
 

 
© 2017 Kassahun Birhanu Tadesse, Megersa Olumana Dinka, Tena Alamirew and Semu Ayalew Moges. This open access 

article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license. 

American Journal of Environmental Sciences 

 

 

Case Reports 

Evaluation of Seasonal Autoregressive Integrated Moving 

Average Models for River Flow Forecasting  
 

1
Kassahun Birhanu Tadesse, 

2
Megersa Olumana Dinka, 

 3
Tena Alamirew and 

3
Semu Ayalew Moges 

 
1Civil Engineering Science, University of Johannesburg, 
South Africa and Debre Markos University, Ethiopia 
2Civil Engineering Science, University of Johannesburg, South Africa  
3School of Civil and Environmental Engineering,  

Institute of Technology, Addis Ababa University, Ethiopia 

 
Article history 

Received: 17-05-2017 
Revised: 12-07-2017 
Accepted: 8-09-2017 
 
Corresponding Author: 
Kassahun Birhanu Tadesse 
Civil Engineering Science, 
University of Johannesburg, 
South Africa and Debre 
Markos University, Ethiopia 
Email: kbirhan@gmail.com 

Abstract: Reservoir operation policies cannot be functional in instant 

decision making without forecasting the future reservoir inflows. For 

forecasting inflows into reservoirs with only hydrological data is available 

like Koga irrigation dam, multivariate forecasting models cannot be used to 

generate accurate river flow information. As a result, an evaluation of 

univariate Seasonal Autoregressive Integrated Moving Average (SARIMA) 

models was done for forecasting monthly Koga River flow with Gnu 

Regression, Econometrics and Time-series Library (GRETL) software. The 

stationarity of historical river flow sequence was checked by Augmented 

Dickey-Fuller (ADF) unit root analysis. Then, seasonality was removed 

from the river flow time series by seasonal differencing. Using seasonally 

differenced correlogram characteristics various SARIMA models were 

identified and evaluated, their parameters were optimized and diagnostic 

checks of forecasts were performed using residual correlograms and Ljung-

Box tests. Finally, based on minimum Akaike Information criteria, 

SARIMA (1, 0, 1) (3, 1, 3)12 model was selected for Koga River flow 

forecasting. The stationarity test of the forecasted values of this model has 

proved the similarity of forecast values and patterns with those of the 

historical ones. Thus, irrigation managers could use this model and forecast 

information for optimal irrigation planning and development of reservoir 

operation strategies in order to protect farmers and downstream 

environment from water shortages. Moreover, the use of stationarity test of 

forecast flow patterns is useful and applicable in selecting best forecast 

model during forecasting of any river flows. 

  

Keywords: Autocorrelation, Reservoir Inflow, Unit Root Test, Time 

Series, Univariate Analysis 

 

Introduction 

For reservoir based irrigation schemes for which 

cropping pattern varies year to year due to many factors, 

adaptive reservoir operation is vital in order to balance 

reservoir water supply and crop water demands. The 

management is adaptive when the judgments are based 

on both present and forecasted inflows (Labadie et al., 

1981). Hence, reservoir operation policies cannot be 

functional in instant decision making without forecasting 

the future reservoir inflows (Karamouz et al., 2003). 

Forecasting is a planning instrument which aids decision 

makers to anticipate the upcoming improbability based 

on the characteristics of historical and current 

observations (Box et al., 2008).  

A time series modeling is one of the many techniques 
used for forecasting. The fundamental theory in 
modeling time series is that the future is a manifestation 
of the precedent and any statistical relation that could be 

originated in the precedent statistics can be utilized to the 
future (Vahdat et al., 2011). For areas where only the 
hydrological data is available, the stochastic univariate 
time series that use probability and statistics are the 
superior alternatives for forecasting (Momani and Nail, 
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2009; Adhikary et al., 2012). Among these stochastic 
univariate models is Autoregressive Integrated Moving 
Average (ARIMA) model (Brockwell and Davis, 2002; 
Wang et al., 2008). An ARIMA method is relatively 

systematic, flexible and grasps more original time series 
information (Murthy et al., 2017).  

For ARIMA time series that has a tendency of 

showing a periodic behavior after a certain time interval, 

an extension of ARIMA called multiplicative SARIMA 

modeling approach is used (Box et al., 2008). Many 

scientists have used ARIMA/ SARIMA models for 

forecasting of stream flow, rainfall and 

evapotranspirations. An ARIMA model performs better 

than Fiering, Artificial Neural Network and Wavelet 

ANN models in forecasting monthly inflow to Iffezheim 

reservoir (Germany) (Zhang et al., 2017). A study 

conducted to forecast residual water consumption in 

Tunisia indicates that the SARIMA model out performs 

neural networks in terms of forecasting accuracy (Sebri, 

2013). SARIMA model was also used by Papalaskaris et al. 

(2016) to perform short-term forecasts of monthly 

rainfall in Kavala city, Greece, which was aimed at 

identifying the potential patterns of flood and drought 

cycles occurring in this area.  

For each monthly stream flow and water temperature 

series, seasonal differencing in ARIMA models is the 

best stationarisation method in terms of periodic effect 

elimination and model forecasting accuracy as compared 

to seasonal standardization and spectral analysis  

(Moeeni et al., 2017). According to Teymouri and 

Fathzadeh (2015), the SARIMA model performed best 

among Thomas-Fiering and Spectral Analysis types of 

stochastic mathematical models in forecasting flows of 

five rivers in the Atrak basin, north eastern Iran. 

Mohamed and Ibrahim (2016) used a SARIMA model for 

forecasting monthly rainfalls in Nyala station (Sudan).  

SARIMA model is more capable of forecasting 

monthly reservoir inflow, especially for low values and 

in short-term forecasting than the hybrid Artificial Neural 

Network-Genetic Algorithm model (Moeeni et al., 2017). 

SARIMA model also outperformed the ANN and hybrid 

SARIMA-ANN models in predicting monthly base flow 

to Jamishan reservoir in Iran (Moeeni and Bonakdari, 

2016). SARIMA model is capable of forecasting monthly 

reference evapotranspiration (Mossad and Alazba, 2016). 

Forecasting of river flows has great use for optimal 

planning and operation of the irrigation reservoirs like 

Koga dam in Ethiopia. This irrigation scheme was 

designed to irrigate 7000 ha command areas, though the 

potential irrigable area is 7572 ha (MacDonald, 2006). 

However, the actual/current irrigated area is less than 

the design command area. For example, the maximum 

actual irrigated area was 5123 ha in 2011/12 and 5144.36 

ha in 2012/13 (Birhanu et al., 2015). This is 73% of the 

design command areas. 

Moreover, in 2014/15, the amount of water stored in 

the reservoir was about 60% of storage capacity due to 

drought. As a result, farmers were enforced to reduce 

their irrigable area by half from what they were used to 

irrigate. Because of unavailability of forecast 

information of water availability, many farmers wasted 

their time, energy and money for extra unirrigated land 

preparation. From this, it can be concluded that there 

are water scarcity and uncertainty of water availability due 

to global and local climate change in the Koga irrigation 

project. Therefore, planning, operation, and management 

of the irrigation scheme should be supported by forecast 

information of the reservoir water availability. 

The only data available for the Koga River 

catchment is stream flow data. Multivariate forecasting 

models cannot be used for stream flow forecasting of 

data scarce watercourses such as the Koga River. In 

such conditions, a univariate SARIMA models are 

more appropriate for forecasting of river flow. Thus, 

this research aims to evaluate SARIMA models for 

monthly river flow forecasting into the reservoir. The 

developed model will help irrigation managers in 

developing optimal irrigation planning and adaptive 

reservoir operation policies for Koga Dam. 

Material and Methods 

Area Description 

Koga Irrigation scheme is found in the Upper Blue 

Nile River Basin, near Bahir Dar City (Ethiopia) (Fig. 1). 

The Koga catchment lies in the Tana Basin between 

11°10’ and 11°22’ North Latitude and 37°02’ and 37°17’ 

East Longitude. It covers an area of 22,000 hectares at 

dam site (37°08’ E and 11°20’ N). The maximum, 

minimum and average monthly temperatures for the study 

area are 26.8, 11.6 and 19.2°C, respectively. Its average 

annual rainfall is 1578 mm. The rainfall has a uni-modal 

characteristic that extends from May to October. The 

highest concentration of rainfall occurs in July. The average 

daily and the annual reference Evapotranspirations (ETo) 

are 4.24 mm and 1548 mm, respectively. 

River Flow Data 

Koga River flow data (1960 to 2012) was collected 

from hydrology department of Ministry of Water 

Irrigation and Energy. The first 516 river flow 

observations (1960 to 2002) were used for model training. 

The rest 144 data (1996 to 2012) were used for model 

validation “in-sample” forecast. Finally, all flow data 

(1960 to 2012) were used for “out of sample” forecasting 

(2013 to 2018). Gnu Regression, Econometrics and Time-

series Library (GRETL) computer program was used for 

river flow modeling and forecasting. 
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SARIMA Modeling 

SARIMA (p,d,q)(P,D,Q)S model (Box et al., 2008; 

Wang et al., 2008; Tsay, 2010) is shown in Equation 1. 

Equation 2 is the expanded form of this model: 

 

( ) ( )(1 ) (1 ) ( ) ( )S S D d S

t t
B B B B y B Bϕ θ εΦ − − = Θ  (1)  
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1 2 1 2
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−Θ −Θ −Θ − − − −

 (2) 

 

Where: 

Ф and φ = Autoregressive (AR) parameters of seasonal 

and nonseasonal components, respectively 

Θ and θ = Moving average (MA) parameters of seasonal 

and nonseasonal components, respectively 

B = backward operator, B(yt) = yt-1 

(1-B
S
)
D
 = D

th
 seasonal difference of season s 

(1-B)
d
 = d

th
 nonseasonal difference 

εt = random variable 

P and p = AR orders 

Q and q = MA orders. D and d are differencing terms 

 

In SARIMA modeling and forecasting, the 

following four sequential but iterative steps were 

followed (Box et al., 2008). 

Model Identification 

As stream flow data are not normally distributed, log 
transformation was performed before modeling and 
forecasting. Then, the stationarity of the log transformed 
time series was checked using graphical methods: 
sample autocorrelation function (ACF) and sample 
partial autocorrelation function (PACF) (Stoffer and 
Dhumway, 2010; Singh et al., 2012; Box et al., 2015; 
Mirzavand and Ghazavi, 2015). Moreover, an 
Augmented Dickey-Fuller (ADF) unit root test (Enders, 
1995; Elliott et al., 1996) and KPSS (Kwiatkowski et al., 
1992) test were performed for stationarity analysis. 
Then, initial SARIMA models were identified from the 
ACF and PACF plots. As model identification involves a 
great deal of examination (Nazuha et al., 2010), max 
values for AR and MA components and integration 
terms (d and D) were set based on (Brockwell and Davis, 
2002) and Cryer and Chan (2008) principles. For 
example, for a seasonal component of SARIMA models, 
the number of parameters is less than three for AR and 
MA terms and rarely larger than one for seasonal 
integration term (D) (Brockwell and Davis, 2002).  

 
 

Fig. 1. Location map of Koga dam and irrigation project 
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Parameter Estimation 

Model parameters were determined by the method of 

conditional maximum likelihood (Stoffer and Dhumway, 

2010) during model calibration and validation.  

Diagnostic Checking 

Residual correlogram observation and Ljung-Box 

Q Tests (Ljung and Box, 1978) were performed for 

confirming the white noise (randomness) of forecast 

residuals. 

Forecasting  

A final step is the application of the identified model 

in forecasting future time steps ahead. Model 

performance measures (Equations 3 to 5): The Akaike 

Information (AI) (Akaike, 1974), Schwarz Bayes (SB) 

(Schwarz, 1978) and Hannan-Quinn (HQ) (Hannan and 

Quinn, 1979) were used to test model accuracy for best 

model selection: 

 

2ln( ) 2AI L k= − +  (3)  

 

2ln( ) ln( )SB L n k= − +  (4) 

 

2 2 ln ln( )HQ L k n= − −  (5) 

 

where, L likelihood function of the model, k and n are 

respectively the numbers of parameters and residuals. 

A model having the lowest indices is best (Marco et al., 

2012). Model selection was also supported by visual 

inspection and stationarity test of trend and 

seasonality patterns of forecast values using ADF 

(Enders, 1995; Elliott et al., 1996) and KPSS 

(Kwiatkowski et al., 1992) tests. 

Results and Discussion 

Model Identification 

The monthly time series plot for log transformed 

Koga River flow (1960 to 2012) is shown in Fig. 2. The 

trend is not noticed in Fig.2. Moreover, Augmented 

Dickey- Fuller (ADF) unit root test statistic (observed) 

value -4.73 is smaller than test critical (estimated) value 

-0.27 for α = 5%. This rejects the null hypothesis (i.e., 

there is unit root) at their level. Besides, KPSS test proves 

the stationarity of the time series as the computed p-value 

of 0.07 is greater than the significance level (α = 0.05). 

Thus, based on time series plot and ADF and KPSS tests, 

the historical time series is found to be stationary.  

However, as significant spikes are observed every 12 

months interval from ACF plots and at 12th lags of 

PACF plots (Fig. 3), Koga River flow series is 

seasonally nonstationary. To make it stationary, single 

seasonal differencing was performed on the log 

transformed river flow data. The correlogram of the 

seasonally differenced river is shown in Fig. 4. Based on 

this Figure, SARIMA (p, 0, q) (P, 1, Q) 12 models were 

selected for further investigation and their lag orders 

were estimated as follows. 

Thus, parameters orders were estimated at lag 1
 
for 

AR and at lag 2 for MA for a nonseasonal component of 

SARIMA model. For the seasonal component of the 

model, the orders were estimated at lags 12
th

, 24
th

, and 

36
th

 for AR and at lag 1 for MA. Hence, four 

SARIMA models: SARIMA (1, 0, 1) (3, 1, 1)12 and 

SARIMA (1, 0, 2) (3, 1, 1)12 were initially identified. 

As it was discussed above under model identification, 

the maximum orders of P and Q are three. Hence 

SARIMA (1, 0, 1) (3, 1, 3)12, SARIMA (1, 0, 2) (3, 1, 

3)12 and other neighboring models were systematically 

selected for further investigation (Table 1). 

Parameter Estimation and Performance Evaluation 

Table 2 summarizes the fit statistics for 16 

SARIMA models. Based on minimum values of 

performance measures, mainly by the Akaike 

information criterion (AI), SARIMA (1, 0, 1) (3, 1, 3)12 

was identified as the most appropriate model. 

According to the z-test, p-values for all parameters are 

less than critical level (α = 0.05). This shows the 

statistical significance of these parameters. Thus, φ1, 

Φ1, Φ2, Φ3, θ1, Θ1, Θ2 and Θ3 parameters were selected 

to be incorporated into the model.  

Diagnostic Checking 

Graphical Methods for white Noise Test 

Residual correlogram up to lag 36 is shown in Fig. 

5. All of the ACF and PACF of the residual values at 

various lags except for lag order 25 were settled within 

tolerance interval at 95% confidence limits. This shows 

the existence of no significant correlation between 

residuals. Hence, the residuals are random or white 

noise. Therefore, the selected model can be considered 

as an appropriate model.  

Ljung-Box Test for white Noise 

Another test employed to check the residuals 

independence was Ljung-Box-Pierce Chi-Square 

statistics. From residuals autocorrelation test up to order 

36, the Ljung-Box Q’ statistics is 29.60 with p-value 0.38 

which is larger than α = 0.05. Hence, the autocorrelations 

of residuals were considered white noise. Based on the 

above diagnostic checking, the selected SARIMA (1, 0, 1) 

(3, 1, 3)12 model is satisfactory to signify the Koga River 

flow series. Therefore, the model is fit for future 

KogaRiver flow forecasting. 
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Fig. 2. Time series plot of historical Log-Koga River flows (1960 to 2012) 

 

 

 
Fig. 3. ACF (Top) and PACF (Bottom) of Log- Koga River flow time  
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Fig. 4. ACF (Top) and PACF (Bottom) for seasonally differenced Log-Koga River flow 

 

 
 

Fig. 5. Residual ACF and PACF for out-sample  
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Fig. 6. Log-Koga River flow forecast by SARIMA (1, 0, 1) (3, 1, 3)12 model 
 
Table 1. Performance measures for SARIMA models  

Sr.No SARIMA(p,d,q)(P,D,Q)12 AI SB HQ RMSE MAE 

1 SARIMA(1,0,1)(3,1,3)12 321.48 360.86 336.83 0.64 0.53 
2 SARIMA(2,0,1)(3,1,3)12 322.15 365.89 339.20 0.64 0.53 
3 SARIMA(3,0,0)(3,1,3)12 322.24 365.96 340.63 0.63 0.52 
4 SARIMA(1,0,0)(3,1,3)12 322.31 357.31 335.95 0.63 0.52 
 5 SARIMA(1,0,2)(3,1,3)12 323.31 367.07 340.36 0.64 0.53 
 6 SARIMA(3,0,1)(3,1,3)12 324.17 372.26 342.91 0.64 0.53 
 7 SARIMA(2,0,2)(3,1,3)12 324.33 372.44 343.08 0.64 0.53 
8 SARIMA(1,0,3)(3,1,3)12 324.98 373.11 343.74 0.64 0.53 
9 SARIMA(1,0,0)(3,1,2)12 328.70 359.33 340.63 0.63 0.52 
10 SARIMA(2,0,2)(3,1,2)12 331.06 374.79 348.10 0.64 0.54 
11 SARIMA(1,0,1)(3,1,1)12 336.38 367.00 348.31 0.62 0.51 
12 SARIMA(1,0,0)(3,1,1)12 337.78 364.03 348.01 0.62 0.51 
13 SARIMA(1,0,2)(3,1,1)12 337.84 372.84 351.48 0.63 0.53 
14 SARIMA(2,0,1)(3,1,1)12 338.85 373.84 352.49 0.64 0.53 
15 SARIMA(1,0,3)(3,1,1)12 339.29 378.66 339.28 0.64 0.53 
16 SARIMA(2,0,2)(3,1,1)12 340.15 379.51 355.49 0.64 0.53 

AI =Akaike Information criterion, SB = Schwarz Bayes criterion, HQ = Hannan-Quinn criterion; RMSE = Root Mean Square Error, 
MAE = Mean Absolute Error; Note: The lowest values have been highlighted in bold 

 
Table 2 Parameter estimates for SARIMA (1, 0, 1) (3, 1, 3)12 model 

Parameters  Coefficient Std. Error z p-value  

φ1  0.70 0.039 17.98 <0.00 *** 

Φ1 -1.11 0.085  -13.01 <0.00 *** 

Φ2 -0.59 0.093  -6.36 <0.00 *** 

Φ3  0.10 0.039  0.89  0.04 * 

θ1 -0.11 0.055 -2.01  0.04 ** 

Θ1  0.37 0.083  4.49  <0.00 *** 

Θ2 -0.27 0.074  -3.66  0.00 *** 

Θ3 -0.65 0.066  -9.76  <0.00 *** 
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Fig. 7. River flow forecast graph by SARIMA (1, 0, 1) (3, 1, 3)12 model 

 

SARIMA Forecasting 

A historical and model forecast graph by SARIMA 

(1, 0, 1) (3, 1, 3)12 is shown in Fig. 6. The mathematical 

expression of this model shown by Equations 6 was 

developed by substituting significant parameters from 

Table 2 into Equation 2. As the SARIMA forecast values 

are log-transformed, the actual river flow forecast model 

is expressed by Equation 7. Therefore, the river flow 

time series of the actual forecast values is shown in Fig. 

7. In addition to its best performance, the pattern (trend 

and seasonality) of this forecast graph from 2012 to 2018 

is similar with that of historical ones. This is supported 

by ADF and KPSS unit root tests for the trend of 

forecast values. As the computed p-values of ADF test is 

greater than the significance level (a = 0.05), the time 

series of Koga River flow forecasts have no trend.  

In addition, as the computed p-value from KPSS test 

is greater than one at a = 0.05, the forecasted time series 

is stationary. The additional use of the stationary test of 

trend and seasonality patterns of forecast values using 

ADF and KPSS tests is solely new in time series study. 

In another way, this method was not used in any one of 

similar published papers. Its use increases researcher’s 

accuracy in selecting best models in addition to using 

performance indices like Akaike Information (AI) 

criterion. There are models with minimum AI values but 

with constant forecast flow pattern (lacking stochastic 

component). This technique avoids selection of such 

models. Thus, based on time series plot observation and 

ADF and KPSS tests, the forecasted time series is 

stationary. As the model is good in capturing Koga River 

flows, the forecast information would be of high 

importance for water resources managers for protecting 

the irrigators from water scarcity.  

 

1 12 2 24 3 36

12 1 1 1 12

2 24 3 36 1 1

t t t

t t t

t t t t

Logy Logy Logy Log y

Logy Logy Log

Log Log Log Log

ϕ ε

ε ε θ ε ε

− − −

− − −

− − −

= Φ + Φ + Φ

+ + −Θ

−Θ −Θ − +

 (6) 

 
t

Logy

t
y Exp=  (7) 

 

Conclusions and Recommendations 

This study provides reliable river flow information 

for efficient planning and operation of reservoir and 

irrigation scheme. Out of several SARIMA models 

evaluated, the most appropriate river flow forecasting 

model for Koga River is SARIMA (1, 0, 1) (3, 1, 3)12. 

This model can provide future monthly stream flow 

information into the reservoir which can help reservoir 

manager to estimate storage levels for the months ahead. 

Based on forecast information reliable water supply can 

be determined and river flows into or out of the dam 

can be regulated. Moreover, forecast information is 

useful in developing cropping pattern optimization 

models to select optimum combination of crops that 

maximize the benefit/yield of an irrigation project. In 

this case, crop types can be selected and the area under 

each crop can be determined. This in turn is used to 

determine farm water demand on which reservoir 

operation is based. A decision on whether to allow 

second round cropping or not could also be made based 

on the actual amount of water stored in the reservoir 

and future water availability. 
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Another important application of forecast 

information is for development of optimal reservoir 

water release policy or schedule. This in turn avoids 

critical water shortages throughout irrigation period 

and water excess at the end of operation period. 

Moreover, the selected model provides accurate river 

flow information for developing adaptive real time 

reservoir operation policies for Koga irrigation 

scheme. In this case, forecast values are updated or 

replaced with the actual (measured) values. At the 

times when the flows are not properly forecasted, 

planners can add or subtract 95% confidence intervals 

on the forecast values. Therefore, in conclusion, the 

developed forecasting model and forecast information 

could serve as a practical tool for planning, operation 

and sustainable utilization of scarce water resources 

for food security and poverty reduction of farmers in 

the irrigation project and downstream environmental 

protection. It also plays a great role in controlling 

famine that sometimes occurs in the other parts of the 

country. Hence, SARIMA modeling and the followed 

methodology (the use of stationarity test for forecast 

flow patterns) could be utilized for forecasting of any 

other rivers of clear seasonal flow patterns, which are 

located in rural catchments as the river flow is a 

cumulative effect of river, catchment and rainfall 

characteristics. However, as SARIMA modeling is 

time-consuming and dependent of human judgment, 

automatic method of best model identification and 

selection is recommended in the future study. 
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