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Abstract: An accurate mapping of the acoustic spatial variability generated 

by quarrying plants constitutes an important step in the assessment of the 

environmental compatibility of the extraction site with the surrounding 

area. This paper refers to the results of a study comparing performances 

obtained by stochastic and deterministic methods to determine the acoustic 

climate of the areas surrounding opencast quarries. To this aim noise levels 

are monitored in the areas surrounding a limestone quarry site in central 

Italy. In the first phase an analytical prediction model, based on ISO 9613 

and ISO 3746, is developed using the sampled sound power level of each 

source as input data. In the second phase, in contrast, the stochastic method 

of Ordinary Kriging is used to plot an acoustic map. This is drawn up by 

interpolating the scattered sound pressure level data from sampled points 

which are identified as nodes of a rectangular grid covering the chosen 

area. The analytical prediction model output, which consists in the sound 

pressure level at various target points, is then compared with the 

homologous map obtained from the Ordinary Kriging method. Finally the 

resulting maps are evaluated with respect to statistical measures and cross 

validation procedures in order to determine the most suitable method. 
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Introduction 

Quarrying activities and extractive sites, involving 

both labour and material resources, represent a 

productive sector which is of basic importance to the 

Italian economy. These activities have a considerable 

impact on many aspects of the environment (i.e., 

Ozcan et al., 2012). One such aspect is that of change in 

the acoustic climate of the surrounding areas, constituting 

a significant disturbance for anybody living in the vicinity 

of the mine or quarry. The effects, however, are not only 

determined by the plant itself and there is a considerable 

impact generated by all the activities associated with the 

plant such as the increase in haulage traffic to and from 

the site, or the use of explosives for the extraction of raw 

materials (Giraudi et al., 2009), airborne dust emissions 

due to quarrying activities (Bluvshtein et al., 2011), 

rather than visual impact on the surrounding areas 

(Alfaro Degan et al., 2014). 

Historically, the need for acoustic maps, which 

urgently arose for the interested parties or stakeholders 

(the public authorities, business owners, private citizens 

etc.) has been tackled using a number of approaches 

(Yepes et al., 2009). 

The first and most common approach regards the 

application of the source models (Alfaro Degan et al., 

2005) based initially on the characterization of the sound 

power level generated by the identified sources of the 

plant (Roy and Adhikari, 2007) and subsequently able to 

represent the evolution in space of the signal, by means 

of the application of a physical model. On the basis of 

ISO 9613 standard, many studies have focused on how 

best to determine the physical parameters to compute in 

the sound propagation model (Cinar and Sensogut, 2009; 

Dowd and Li, 2000), that is on those parameters linked 

to the geomorphological characteristics of the sites, from 

those regarding the plant operation (Pathak et al., 1999), 

to the attenuation effects and changes in acoustic signal 

due to differences in the types of materials extracted 

(Neto et al., 2012). 

If on the one hand this modelling approach has 

improved the quality of the results, on the other hand it 



Dario Lippiello et al. / American Journal of Environmental Sciences 2016, 12 (2): 68.76 

DOI: 10.3844/ajessp.2016.68.76 

 

69 

has brought about an increase in the number of 

parameters to determine and the measurements to be 

taken, augmenting the computational complexity of the 

model as well as increasing the costs and time required 

to carry out research. 

In order to obviate this tendency, new alternative 

approaches to the physical model are being studied 

(Nanda et al., 2009). The aim of this article is to carry out 

and test, with regard to the case in question, a 

geostatistical answer to the problem of acoustic mapping 

in the areas surrounding the extractive sites. The sound 

pressure level is thus considered as a regionalized variable 

and its spatial distribution is generated by a stochastic 

process (Baume et al., 2008). The technique utilised here, 

which is widely used in environmental science, is that of 

ordinary Kriging. The geostatistical results may then be 

compared with the measurements taken in the field.  

Materials and Methods 

This research was carried out in the area surrounding 

an opencast quarry located in Vallerano near Rome. The 

plant extracts leucite basalt, that is a dark grey volcanic 

rock and has many domestic and industrial uses, the 

most common being its application as the raw material 

for railway track ballast. Figure 1 shows the site of the 

quarry and the surrounding residential area. 

The mining site may be divided into two distinct 

areas: The face where the rock is mined with the help of 

explosives and the processing plant. 

After blasting the fragments are extracted. The 

exploitation method is that of the single level splitting. 

Subsequently, the shot rock is taken by dump truck to 

the processing plant. Here it is crushed and sorted by 

various specific machines (crushers, grinding mills and 

screens) so that the required commercial granulometric 

sizes are obtained. 

For the purposes of this paper, only the noise 

emissions generated by the processing plant are taken 

into consideration. The effects related to the use of 

explosives are mainly linked to ground vibrations which 

is beyond the scope of this paper. 

From a methodological point of view the work was 

organized in successive phases. Firstly the physical 

model of noise propagation was employed starting with a 

survey of the data source. Subsequently a set of 50 

measurements were taken inside the area of interest to be 

used as input for the geostatistical analysis. 

The first step aimed at identifying and then 

classifying the fixed noise sources so as to determine the 

sound power level they each generate. For each of these 

machines a surface envelope was determined (ISO 37-

46). Five measurements of the sound pressure were 

carried out with the machine under normal operating 

conditions. A Larson Davis model 824 sound level 

meter, which conforms to the requirements stated in 

D.M.16/03/1998, was used to measure the sound 

pressure level. Each measurement lasted 10 min. 

 

 
 

Fig. 1. Quarry and surrounding residential area 
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On the basis of the measurements carried out, the 

sound power level for each machine is calculated as 

follows: 

 

, ,

0
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 (1) 

 

Where: 

Lw,f = Expresses the sound power level of the 

sound source in question at the single 

frequency [dB(A)] 

Lp,f  = The average sound pressure level, again for 

a single frequency, measured on the source 

surface envelope in real conditions [dB(A)] 

S and S0 = Respectively the surface envelope of the 

source and the surface of reference set at 1 

m
2
 

 

The average sound pressure level at the 

measurement point was determined while taking into 

account both the effects due to background noise and 

environmental effects (i.e., those related to the 

reflection of sound waves). 

The average sound pressure level may be calculated 

thus: 

 

, 1 2p fL L K K′= − −  (2) 

 

With L′ average sound power level measured at the 

measurement points on the control surface, expressed in 

[dB(A)] and is defined as: 
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With N number of measurements relative to each 

single source. 

K1, correction factor, refers to the residual noise, i.e., 

the noise measured with the machine when off: This 

term includes all the other sources of noise other than 

those from the source being measured. Factor K1, 

expressed in dB, is given by: 
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where, ∆L′ is the difference between the average sound 

pressure levels on the measured surface when the 

machine is on and when it is off. 

Lastly, K2, the environmental factor, is the term related 

to the increase in average sound level at the measured 

surface due to sound waves reflected by features of the 

environment. However, in open environments without 

reflective surfaces this term is null. 

The next step in determining the sound pressure level 

at the target point regards the application of the 

procedure proposed by the standard UNI EN ISO 9613 

1-2, with appropriate calibrations for the present study. 

The sound pressure level at the receptor, for each 

single frequency, is calculated by applying the following 

equation: 
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Where: 

Ls,f = The predicted sound pressure level for the single 

frequency and at a certain distance from the 

sound emitting source [dB(A)] 

Lw = The sound power level of the source (1) 

DI = The directivity index of the source 

K0 is the shape factor relative to the emission 

characteristics of the source 

Ds = The geometric divergence term defined as: 

 

20log
s
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where, d is the distance between source and target [m]; 

Lastly, the term inside the sum in (5), represents the 

set of factors which, for various reasons, contribute to 

the absorption of sound energy. 

In particular: 

 

i atm b

i

D D Dg D= + +∑  (7) 

 

Where: 

Datm = The term related to absorption due to 

meteorological conditions [dB(A)] 

Dg = The term related to absorption due to the ground 

[dB(A)] 

Db = That due to the presence of any barriers or 

obstacles [db(A)] 

 

The same assessment of environmental impact was 

carried out by means of geostatistical analysis. The 

basic concept of geostatistics is a probabilistic 

approach to modeling a physical mechanism. Each 

single value of a regionalized variable and above all 

its spatial variability structure, is assumed to be 

described efficiently in a stochastic framework. Data 

values are the results of many complex factors and 

can be reasonably viewed as possible outcomes of a 

random process. Therefore, from a probabilistic point 

of view, any spatial variable z(x), measured at a 

specific location, is the outcome of a random process 

that generated it from a random variable Z(x). At any 

point in the observed domain, the random variable 
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may have different properties and thus generate 

different values. Hence these values are one possible 

outcome of the function that generates them following 

a certain regionalized probability density function. 

Considering that all the possible realizations are 

represented by the same random function, this 

function should be related to some spatial law. Such a 

law is represented by the cumulative distribution 

functions of n random variables. 

Moreover, if the distribution function can be 

reasonably represented by the first two moments (e.g., 

Gaussian-like distribution) there is no need for a 

stationarity hypothesis except for the first two moments 

of the random function. 

More specifically, these conditions may be expressed 

as follows: 

 

( )E z x m
α

  =   (8) 

 

( ) ( )1 2 1 1
, , ) ( )C x x C x x h C h= + =  (9) 

 

Equation 8 implies the first moment is spatially 

invariant, whereas (9) expresses covariance and does not 

depend on position but only on h distance between two 

selected points. 

The variogram function defined as: 

 

[ ]( ) ( )
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2

Var z x h z h
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=  (10) 

 

Is a useful tool to describe spatial variability from 

sampled data. Once it is computed, if its shape is 

stationary, then the hypotheses (8) and (9) may be 

assumed. These characteristics, which are related to the 

random function connected with the phenomenon, may 

be appreciated, at least at a certain scale, when a sill is 

present in the variogram itself. Thus the variogram is 

expressed with regard to covariance as: 

 

( ) ( ) ( )0h C C hγ = −  (11) 

 

Under these conditions, inference of the experimental 

variogram is performed and based on a least square fit of 

the experimental values of semivariance for each lag. 

Such a fit can be made by well-known continuous 

functions such as authorized models. Thus spatial 

variability is modelled and estimation may finally be 

carried out. The passage from a discrete information 

description to a continuous description is performed with 

the following linear estimation: 
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In which coefficients are chosen to minimize the 

mean square prediction error (14) defined in (13), 

under the hypothesis of unbiasedness (15) where the 

term in square parentheses represents the difference 

between the sampled value and the estimated one at 

the same location: 
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The previous equations are rewritten in a more 

compact way in the Kriging system: 
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The only other notable feature is related to the choice 

of the regionalized variable. This is especially important 

since the estimation method is based on a linear 

interpolation of values (12), that cannot be performed 

with a logarithmic function, sound pressure level, 

defined a: 
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Therefore the whole procedure is developed 

considering the regionalized variable as sound pressure 

(p
a
) and only once the estimation is carried out, the 

conversion from sound pressure to its corresponding 

level is carried out. 

Results and Discussion 

In this study five sound sources were identified in the 

quarrying area (see red circles in Fig. 2) and the relative 

sound power level data are shown in Table 1. 
 
Table 1. Sound power level at each source 

Source Sound Power Level [dB(A)] 

Primary crusher 113.5 

First vibrating drum 110.5 

Second crusher 110.5 

Third crusher 114.4 

Fourth crusher 115.6 
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Fig. 2. Sound sources (red circles) and sampled points (red grid) 

 

 

As expected, each source required ten 

measurements to be carried out on its own surface 

envelope. Of these, five were taken under normal 

operating conditions (the plant under maximum load 

and the source machine turned on), whereas the other 

five were taken under the same conditions but with 

the source machine turned off. 

Then the physical model according with Equation 5, 

was implemented in 50 points positioned within the area 

of interest at the locations illustrated in Fig. 2. At these 

points a measuring campaign was carried out monitoring 

each point for 30 min. The objective was to characterize 

the noise from the plant, such that in the post-

measurement phase, noises which originated from 

sources which are not directly correlated with the plant 

(voices of passersby, traffic sounds etc.) might be 

eliminated using suitable filters. 

The sampled points were chosen as nodes of a 

regular rectangular grid covering the area of interest 

(Fig. 2). The distance between each node was set at 20 

m with some exceptions due to local obstacles. This 

spatial step seemed to guarantee that the sample was 

not too large to characterize the acoustic climate. 

(Alfaro Degan et al., 2015). 

The measured values were compared with those 

obtained from applying the model. The results are shown 

in Fig. 3 and 4. 

The parameters of the comparison indicate that the 

correlation coefficient between the two series of data is 

equal to 0.966.  

The geostatistical analysis of the data was carried out 

on the same 50 samples in Fig. 2. The measurements 

(which lasted 30 min each) were carried out in order to 

fully characterize the temporal evolution of the signal by 

monitoring sound pressure level. 

A systematic sampling strategy was used, defining a 

regular grid (the whole domain was 130×170 m) and 

sampling each node. 

The first step was a structural analysis of the sampled 

data in order to identify the behaviour of the variable and 

any anisotropy. 

Because of the importance of variographic 
computational parameters, polar diagrams were studied. 
On considering the characteristics of the sampling grid, 
no anisotropy was found in the available data. 
Furthermore, since the estimation should be calculated 
isotropically and the area should be related to the scale 
of the phenomenon, the computation domain was 
reduced to 20 lags. 

The variogram, shown in Fig. 5, revealed a well 

defined spatial structure which was obtained by reducing 

the maximum lag distance to 120 m and thus following a 

quasi-stationary approach. The NW-SE direction was 

considered. 
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Fig. 3. Histogram comparing the measured values and the values calculated using the ISO 9613 model 
 

 
 

Fig. 4. Scatterplot comparing the measured values and the values calculated using the ISO 9613 model 
 

 
 

Fig. 5. Variogram computation and fitting 
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Moreover, in order to represent the structural variability 

of the phenomenon, a fitting process of a mathematical 

function on the data variogram was performed. 

This approach was developed with the continuous 

function (continuous line) which constituted a spherical 

model and a nugget effect. 

Once the analytical variogram was defined, the 

estimation itself was carried out. Results are obtained by 

means of an Ordinary Kriging system (16) based on the 

nodes of a regular grid covering the entire domain. 

A cross validation between the sampled values and 

the estimated values at each of the 50 available locations 

is shown in Fig. 6. 

However, on analysing the system (16), it should be 

noted that at a point in which the regionalized variable 

is available and known, the Kriging system returns 

exactly the same value. In order to evaluate the quality 

of the results obtained, the ‘leave one out’ cross 

validation method is employed. This consists in 

considering the value of the variable at the point being 

tested as being unknown and estimating its value from 

the values of the remaining points in the set (without 

utilising the value of the point in question). The results 

are shown in Fig. 6 and 7. 

Then, in order to analyse the quality of the results 

obtained, two parameters were considered: The 

correlation coefficient and the standard deviation of the 

differences between homologous values. 

The data shown in Table 2 indicate a strong 

correlation in both cases and in both cases the standard 

deviation of the differences between the measured and 

calculated values was less than 2% i.e., 1.07 [dB(A)]. 

 

 
 

Fig. 6. Scatterplot between the sampled values and the estimated values 

 

 
 

Fig. 7. Scatterplot between the sampled values and the estimated values 
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Fig. 8. Ordinary Kriging map 

 

 
 
Fig. 9. ISO 9613 map 

Table 2. Comparison of the correlation factors 

 ISO 9613 Ordinary Kriging 

R2 0.96 0.98 

Error St. Dev. 1.078 0.721 

 

Then, in order to show the results geographically, 

two maps were plotted indicating the isobels from the 

data estimated from the Ordinary Kriging (Fig. 8) and 

the isobels from the output data of the ISO 9613 model 

(Fig. 9) respectively. 

Conclusion 

On analyzing the results it is apparent that with regard 

to a similar correlation coefficient for both methods, the 

ISO 9613 prediction had a greater standard deviation of 

differences and in at least two points displayed significant 

disparity due to local topological features such as abrupt 

changes in elevation or localized barriers (Fig. 3). The 

scatter plot in Fig. 5 does not show similar effects owing 

to the geostatistical method used. In general, with regard 

to the physical method, it may be said that implementing 

such a technique, requires a number of measurements 

which is dependent on the number of active sound 

sources. In this case 50 measurements were needed to 

characterize the 5 available sound sources and to define 

the background noise. 

Clearly, as the number of active sound sources at the 

site increases, so the computational complexity and the 

burden of the measurement campaign become greater. 

On the other hand a geostatistical approach involves the 

constraint regarding the characterization of the spatial 

variability of the variable. 

In the present study, with respect to the 50 

measurements made on a regular grid of approximately 

20 m each side, a structure of defined variability 

emerged which allowed quasi-stationary modelling of 

the phenomenon. However, it is not possible a priori to 

determine a minimum number of readings required for 

the implementation of a Kriging method. 

It may be said that on the scale in question (over a 

distance of the order of hundreds of metres) and in 

reference to the data presented here, the geostatistical 

approach was successful: The number of measurements 

carried out being equal, acoustic climate values were 

obtained which fitted the readings taken in the field. It is 

therefore possible to conclude that in the case of industrial 

plants with inhomogeneous and variegated noise 

emissions (which is usually the case with extractive sites) 

geostatistical modelling may well be an alternative 

approach which is not only viable but also convenient. 
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