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Abstract: Problem statement: In this article we considered pairs bootstrap through a truncated 
geometric bootstrap method for stationary time series data. Construction of valid inferential procedures 
through the estimates of standard error, coefficient of variation and other measures of statistical 
precision such as bootstrap confidence interval were considered. The method was used to confirm the 
correlation between Silicon Oxide (SiO2) and Aluminum Oxide (Al2O3) from a geological data. A 
typical problem is that can these components exist together or they are mutually exclusive. 
Approach: We attempt to solve these problems through bootstrap approach to correlation analysis and 
show that pair bootstrap method through truncated geometric bootstrap method for stationary process 
revealed the correlation coefficient between Silicon Oxide (SiO2) and Aluminum Oxide (Al2O3) from 
the same geological field. Results: The computed measure of statistical precisions such as standard 
error, coefficient of variation and bootstrap-t confidence interval revealed the correlation analysis of 
the bivariate stochastic processes of SiO2 and Al2O3 components from the same geological field. 
Conclusion: The correlation analysis of the bivariate stochastic process of SiO2 and Al2O3 components 
through bootstrap method discussed in this study revealed that the correlation coefficients are negative 
and bootstrap confidence intervals are negatively skewed for all bootstrap replicates. This implies that 
as one component increases, the other component decreases, which means that the two components are 
mutually exclusive and the abundance of one mineral prevents the other in the same oil reservoir of the 
same geological field.  
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INTRODUCTION 

 
 Since its introduction by Efron (1979), the 
bootstrap has become a method of choice for assessing 
uncertainty in a vast range domain. One of the most 
often used statistical tools, not only in geosciences, is 
Pearson’s correlation coefficient rxy, which measures 
the degree of (linear) interrelation between two sample 
(data size n) variables, x and y. Quite frequently x and y 
are measured over time and a typical aim in correlation 
analysis of such bivariate time series is to value the 
evidence for an influence of one time-dependent 
variable on the other. Mudelsee (2003) analyzed the 
influence of solar activity on monsoon rainfall during 
early Holocene. Since geological interpretation of a 
detected correlation requires knowledge about the 
statistical precision, a confidence interval for rxy or at 
least, a test of the hypothesis “population correlation 
coefficient rxy = 0” is required.  
 For a typical geological or climatologically time 
series, estimation of a confidence interval for rxy is 
hindered by positive serial dependence; Wilks (1995) 

and Storch and Zwiers (2001). The stationary bootstrap 
of Politis and Romano (1994) and the moving block 
bootstrap of Kunsch (1989) are obvious methods to 
solve these problems.  
 The present study employs the use of pairs 
bootstrap through truncated geometric bootstrap 
method of Olatayo (2010), with block length 
proportional to the estimated time dependent of the 
data. The study is based on the use of some chemical 
components of the soil to determine the presence or the 
abundance of oil in an area under exploration. The field 
extraction is done by digging and a sample of sand is 
collected and experiments carried out to determine the 
components in it, their quantity and the type of soil it is 
during chemostratigraphy study. These components are 
the principal oxide of sand or sand stone, which is SiO2 
or silicon oxide and the principle oxide of clay or sill 
stone which is Al2O3 or Aluminum oxide. The point is 
that the bulk of oil reservoir rocks in Nigeria 
sedimentary basins are sandstone and shale a product of 
sill stone or mud stone Olanrewaju (2007) and 
Nwachukwu (2007). The geological data from the core 
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of about 6,000 m is from chemostratigraphic data from 
Batan well at 30 m regular interval, Sofowora (2002). A 
typical problem is that, can these components exist 
together or they are mutually exclusive. We attempt to 
solve the problem through bootstrap approach to 
correlation analysis.  
 

MATERIALS AND METHODS 
 
 Suppose {Xt, Yt} are two interacting time series. 
Then we can regard this pair of time series as 
realization of a hypothetical population of pairs of time 
series, called a bivariate stochastic process {Xt, Yt}. we 
shall assume that the data are read off at equispaced 
times yielding a pair of discrete time series, generated 
by a discrete bivariate process and that values of the 
time series at times to+h, t0+2h, …, t0+Nh are denoted by 
(X t, Yt), (X2, Y2), …, (XN, YN). In general, a bivariate 
stochastic process {Xt, Yt} need not be stationary, 
however we assume that the appropriately differenced 
process {xt, yt} is stationary. If in addition, it is 
assumed that a bivariate process is Gaussian or Normal, 
then it is uniquely characterized matrix, Box and 
Jenkins (1976). Therefore we can analyze by viewing 
them as being causally related.  
 The cross covariance function between Xt and Yt at 
lag k is Eq. 1: 
 

( ) [ ]t xxy t k yk E x y k  0,  1,  2,+ γ = − µ − µ = …   (1) 

 
 The function γxy(k) is called the cross covariance 
function of the bivariate process.  
Similarly Eq. 2: 
  

( ) ( )xy
xy

x y

k
k k 0, 1, 2,...

γ
ρ = = ± ±

γ γ
 (2) 

 
 Is called the  correlation coefficient at lag k and the 
function ρxy(k), is the cross correlation function of the 
bivariate process. 

 
Pairs bootstrap: Resampling from the matrix with 
typical row {Xt, Yt} whereby we will no longer 
condition on the Xt since each bootstrap sample now 
has a different value. First, we randomly select n pairs 
of samples with replacement from the original 
observation{ } { }1 1

1 1 t tx y ,..., x y , where t = 1… n. The 

resulting bootstrap sample is{ } { }'* * '* *
1 1 t tx y ,..., x y . The pair 

bootstrap is valid when the errors display 

heteroscedasticity of unknown form; it works even for 
dynamic models, Freedman (1984). 
 The vicariate stochastic data where xt is the SiO2 
silicon oxide while yt is the Al2O3 Aluminum oxide. 
Using pair bootstrap with truncated geometric 
distributed block length of Olatayo (2010), the 
consecutive pairs are generated as follows: 

Let ( ) ( ){ } ( ) ( ){ }*
i i j jx , y x , y=  with probability (1-p), with p 

small, the successor of ( ) ( ){ }* *
i ix , y  is taken to be the 

Successor of ( ) ( )( )j 1 j 1x , y+ +  and with probability P, 

( ) ( )( )j 1 j 1x , y+ +  is a randomly selected pair of the original 

time series, that is, ( ) ( )( ) ( ) ( )
* * * *

i 1 i 1 j 1 j` 1x , y x , y+ + + +
 =
 

and 

with probability P, ( ) ( )( )* *
i 1 i 1x , y+ + is a randomly selected 

pair of the original vicariate time series. Next, from the 
resample data the bootstrap replicate, *

xyγ is calculated 

which is repeated until B replicates exist. That is, 
independent repetitions of the bootstrap sampling 
process give bootstrap replications 

( ) ( ) ( )* *
xy xy yx1 , 2 , ..., Bγ γ γ respectively. We then compute 

the correlation coeficient, standard error, coefficient of 
variation and bootstrap-t confidence interval as a 
measure of statistical precision Olatayo et al. (2010). 
 

RESULTS  
 
 The summary of our findings on the performance 
of a pair bootstrap through the truncated geometric 
bootstrap method as described in section 2 and 
bootstrap replicates of (B = 50, 100 and 250) with 
measures of statistical precision of correlation 
coefficient from a geological data is presented. 
 The  Table 1 reveals the standard error SeB for 
correlation coefficient between the two bivariate 
variables. The correlation coefficient and Coefficient of 
Variation (C.V.) at each bootstrap replicates are 
negative meaning that as one mineral that is SiO2 is 
increasing the other one Al2O3 is decreasing. 
 The Confidence Interval (CI), following the 
prescribed bootstrap t-confidence interval of Olatayo et al. 
(2010) is presented in Table 2 above. It revealed that 
the distribution of the correlation coefficient between 
the two variables is negatively skewed. 
 
Table 1: Summary statistics for bootstrap correlation coefficient 
B ρxy SeB C.V. 
50 -0.5213 0.0614 -0.1178 
100 -0.5181 0.0688 -0.1328 
250 -0.4642 0.0725 -0.1562 
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Table 2: Summary Statistics of 95% bootstrap confidence interval for 
bootstrap correlation coefficient 

B ρxy  SeB 95% C.I. 
50 -0.5213 0.0614 [-0.6447, -0.3980] 
100 -0.5181 0.0688 [-0.6546, -0.3816] 
250 -0.4642 0.0725 [-0.6063, -0.3199] 

 
CONCLUSION 

 
 The correlation analysis of the vicariate stochastic 
process of SiO2 and Al2O3 components through 
bootstrap method discussed in this study revealed that 
the correlation coefficient is negative for all bootstrap B 
replicates which implies that as one variable increases 
the other decrease, that is, the two components SiO2 
and Al2O3 are mutually exclusive and the abundance of 
one mineral prevents the other in the same oil reservoir 
of the same geological field.  
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