofyTcells into 3
major lineages, {1, T42 and TF17 cell$®*]
CD4'CD25" T, cells form the other major lineage of
cb4' T celld T,17 and Teg cells are critically
involved in the modulation of inflammation inducbky
either autoimmunity or bacterial infectionyI7 and
Teg Cells develop from precursor naive CDR cells.
The selective differentiation of precursor CDB cells
into Tyl7 or Tq cells is established during the initial
priming of these cells and is influenced by a ugriaf
extracellular factors, such as the cytokine envirent,
the dose of antigen and the source of costimulatio
Among these, the most effective polarizing factothie
cytokine environment. The presence of TEplus IL-

Treg Cells in the tumor microenvironment: Although
infiltration by CTL and T cells as well as other
immune cells in tumor microenvironment is commonly
seen, spontaneous clearance of established turyors b
endogenous immune mechanisms is rare. The attempts
at using immunotherapy to supplement essential
immunogenic elements to boost tumor-specific
immunity have shown limited clinical benefit. The
generally accepted reason is that tumor cells devel
diverse strategies that escape tumor-specific inityun

It has been shown that immunosuppression exidtsein
tumor microenvironment and contributes to the
progression of cancer. o} cells have profound
inhibitory properties to suppress the function féetor

™ cells and account for a significant proportiontlog
immunosuppression in the tumor microenvironment.
. o ) . A Indeed, emerging evidence suggests that cells are

6 during activation drives the differentiation of jo oed in the regulation of antitumc%t immunity.
precursor CDAT cells into F;,17 cells in mice, whereas Consistent with this concept, experimental deptetb

the presence of TGB-alone promotes differentiation Treg Cells in mice with tumors improves immune-

of Treq cells. Unlike mice, IL-B (but not TGFB) plus  mediated tumor clearance and enhances the respmnse
IL-6 have been demonstrated to drive the diffeedith  jmmune-based therapy..J cells have been shown to
of Tul7 cells in humans. The differentiation of gyppress tumor-specific T-cell immunity and therefo
precursor CD4 T cells into Teg or Tul7 cells is may contribute to the progression of human tumors.

in the generation of I, cells, which provides an yequced survival in patients with various maligriesc
explanation for the observation that elevated numbe

of Tgcells have been found in many types of cancersThe  number  of Ty Cels in  tumor
It appears that TGB; secreted by the tumor itself or microenvironment: Since Wooet al.*Y reported in
tumor-stimulated myeloid cells, plays a centrabrol 2001 that CD4CD25 T cells exist in significant
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numbers in tumor tissue from patients with earBgst tumor site. A study by Curiett al.*® showed that
non-small cell lung cancer or later-stage ovarincer, ovarian tumor Jq cells express functional CCR4 and
a number of studies have consistently found thamigrate toward CCL22 in the tumor microenvironment.
CD4'CD25" T cells as well as COFoxp3 T cells are  They showed that cancer cells and tumor-associated
highly represented in tumor tissue (tumor massesnacrophages are the source of CCL22. These ovarian
ascites, draining lymph nodes and spleen) andumor Te4cells are functionally suppressive and able to
peripheral blood from patients with a wide varietiy block tumor-specific immunity, foster tumor growth
cancers. CDZCD25' T cells from tumor-bearing mice and predict poor patient survi¥dl. This finding has
and cancer patients show similar Foxp3 expresamh a been also observed in other malignancies such@alIB-
suppressive activityin vitro when compared to NHLPY Hodgkin lymphom&" and gastric cancé?.
naturally occurring &g cells. Elevated numbers ofJ  In addition to the CCR4-CCL22 pair, other chemokine
cells correlate with disease stage, histologicyqds or  and receptors have been also found to play an iauor
overall survival of cancer patients. For exampléhais  role in recruiting Teq cells into tumors. In pancreatic
been found that I, cells are increased in patients with cancer patients, intratumoraled cells expressed high-
advanced-stage breast cancer and that 'HBRt not level of CCR5 and respond to CCL5 produced by
HER, tumors account for this incre&ék Although it  pancreatic cancer céffd. Interestingly, disruption of
has been shown that the number ofgTcells is CCR5-dependent homing of] cells by abolishing
associated with overall survival in most studiégré is CCL5 expression in pancreatic tumor cells or bloeka
no agreement regarding whether elevated number @@CR5 expression on intratumoraleglcells by CCR5
Treg Cells predicts a poor or favorable outcome for allantagonists inhibits tumor growth in a murine moaofel
cancer patients. It appears that high numbers gf T pancreatic cancgf. Furthermore, another study found
cells are associated with a poor prognosis in ptgtie that IL-2 stimulates CXCR4 expression opgTcells
with most types of solid tumors. In contrast, highl and enables d;cells to migrate toward CXCL12 in the
representative I, cells correlate with a favorable tumor microenvironment thereby increasinggTcell
outcome in some patients with hematologicalaccumulatioft”.
malignancie$>“*”. The reason for this discrepancy is A second mechanism for the increased number of
unknown. In hematological malignancies, malignant T intratumoral Ty cells is the expansion arde novo
or B, or myeloid cells are the target ofelcells. generation of Ly cells within tumors. As discussed
Because the malignant cells are immune cellg,CElls  above, naturally occurring,d cells are anergic and do
may interact differently with these cells than with not proliferate in response to TCR stimulation gelén
malignant cells in solid tumors. In fact, it hasebe the presence of IL-2. However, naturally occurring,
shown that Tq cells directly suppress B cell-dependentexpansion has been reported in Hodgkin lymphoma and
immunoglobulin  production and class switch myeloma. In Hodgkin lymphoman vitro pre-exposure
recombination, without having to suppress delld*® of PBMCs to a Hodgkin lymphoma cell line (HRS)
and can induce apoptosis of activated B cells k& t supernatant significantly increased the expansidn.g
upregulation of perforin and granzyri®s T,y cells  celld®, which may explain the elevated number @f T
may therefore directly suppress malignant cells incells in Hodgkin lymphoma patief. In myeloma,
hematologic malignancies and this may explainar,p monocyte-derived DCs maintained and expanded
why the increased percentage of tumor infiltrafing, ~ CD4"Foxp3 T cells undeiin vitro culture conditions.
cells predicts a better overall survival in patiemtith  Furthermore, it has been found that injection ofsDC
hematological malignancies. matured by inflammatory cytokines into patientshwit
myeloma in a clinical trial results in a rapid erpen
Recruitment and generation of intratumoral T.q  Of T Cells seen within 1 week after DC injectfdh
cells: Several mechanisms that may explain theThese observations suggest that naturally occuffing
elevated number of & cells in the tumor cells can be expanded within the tumor
microenvironment have been proposed. Firstly,; T microenvironment. In addition to expansion 0fygT
cells express a number of chemokine receptors asich cells, de novo generation of T, cells is another
CCR2, CCR4, CCR5, CCR7, CCR8 and CXCR4 andmportant mechanism and has been reported in devera
are able to migrate in response to a variety otypes of tumors. The tumor microenvironment is dble
chemokines such as CCL22, CCL17, CCL1 andnduce the development ofJcells through converting
CCL4*8. Among those chemokines and chemokineCD4'CD25 T  cells into CDACD25 T cells.
receptors, CCR4 and CCL22 are particularly impdrtanValzasina et al.®® observed increased numbers of
in terms of their role in attracting,cf cells into the CD4'CD25' cells in spleen and draining lymph nodes
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of tumor-bearing mice and significant recovery af;T CD4" T-cell clones isolated from a melanoma. One of
cells in thymectomized mice with depletion of CDZ5  the clones had a phenotype similar tg, Tells in that
cells using an anti-CD25 antibody, suggesting tumothe cells expressed CD25, GITR and Foxp3 and
development in mice led tode novo generation of [L;  recognized a tumor-specific antigen and this cloas
cells. Another study”! described a subset of tumor- shown to inhibit the proliferation of conventior@D4"
induced CD25- regulatory T cells (TNL) in mice that T cells. This result demonstrated thateyTcells
arise after the mice are inoculated with lymphoma Brecognizing tumor antigens can be generataditro. In
cells. These TME, have increased expression of Foxp3ovarian cancer, it has been shown that tumgy cells
and IL-10, develop independently of pre-existingdisabled tumor antigen-specific T cell immunityvivo
natural T cells and maintain suppressive propertiesand in turn allow tumor growty..
long term in the absence of antigen stimulation. In
conjunction with naturally occurring,d cells, TMTey  Reversal and enhancement of function of T, cells:
induced tumor-specific CD4 T cell tolerance. In The suppressive effect ofef cells is a major obstacle
patients with B-cell NHL, several studi#$°® have to developing effective cancer immunotherapy.
shown that lymphoma B cells induce Foxp3 expressiomlthough it has been shown that depletion qf Tells
in intratumoral CD3ACD25 T cells and participate in led to inhibition and rejection of tumor growth in
the generation of [y cells, which may account for animal models and an increased anti-tumor immunity
elevated number of g cells seen in B-cell NHL. cancer patients in some studiesey Tdepletion with

A number of additional mechanisms have beertherapies targeting CD25 has not consistently iwgado
proposed to explain how.] cells are generated in the the clinical outcome and overall survival of cancer
tumor microenvironment. Given that TG¥Fis able to  patients. At least two reasons have been propased t
convert CDACD25 T cells into Teq cells and tumor explain this. One explanation is thatglcell depletion
cells are a rich source of TG%-TGF{ can be the key promptly induces conversion of peripheral precugsor
factor contributing to tumor-mediated conversion ofinto Ty cells and the number of . cells will be
normal CD4 T cells into Teg Cells. Indeed, several restored over a period of time. Second is that some
studies have shown that tumor-derived TERlayed CD4'CD25 T cells in the tumor_mi_croenvironment aIS(_)
an important role in the generation ofglcells in the ~ €xpress Foxp3 and possess similar regulatory fmcti
tumor microenvironmefi£®3. In addition, our group to naturally occurring [y cells. Therefore, while
has found that CD70-expressing lymphoma B celidargeting CDACD25" T cells may augment tumor-
induced Foxp3 expression in intratumoral COB25  Specific immune responses, residual COB25Foxp3
T cells and interaction between CD27-CD70 wasCells capable of mediating immune suppression would
involved in |ymph0ma B cell-mediated generation Ofstlll remain and would continue to inhibit the Hest
Treg celld'®. Although conversion of CO€D25 T  anti-tumor response. . o
cells to T, cells has been described as a physiological  Inability of CD25-depletion to eliminate theeJ
process that maintains the peripheraﬁlg 'popu|ati0n, cells in the tumor microenvironment has led to eosd
the data would suggest that this process is used Wfrategy to reversef cell function. Several groups
tumor cells to evade immune surveillance. have reported that the function ofeglcells can be

reversed by Toll-Like Receptor (TLRs) ligation by

Specificity of intratumoral T,e cells Most CD4 T CpG*"*  OX40 _costimulatigﬁg], or functional
cells persist as an antigen-specific subset, bist iiot ~ blockade of galactin® or -1d". Toll-like receptors
clear whether antigen-specific.J cells exist. The control activation of adaptive immune responses by
observation that tumor cells are able to induce thé\ntigen-Presenting Cells (APCs) such as DCs. Logati
development of [, cells suggests thatJ cells may Of TLRs on DCs overcomes CD@D25 T cell-
recognize tumor antigens and may be tumor-spe(ﬁﬁc_ mediated SuppreSSIEH. Further Study identified that it
has been shown that specific recognition of tumors TLR8 that is responsible for TLR-mediated reaérs
antigen led to differentiation of a subset of Cicells ~ 0f CD4' regulatory T cell functioff’. OX40 belongs to
into cells capable of suppressing naive apt &fector the TNF receptor family and co-stimulation of OXi40
cells. These CD4T cells have increased expression ofVivo has been shown to prevent tolerance induction and
Foxp3 and IL-10 with suppressive activity and wereto reverse lymphocyte hyporesponsiveness in
described as tumor-induced regulatory T &8lls experimental tolerogenic systems. Triggering OX40
Further study showed that thie novo generation of Profoundly inhibited Foxp3 gene expression and

Teg cells contributed to tumor-specific T cell abrogated the ability of naturally arising FOXpBeg
toleranc€®%. Wang et al.®®% generated a panel of cells to suppress T effector cells without affegttheir
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proliferation or survivd{®. Importantly, OX40 prevented accumulation ofef cells. This depletion was
costimulation of T effector cells prevented theaccompanied by increased Ag-specific immunity
induction of new inducible FOXp3Teg celld®? and against the neu protein, a self Ag and markedly
facilitated tumor rejectidff’. In contrast to reversal of inhibited tumor growth of breast cancers in neu-
Teq Cell function, the function of I, cells can also be transgenic mice,
enhanced. It has been shown that tumor-derived The role of CDACD25 Treg Cells in human tumor
prostaglandin E2 induced Foxp3 expression andjrowth is more difficult to address simply because
enhanced the suppressive activity of COB25' human studies are more restricted and are largely
regulatory  cells.  Furthermore, inhibition  of observational in nature. Highly-representativg, Tells
cyclooxygenase-2 reduced.gdcell activity and tumor have been consistently found in tissues and pemphe
burdenin vivo®. The ability of these strategies to blood from patients with a wide variety of types of
enhance or suppressed cell function may provide cancers. These tumor.J cells are functional and
future options for modulating the antitumor immune inhibit tumor-specific T cell immunity and contritauto
response. growth of human tumorin vivo?*“*®4 Using biopsy
Tieg Cells, tumor immunity and tumor growth: specimens from B-cell NHL, we have found thag, T
Before the recent expansion of interest and pufiica  cells are highly-represented in biopsy specimerss an
in Teq cells, there was already published evidence thastrongly inhibit the functions of CD4and CD8
suppressor T cells play a role in tumor growth.ibgir  effector T cells, resulting in decreased lysis afman
1970s and 1980s, a number of studies revealed th&tHL B cells. Our previous studies have shown that
tumor growth was influenced by suppressor TNHL B cells play an active role in.J cell-mediated
celld’*"® These studies observed that depletion ofnhibition of the immune response by recruitingunat
suppressor T cells led to an inhibition of tumoowth  occurring T cells and also generating induciblegT
and that activation of suppressor T cells resuited cells in the tumor sit&>%.
enhanced tumor growth in mouse models. Importantly,
tumor growth favored the generation of suppressor T, cells and therapeutic approaches in cancer
cells. These results indicated that T-cell-mediatecpatients: Studies in animal models have convincingly
immunosuppression had an impact on tumor growth. shown that depletion of & cells alone or combined
Since the identification of CD@D25" T, cells,  with other therapeutical reagents results in ekxvat
the role of this subset in tumor-immunity has drawnlevels of anti-tumor immunity and longer survivdl o
great interest. Although 4, cells were originally inoculated mice. Recent human cancer trials suggest
identified for their ability to prevent organ-spici that depletion of Eq cells can be clinically beneficial.
auto-immune disease in mice, emerging evidenc&everal studies observed that administration of
suggests that .y cells are able to suppress tumor-dinileukin diftitox (Ontak) in cancer patients
specific T-cell immunity thereby contributing toeth (melanoma, renal, ovarian, breast, squamous-cetj lu
progression of tumorslin vitro studies consistently carcinoma) effectively depletes.J cells and leads to
showed that [, cells isolated from tumor tissues an increased tumor-specific Cb4 and CDS8
exhibited profound inhibition of autologous responseé® 8 Studies showing that administration of
intratumoral CD4 and CD8 T cells as well as NK denileukin diftitox depletes CD€D25""Foxp3 T,
cells. In vivo studies showed that depletion of cells and enhances T-cell proliferation in normal
CD4'CD25 T cells augmented the generation ofdonor$™®¥ have significant implications for cancer
specific immune T cells in tumor-draining lymph esd vaccine strategies. Based on these observations,
and facilitated immune responses to poorlyMorseet al.®® performed a phase 1 clinical trial of a
immunogenic murine tumdf&®, These T4 cells DC vaccine modified to express carcinoembryonic
abrogate CD8 T cell-mediated tumor rejection by antigen (CEA), which was administered to patierits w
specifically suppressing the cytotoxicity of expadd advanced CEA-expressing malignancies (colorectal
CD8' T celld®?. In addition, release of suppression ofcancer or breast cancer) after denileukin diftitox
NK cell function by depletion of J, cells is another administration in 2 different schedules (before finst
mechanism accounting for tumor regression. A stady dose of vaccine and before all 4 doses of the wagci
Smythet al.?” showed that NKG2D-mediated NK cell They found that depletion of g, cells by denileukin
cytotoxicity is suppressed by.§ cells and depletion of diftitox specifically enhanced the T-cell resportse
Treq Cells and IL-12 therapy synergize to promote NKcarcinoembryonic antigen CEA. The importance of
cell-mediated tumor suppression in mice. The IL-2T.q4 cells in vaccine therapy was further shown in a
immunotoxin, denileukin  diftitox, depleted and pilot study’” of 18 previously treated patients with
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measurable indolent NHL. Patients were injecteddown-regulates STAT3, resulting in up-regulationgyf,
subcutaneously with DCs loaded with autologous-heatcells and inhibition of IL-17 expressing lymphocytes in
shocked and UVC—treated tumor cells. The vaccinatio melanom8®. These observations suggest that selective
was well tolerated without autoimmune reactions andnhibition of IFN-a and IL-2-mediated enhancement of
resulted in significant objective clinical resposise TregCells might be of therapeutic benefit.

Interestingly, in patients with complete respondes

number of CDACD25Foxp3+ T cells significantly CONCLUSION
decreased 6 months after vaccination, while thelb@arm _ o o
of CD4'CD25Foxp3 T, cells did not change in Experimental and clinical findings have

patients with no response to the vaccine. In patien demonstrated that profound immunosuppression is
with a partial response, decreaseg, Tells recovered present in the tumor microenvironment and thatcells

12 months after vaccination. The finding that cdai are a major factor contributing to  this
responses were associated with a reduction ifimmunosuppressive tumor microenvironment.
CD4'CD25Foxp3 T, cells suggests that the Significant interest has recently focused on themise
decreased number of.J cells contributed to favorable that tumors may subvert tumor immunity by promoting
clinical responses to the vaccine. the expansion, recruitment and activation @f; Tells.

A number of anti-cancer drugs have been shown téigure 1 provides a schematic diagram of tumor-
regulate Ty cells. Low dose administration of mediated generation ofcfcells and the consequence of
cyclophosphamide, a chemotherapy agent witlelevated T4 cells in tumor microenvironment. Basically,
tumoricidal activity, has been shown to selectivelytumor cells induce the generation ofglcells through
deplete 'l;g% cells thereby enhancing antitumor both cell contact-dependent and cell contact-inddeet
immunity®-*?.  In contrast, rapamycin, a small mechanisms. Soluble proteins such as PGFroduced
molecule that inhibits signal transduction, h_as rbee by tumor cells promote the proliferation of.gicells and
shown to expand (I cells thereby suppressing the jnquce the conversion of naive CD25 T cells into
immune response. Recombinant IL-2 induces chmcalrreg cells. Tumor cells also express surface proteioh s

responses in malignant melanoma and renal cells'cpgo/cD86 or CD70 and interact with naive dells
carcinoma, suggesting that IL-2 therapy predomigant a cell contact-dependent manner to convert theise ifa

induces immune activation. But response rates i IL. cells into Teg cells. In addition to tumor cells, dendritic
are low and some studies have shown reduced vaccing

responses with IL-2 therapy. Studies that monitdrggl giltljsc%rr?tr?ll)su?eag Gj;r;{g g?er\]/\;?(rat dnga\:ﬁbzéensé_gﬁg ésl:eell(;sn
cells during immune reconstitution in individualstiw 4

cancer who did or did not receive IL-2 therapy fbun in the tumor microenvironment. Elevated numbers of
that CDACD25"% cells underwent homeostatic !reo Cells participate in creating an immunosuppressive
peripheral expansion during immune reconstitutiod a {UMOr microenvironment by suppressing the innaté an
in lymphopenic individuals receiving IL-2, the.Jcell ~ adaptive immune responses thereby contributindnéo t
compartment was markedly increa[gg?f]. These studies Progression of tumors. In contrast to inducing the
suggest that IL-2 and lymphopenia are primarygeneration of &g cells, tumor cells may also inhibit the
modulators of CDZCD25 T,y cell homeostasis. In development of infl_ammatory immune cells such as
addition to IL-2, IFNe2b up-regulates STAT5 and Tul7 cells. Along with elevated number ofTells,
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an insufficient number of J17 cells contribute to the 10.
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inadequate immune response and the limited antbtum
immunity. Strategies that deplete or inhibitgTcells

and thereby promote a competent immune response in
the tumor microenvironment should be the goal in
future immunotherapeutic studies in cancer patients
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