
 

 
© 2016 Marat Ovchinnikov and Kushtanova Galiya Gatinishna. This open access article is distributed under a Creative 

Commons Attribution (CC-BY) 3.0 license. 

American Journal of Environmental Sciences 

 

 

 

Original Research Paper 

Time Dimension Parameters of the Dual-Porosity Reservoir 

Determination using Periodic Hydraulic Pulse Testing 

 

Marat Ovchinnikov and Kushtanova Galiya Gatinishna 

 
Department of Physics, Kazan Federal University, Russia 

 
Article history 

Received: 09-05-2016 

Revised: 07-09-2016 

Accepted: 08-09-2016 

 

Corresponding Author: 

Marat Ovchinnikov 

Department of Physics, Kazan 

Federal University, Russia 
Email: marov514@gmail.com  

Abstract: The process of periodic hydraulic pulses propagation in porous 

fractured media of dual-porosity near a vertical well is considered. Using 

the calculation data as the base, it is shown that the effect of the time 

dimension constant on the form of the filtration wave curves is essential. 

The conclusions on possibility of hydrodynamic model types verification 

which adequately describe the filtration flows in considered media. The 

method for calculation of the dimensional time constants in equations for 

the non-stationary filtration is proposed. 
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Introduction 

The dual porosity model (Barenblatt et al., 1960; 

Warren and Root, 1963) is commonly used to describe 

the filtration of fluids in various rock reservoirs of oil 

and gas with fractured porous structure. Under this 

model, porosity and permeability of the fracture and 

porous (block) reservoir spaces are introduced. Typically, 

the porosity of the fracture space (m1) is significantly 

smaller than the porosity of the block space (m2), while 

the permeability (k1) of the fracture space is substantially 

greater than the permeability of the block (k2) one. 
For a description of non-stationary filtration of fluids 

in fractured porous media according to the continuum 
model, Barenblatt (1960) used the hypothesis of a linear 
relationship between the flow rate of fluid flow between 
pore and fissure subspaces: 
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The model was later refined by Warren and Root 

(1963) by the introduction of the fracture and block 

spaces compressibility (β1 and β2-fractures and porous 

compressibility): 
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Here, indices 1-refers to fractures, 2-corresponds to 

blocks, 0-corresponds to the initial parameter values, k-

permeability, m-porosity, w-filtration velocity, µ-

viscosity, ρ-fluid density, l-linear block size, α-

dimensionless parameter order unit. 

For the convenience of the unsteady filtration 

description the following constants dimension of time 

can be entered: 
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The times τ1,τ2 introduced likewise include the elastic 

properties of rocks (β1,2), characteristic block linear sizes 

(l), fluid viscosity (µ) and permeability (k) of block space 

and are an important characteristic of the filtering 

process in fractured porous media. Thus, the knowledge 

of these times τ1, τ2 makes it possible to define 
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characteristic linear size of fractured porous medium 

blocks. It is important for the understanding of the rock 

structure and the description of filtering in it. Evaluation 

of these times: at µ~
10−1

Pa·s, k~
10−14

m
2
, l~1m,β~

10−9
Pa

−1
, 

α~1, τ~10
4
 s. 

With regard to (1)-(9) linear model of fluid filtration 

in porous fractured reservoir can be rewritten. 

Barenblatt et al. (1960; Warren and Root, 1963;     

Van Golf-Racht, 1982) It can be presented as follows: 
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Here χ1 = k1/µβ-fracture diffusivity coefficient. The 

issue is to find a solution for the radial flow near the 

vertical well with is o tropic space in one-dimensional 

case of the filtration along the axis r in a cylindrical 

coordinate system. 

It obviously advantageous to determine the time 

constants τ1,τ2 for more accurate evaluation of the elastic 

characteristics of the pore spaces and cracks and, on the 

other side, for the correct determination of the reservoir 

filtration parameters σ1 and the complex ratio χ1/ r
2
c. In 

some cases we have to take into account the shape 

factors (Hassanzadeh et al., 2009). 

The determination of filtration fractured porous 

media parameters σ1 and the complex ratio χ1/ r
2
c by 

pressure build-up test is a well-established procedure, 

but the interpretations of hydrodynamic experimental 

results in the natural conditions are difficult for their 

proper understanding. The difficulty is to define the time 

constants τ1,τ2. In these difficult cases, the immunity 

periodic pulse testing method outlined in (Buzinov and 

Umrihin, 1964; Johnson et al., 1966; Renner and Messar, 

2006) can serve as an appropriate additional procedure 

combined to the standard build-up test. However, this 

method is used rarely (Nakao et al., 2005) and the 

procedures for the filtration parameters calculating need 

to be elaborated. 

In the pulse testing method the periodic excited rate 

oscillations are created in some well and the registered 

response pressure oscillations are measured in the 

excited reactive well. 

Suppose, the rate q in a vertical well is created by a 

periodic change with frequency ω and phase shift δq and 

being expressed in the Fourier expansion form it is 

written as: 
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Then the pressure P will also change harmonically 

with the certain phase shift δp: 
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Fig. 1. The frequency dependence of the phase difference ∆qp 

and the ratio (q/P)2 (Molokovich et al., 2000) 

 

Using the measured data of pressure and well rate at 

various times for each fixed frequency, one can calculate 

basic filtration parameters as transmissibility and 

hydraulic duffusivity constants. At further consideration, 

for convenience, we are going to consider only one 

harmonic oscillation mode of the rate and the pressure 

and omit the index n. 

Figure 1 shows, as an example, the frequency 

dependences for the flow rate and pressure phase 

difference ( )qp q pδ δ−∆ =  and the square of flow 

rate/pressure amplitudes ratio (q/P)
2 

in the harmonically 

excited well (well number 4788, (Molokovich et al., 

2000)) drilled in the fractured porous reservoir. These 

frequency dependences allow us to calculate, in 

particular, transmissibility of the fractured space σ1 and 

the complex ratio χ1/ r
2
c, where χ1-hydraulic diffusivity 

constant of fractured space, rc is well radius. 

So, the aim of this work is to analyze the features of 

periodic pulses (waves) propagation in dual-porosity 

media and identify the time dimension parameters in the 

associated non-stationary filtration models. 

Methods 

The flow equation for the non-stationary filtration 

law in the dual-porosity fractured porous media is 

governed by Equation 3 (Molokovich et al., 2000) 

with4time dimension constants: 
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Here, τ1, τ2 are time dimension parameters 

characterizing the properties of fractures and blocks, 

respectively, τp and τw-relaxation times. Making some 

assumptions that are needed to be specified, the authors 
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of (Molokovich et al., 2000) evaluated the desired time 

constants experimentally: τ = 6250 s, τ2 = 25000 s, τp = 

23094 s and τw = 481 s. 

In this study, we consider a possibility to determine 

τ2 and τ parameters on the basis of experimental data 

associated with the periodic hydraulic pulse testing in 

terms of (9, 10).  

The further development of this method implies(a) 

the realization of the conducting experiments at different 

frequencies, starting from ωτ<<1 to ωτ~1-10; (b) the 

usage of the Fourier analysis data with simultaneous 

calculation of the corresponding amplitudes and phases 

of harmonics at different frequencies; (c) the calculation 

of the times τ2 and τ1. 

The relationship between amplitudes and phases for 

the rate and pressure is defined earlier (Molokovich et al., 

2000; Molokovich, 2006; Ovchinnikov, 2008) and 

expressed as: 
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where, the complex argument of the Bessel functions 

(first kind of zero and first orders) is:  
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From (15) we can define: 
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When |zc|<<1, one can simplify expression for the 

pressure amplitude as: 
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and the desired phase difference between the rate and the 

pressure in the well expressed as: 
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Here, the parameter γ = 1.782… defines the Euler 

constant. 

One can notice that the σ1 transmissibility 

determines the linear relationship between the rate and 

pressure amplitudes, while the ratio rс
2
/χ1 and the time 

parameters τ2 and τ affecting the q/P ratio and the phase 

difference between the rate and the pressure is 

described by the complicated relations. However, in the 

low-frequency limit, when ωτ and ωτ2 <<1, the 

influence of τ2 and τ becomes insignificant and the 

corresponding parameters τ1 and rс
2
/χ1 are determined 

from experiments as well as for models with τ2 and τ = 

0. Furthermore, we assume that these parameters are 

determined from the low-frequency experiments. 

Results 

Figure 2 and 3 show the calculated absolute values of 

rate/pressure ratio for the fixed transmissibility σ1 and 

differences between rate and pressure phases at the 

various pulse frequencies for the cases: (a) τ2 = 0, τ = 0 

and (b) τ2 = 10
4
 s, τ = 2×10

3
 s. We see, if ωτ>0.1, the 

difference between the compared solutions of the 

Equation (10) with zero and non-zero values of the 

constants τ2 and τ becomes essential. 
 
Here: 
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We see that the ratio of flow rate and pressure 

amplitudes differ for the cases of zero and non-zero 

values τ2 and τ (Fig. 2). In opposite to the case τ2 = 0, τ = 0, 

when the phase difference of the relationship between flow 

rate and pressure has the form of a monotone increasing 

function with respect to the increasing frequency, for non-

zero values of τ2 and τ this phase difference is also 

determined and its frequency dependence has two local 

extrema: High and low (Fig. 3). It will be shown, how this 

fact is used to determine these times. 
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Fig. 2. Frequency dependence of the q/2πσ1 P ratio at rс

2/χ1 = 1 s 
 

 
 
Fig. 3. Frequency dependence of the phase difference between 

the rate and the pressure at r
с

2/χ1 = 1 s 

 

 
 
Fig. 4. Frequency dependence of the amplitude q/2πσ1 Pratio 

at τ2 = 10
4 s, τ = 2×103 s 

 

Figure 4 and 5 show frequency dependences of the 

amplitude q/P ratio and phase difference between the rate 

and pressure for the fixed values τ2 = 10
4
 sand τ = 2×10

3 
s, 

but at various rс
2
/χ1 = 0.01 s, rс

2
/χ1 = 1 s, rс

2
/χ1 = 100 s. 

 
 
Fig. 5. Frequency dependence of the phase difference between 

the rate and the pressure at τ2 = 104 s, τ = 2×10
3 s 

 

 
 
Fig. 6. Frequency dependence of the phase difference (13) at τ 

= 2×103 and τ2 = 5×10
3, 104, 2×104, 5×104, 105 s 

 

 
 
Fig. 7. Frequency dependence of the phase difference (13) at τ2 

= 105 and τ = 103, 2×103, 5×103, 104, 2×104, 5×104 s 

 

We see that the changes of the parameter rс
2
/χ1 resulted 

in quantitative changes of the corresponding curves, 

though, qualitatively, the curves keep the same shape.  
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Fig. 8. The frequency dependence of the phase difference 

between the rate and the pressure at 1-τ2 = 10
3 s, τ = 

102; 2- τ2 = 10
3 s, τ = 2×102; 3-τ2 = 10

3 s, τ = 5× 102; 4 - 

τ2 = 10
4 s, τ = 2×102 s; 5-τ2 = 10

4 s, τ = 103 s; 6-τ2 = 10
4 

s, τ = 2×103 s; 7-τ2 = 10
4 s, τ = 5×103 s; 8-τ2 = 10

5 s, τ = 

2×103 s; 9-τ2 = 10
5 s, τ = 104 s; 10-τ2 = 10

5 s, τ = 2×104 

s; 11-τ2 = 10
5 s, τ = 5×104 s 1,2,3-solid; 4,5,6,7-dash; 

8,9,10,11-dot 

 

The considered curves are divided into a some areas 

where the local minimum and maximum positions are 

determined by τ2 and τ, while the angles of slope of the 

curves are governed by the ratio of these time values. 

It presents an interest to consider the value of the 

phase difference between the cases with zero τ2 and τ, as 

well as non-zero τ2 and τ for the fixed frequency: 
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In Figures 6 and 7 we show the calculated differences 

between the rate and pressure phase for the cases of τ2 = 

0, τ = 0 and τ2≠0, τ≠0. The calculations were performed 

for the values rс
2
/χ1 = 1 sand transmissibility σ1 = 

1 d cm/cp. 

We see that the dependence of the difference (21) of 

the frequency has a local maximum and minimum, their 

location and the corresponding values are determined by 

the values of the times τ2иτ. 

Discussion 

It is a difficult to find the exact analytical solution for 

the unknown parameters τ2 and τ. However, the 

procedure of approximate calculation can be obtained 

from the analysis of experimental data. 

One can notice that, in natural conditions, the time 

parameters τ2 and τ are located in the interval 10
3
-10

5
 s. 

By definition τ2≥τ2 and, in practice, the corresponding 

ratio differs by 2-5 times. From Fig. 2-3 and 6-7, we see 

that with increase of frequency one can observe the 

following picture: Initially one can detect the parts 

depending on the time τ2, then, after the further increase 

of the frequency, other parts dependence on the time τ 

becomes significant. 
Taking into account the results of periodical pulse 

experiment sat relatively low frequencies (ωτ2<0.3) and 
using formula (19), one can find very good 
approximation for evaluation of the difference between 
the values of τ2 and τ times in the form of: 
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Expression (22) is easily derived from (19) and (21) 

using a combination of the time values τ2 = 0, τ = 0 and 

τ2≠0, τ≠0 and taking into account that for small values of 

the argument atan(ωτ)≈ωτ with the value of the relative 

error less than 0.03 at 0.3ωτ < and 
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when 
2

0.3ωτ < .The unknown values σ1 and complex 

ratio χ1/r
2
c are determined experimentally at low 

frequency of ωτ2<<1. 

In order to find the unknown τ2, one can use the fact 

that the phase differences ( )0

qp qp

τ

ω∆ ∆−  or 
qp

τ∆ have local 

extrema and their location are determined by the values 

of the times τ2 and τ. 

Actually, if one analyzes in detail the plots depicted 

in Fig. 3, 6, 7 or 8 at various values of the parameters τ2 

and τ, it is possible to derive the approximate formula for 

τ2 calculations in the conventional frequency range 

10
−6

<ω<10
−2

 rad/s. 

For example, Figure 8 shows the values ( )qp

τ

ω∆  for 

various τ2 and τ sets in semi-log scale for rс
2
/χ1 = 1 s. Let 

ω = ωmin is the value of frequency at the local minimum 

and ∆min is the corresponding difference of the rate and 

pressure phases. Studying the set of points {ωmin, ∆min} 

for different values of the time τ2 and τ, one can derive 

the following approximate formula for calculation of τ2: 
 

min

min
0.03 lg( 0.2)

min

55

2

10
10

ω

τ

ω

+
−

∆

≈
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Using expressions (22) and (23), one can determine 

the time values τ2 and τ, separately and, hence, the 

desired time τ1. 

Conclusion 

Determination of the filtration reservoir 

characteristics is an important task in the oil 
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development and hydrogeology. The values of these 

parameters can be calculated according to the unsteady 

hydrodynamic experiments, such as pulse sequences. 

Since these calculations are a class of the ill-posed 

inverse problems of mathematical physics and the 

number of defined parameters increases with the 

complexity of the dynamic models used, it is desirable to 

obtain the required values of the parameters in the results 

of independent experiments. In this study, the authors 

propose, in addition to the standard methods, an original 

procedure of the multi-frequency probe reservoir. We 

propose a method for determination of the τ2 and τ time 

parameters, entering the theory of filtration in the 

fractured porous media and associated with elastic 

parameters of the cracked-block subspace. The method is 

based on the analysis of the characteristics of amplitude 

and phase-frequency characteristics of the harmonic 

filtration pressure waves. In accordance with new 

mathematical expressions obtained, it allows comparing 

the received full-scale study, depending on model and 

possibilities allowing evaluating the possible values of 

the time dimension parameters (relaxation times) for a 

fractured porous reservoir. 

The formulas proposed by the authors are 

approximate but, nevertheless, they allow counting times 

τ2 and τ with accuracy of a few percent. The difference 

τ2−τ, in the proposed method is defined at the frequency 

range of 0.1<ωτ<0.3, which usually corresponds to the 

period of oscillations T∼10
5
. The approximate estimation 

of τ2 requires to be experiments performed at the higher 

frequencies 1<ωτ2<10. At the same time, the most of the 

experiments for the practical cases fall into a range 

10
−6

<ω<10
−2 

rad/s. 

It should be noted that expressions written above are 

correct for the harmonic oscillations in the stationary 

state when the rate and pressure form a linear systems. 

When ωτ<<1 and T>>τ1 we deal with classical equation 

diffusion type and can determine ε and rc
2
/χ and, in the 

high-frequency limit (ωτ>>1), we shall focus on 

overriding hydraulic duffusivity constant χ1* = χ1(τ2/τ).  

So, the detailed analysis of these curves allows to 

propose a method for evaluation of the time constants τ2 

and τ, which are important for understanding the 

filtration processes in fractured porous media. 

Acknowledgement 

We wish to acknowledge prof. M. Khairullin for 

useful discussions. 

Author Contributions 

Ovchinnikov Marat: Wrote the article as a leading 

author, formula, analysis and results interpretation. 

Kushtanova Galiya: Programming and calculation. 

Ethics 

This article is original and contains unpublished 

material. The corresponding author confirms that the 

other author has read and approved the manuscript and 

no ethical issues involved. 

References 

Barenblatt, G.I. and P. Zeltov Yu, 1960. Basic flow 

equations for homogeneous fluids in naturally 

fractured rocks. Doclady Akademii Nauk SSSR, 

132: 545-548. 

Buzinov, S.N. and D. UmrihinI, 1964. The Study of 

Wells and Reservoirs at Elastic Filtration Condition. 

1st Edn., Nedra, Moscow, pp: 273. 

Hassanzadeh, H., M. Pooladi-Darvish and S. Atabay, 

2009. Shape factor in the drawdown solution for 

well testing of dual-porosity systems. Adv. Water 

Resources, 32: 1652-1663. 

 DOI: 10.1016/j.advwatres.2009.08.006 

Johnson, C., R. Greenkorn and E. Woods, 1966. Pulse-

Testing: A new method for describing reservoir flow 

properties between wells. J. Petroleum Technology, 

18: 1599-1604. 

Molokovich, Y.M., 2006. Nonequilibrium Filteration 

and its Application in the Oil Field Practice. 1st 

Edn., Regular Andchaotic Dynamics, Moscow-

Izhevsk, pp: 214. 

Molokovich, Y.M., A.I. Markov and G.G. Kushtanova, 

2000. Development of Fractured Porosity 

Reservoir Unsteady Drainage. 1st Edn., 

Publishing House Regent, Kazan, pp: 156. 

Nakao, S., T. Ishido, K. Hatakeyama and K. Ariki, 2005. 

Analysis of pulse tests in a fractured geothermal 

reservoir-a case study at the Sumikawa field in 

Japan. Proceedings of the World Geothermal 

Congress, Apr. 24-29, Antalya, Turkey, pp: 24-29. 

Ovchinnikov, M.N. and A.Y. Zavidonov, 2008. 

Searching for an optimum frequency. Geore. 

Sources, 1: 21-22. 

Renner, J. and M. Messar, 2006. Periodic pumping tests. 

Geophys. J. Int., 167: 479-493. 

 DOI: 10.1111/j.1365-246X.2006.02984.x 

Van Golf-Racht, T.D., 1982. Fundamentals of fractured 

reservoir engineering. Elsevier, Amsterdam, 

 ISBN-10: 0080868665, pp: 732. 

Warren, J.E. and P.J. Root, 1963. The behavior of 

naturally fractured reservoirs. Society Petro. Eng. J., 

3: 245-255. 


