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Abstract: Air quality is of great concern to the public. Airborne pollutants, 

such as carbon monoxide (CO), carbon dioxide (CO2) and Particulate 

Matter (PM), negatively impact people’s living conditions. In particular, 

vehicular exhaust is a major source of these pollutants. Extensive previous 

research has contributed to modeling traffic pollutant emission. Popular 

approaches include computational simulation-based methods, which have 

been dominant in studies related to traffic emissions. However, 

simulation-based methods may not reflect changes in traffic and 

environmental factors in a real world situation. In order to address this 

and other limitations, our study employs real world traffic, meteorological 

and geographical data. In order to fully utilize this data and apply it to 

traffic pollutant emission and dispersion modeling, this study proposes a 

framework to integrate a traffic emission model, dispersion model and 

multi-source public data to best estimate traffic emissions and dispersion. 

The framework is based on the concept that traffic sensors + meteorology 

sensors = emissions sensors. The results from case studies show that the 

concept is feasible and that air pollutants can be estimated over a large 

area. Sensitivity analyses on atmosphere stability and surface roughness 

showed not only the effectiveness of the proposed framework, but also 

demonstrated potential applications for inter-disciplinary research 

including public health and land-use planning. 

 

Keywords: Vehicle Pollutant Emission, Pollutant Dispersion, Data 

Integration, Geographic Information System (GIS) and Visualization 

 

Introduction 

Air quality is of great concern to the public and 

managing agencies. Airborne pollutants, such as 

carbon monoxide (CO) and Particulate Matter (PM), 

negatively impact people’s living conditions. For 

example, nitrogen oxides (NOx) and PM, which are 

common pollutants, may damage the respiratory 

system (e.g., causing fluid build-up in lungs and 

shortness of breath). Additionally, CO2 from vehicle 

emissions may lead to climate change and associated 

environmental problems including rising sea levels. 

Vehicular exhaust is one of the major sources of these 

pollutants (Raaschou-Nielsen et al., 2001; CDPH, 

2014) and commonly considered by city planners and 

transportation planners as one of the major 

environmental factors to consider when conducting 

short- and long-term development planning. 

A direct approach to measuring the air pollutant 

concentration produced by traffic is to use emission 

monitoring sensors. However, this approach may not be 

appropriate for monitoring large areas due to the cost of 

sensor installation and usage. Hence, ample research has 

contributed to modeling traffic pollutant emissions 

instead. During early research stages, traffic volume 

information is the major variable for estimating traffic 

pollutant emissions. Aldrin and Haff (2005) proposed a 

statistical model to quantify the empirical relationships 

between traffic volume, meteorology data and the level 

of pollution. Xia and Shao (2005) estimated traffic 

pollution on a road network where traffic flow was 

simulated by their proposed Lagrangian model. A 

sensitivity analysis estimating the amount of air 

pollution was conducted in different traffic flow 

scenarios. Berkowicz et al. (2006) used the COPERT 

model to estimate traffic emissions by using the daily 
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average traffic volume. Their traffic volume data was 

collected from both automated and manual traffic 

detectors. Berkowicz et al. (2006) pointed out that travel 

speed information, although not considered in their 

study, would significantly affect traffic emission 

estimation in real-world situations. In recent years, 

traffic speed information has received growing attention. 

Hatzopoulou and Miller (2010) used an activity-based 

travel demand model to generate vehicle activities, 

instead of conventional traffic flow simulation models 

without speed information. Smit et al. (2008) estimated 

traffic emission inventories by taking advantage of 

average speed distributions. The required traffic data, 

including speed data and traffic volume, was generated 

by a macroscopic dynamic traffic assignment model. 

Lee et al. (2012) used Origin and Destination (O-D) 

demand inputs to produce detailed vehicle movement 

information over a network through a microscopic 

traffic simulation model (TransModeler). A 

combination of a traffic emission estimation model 

(MOVES) and a regional air pollutant dispersion model 

was then used to calculate traffic emissions and 

dispersion. Ishaque and Noland (2008) analyzed the 

level of pedestrian exposure to traffic emissions. A 

micro-simulation model was utilized to produce the 

details of vehicle and pedestrian movements, including 

individual travel speed. The model output was used as 

an input of traffic emissions estimation. 

Previous research (Aldrin and Haff, 2005; 

Berkowicz et al., 2006; Jin and Fu, 2005) has primarily 

focused on modeling either traffic emissions or 

emissions dispersion separately. Traffic emission data is 

one of the major inputs for air pollutant dispersion 

analysis. Dispersion analysis results could help better 

understand the impact of emissions on public health 

across geographical regions. Hence, an increasing 

amount of research (Hatzopoulou and Miller, 2010;    

Amirjamshidi et al., 2013) has integrated both traffic 

emission and dispersion analyses to investigate their 

chain reaction. Amirjamshidi et al. (2013) 

incorporated regional travel demand models and a 

microscopic traffic simulation model to estimate 

necessary traffic-related data. The output was 

streamed into a vehicle emission model to produce 

traffic emission data; then an air pollutant dispersion 

model was applied to calculate dispersion using both 

the traffic emission data and the estimated 

predominant wind direction that was obtained from a 

meteorological model. With the objective of analyzing 

health impacts caused by heavy trucks, Lee et al. 

(2012) combined a microscopic traffic simulation 

model with an air pollutant dispersion model to assess 

air quality and evaluate the impact of traffic emissions 

on public health. Hourly meteorological data was 

purchased to estimate the air pollutant dispersion. 

The limitations of previous studies are summarized 

below: 

Computational traffic simulation modeling has 

frequently been used in traffic emission-related studies 

(Xia and Shao, 2005; Amirjamshidi et al., 2013). O-D 

data is the main input for estimating traffic emissions at 

a network or regional level. Travel demand models, such 

as conventional four-stage models and activity-based 

models, use O-D data to simulate detailed vehicle 

movements over networks. On the other hand, 

microscopic traffic models are typically used to produce 

vehicle movement details when local traffic volume 

information is unavailable. 

With the increasing coverage of traffic sensors on 

roadways and the growing availability of personal device 

data, Intelligent Transportation Systems (ITS) have 

become one of the major traffic data sources. However, 

ITS data has been used primarily for traffic operation and 

management (Wu et al., 2011; Ma et al., 2011). Li et al. 

(2009) utilized GPS data from transit buses to estimate 

the emissions caused by buses. Jeng et al. (2013) 

employed inductive loop detector data to estimate traffic 

emissions on a freeway corridor. These ITS data-based 

research projects specifically focused more on traffic 

emission modeling instead of proposing an integrated 

emission and dispersion modeling framework. 

Meteorological data was not widely available to 

previous researchers. Amirjamshidi et al. (2013) and 

Berkowicz et al. (2006) had to estimate meteorological 

data instead of collecting it in the field. Therefore, 

meteorological data is generally assigned fixed values 

and unable to reflect the changing weather condition 

over time. Jamriska et al. (2008) pointed out that 

meteorological information, especially wind direction, 

greatly affected the model results for traffic emission 

generation and dispersion. 

Finally, few studies on evaluating traffic pollution 

have considered atmospheric stability conditions. 

Atmospheric stability is an essential component in air 

pollutant dispersion, because atmospheric conditions 

may change greatly during a short time period. 

Overall, few studies have developed an integrated 

framework that handles both real-world traffic data and 

meteorological data to estimate traffic pollutant 

emissions and dispersion. The main challenges include 

data availability and modeling framework design. The 

most recent and also the most relevant study for 

highways were presented by Samaranayake et al., 

(2014). The authors proposed a novel air pollution 

estimation method that modeled traffic conditions, 

traffic-induced air pollution emissions and pollution 

dispersion. Their study focused on developing a 

prototype system rather than on applying it. Hence, 

sensitivity analyses for modeling parameters were not 

thoroughly addressed in their study.  
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In our study, we propose an integrated modeling 

framework combining traffic emission models and air 

pollutant dispersion models to estimate traffic emissions 

and dispersion across a large region. Unlike conventional 

approaches in which traffic simulation and 

meteorological models are jointly used to estimate traffic 

and meteorology data, this study employs various real 

world, real-time data sources in place of simulated data 

in order to best estimate traffic emissions and dispersion. 

Since it is not realistic and cost effective to install 

pollutant emission sensors at high density along all 

highways in a region, the proposed integrated modeling 

framework implements the concept of traffic sensors + 

meteorology sensors = emission sensors to minimize 

cost. Combining data from traffic and meteorological 

sensors, which are relatively low-cost, effectively 

produces the information provided by emission sensors. 

The remainder of this paper is organized as follows. 
An overview of the proposed framework will be 
introduced in the next section. Next, the emission and 
dispersion modeling process will be explained followed 

by the data description. After sensitivity analyses based 
on the proposed integrated modeling framework are 
presented, conclusions and future work will be covered 
in the final section. 

Integrated Modeling Framework 

The proposed integrated modeling framework consists 

of two major components, namely modeling methodology 

and data source integration. The proposed framework is 

designed to evaluate the magnitude of vehicle emissions 

and estimate pollution concentrations in a large region. 

Therefore, the modeling work can be further split into 

three models, including a traffic pollutant emission model, 

pollutant dispersion model and visualization model. The 

data source integration includes traffic data collected from 

Intelligent Transportation Systems (ITS) infrastructure, 

meteorological data and geographical data. 

Figure 1 demonstrates the integrated framework, 

including all of the data sources and relevant models. 

Each major component will be explained in detail in the 

following sections. 

Modeling Methodology 

Traffic Emission Modeling 

Several emission models have been developed 

worldwide to estimate traffic emissions. The World 

Road Association (PIARC), a non-profit organization, 

proposed the PIARC methodology to estimate vehicle 

emissions (PIARC, 2012). The European Environment 

Agency (EEA) has contributed to developing a software 

program, COPERT, which calculates air pollutants from 

roadways (Gkatzoflias et al., 2009). In the United States, 

the California Air Resources Board’s Emission FACtors 

(EMFAC) model (EMFAC, 2007) and the National 

Cooperative Highway Research Program’s 

Comprehensive Model Emission model (Barth et al., 

2000) have been developed to calculate the emissions 

produced by cars, trucks and motorcycles. 

 

 
 

Fig. 1.  Integrated framework for traffic pollutant emission and dispersion modeling 
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The US Environmental Protection Agency (EPA) has 

developed the MOBILE model for estimating 

emissions of hydrocarbons, CO and other pollutants 

from vehicles. Recently, the MOtor Vehicle 

Emissions Simulator (MOVES, 2011) model has been 

developed in place of MOBILE. The EPA 

recommends using the new traffic emission model, 

MOVES, as opposed to others (e.g., MOBILE) to 

quantify the air pollution caused by vehicles. The 

EPA believes MOVES can predict a much more 

comprehensive range of pollutants. Three types of 

vehicle movement built into MOVES are used to 

estimate traffic emissions using: (a) Roadway link 

average speed; (b) link driving schedule; and (c) 

detailed vehicle operating mode. Our study used 

option (a) because of the ITS data availability and the 

suitability for a large network (Lee et al., 2012). 

A two-step approach is used to estimate the total 

traffic emission inventory. The first step is to collect link 

speed and volume data from the ITS traffic detectors. 

The second step is to estimate the emission rate using 

MOVES model. These two steps are detailed in the 

following sections. 

Link Speed and Volume Data Collection  

A link is defined as a roadway segment bounded by 

two consecutive traffic sensors. The length of a 

particular link is a fixed value. The upstream and 

downstream traffic sensors on the link collect speed data. 

Link speeds can be estimated using the average of 

upstream and downstream speed. The instantaneous 

travel time estimation model (Li et al., 2006) refers to 

the average speeds as the link speeds. Assuming 

“vehicles passing the upstream traffic sensor travel with 

the average speed,” (Li et al., 2006) the traffic volume 

data from the upstream traffic sensor is used to represent 

the traffic volume on each of the links. 

Emission Rate Estimation 

Three essential variables used for generating 

emission rates in the MOVES model are (a) roadway 

type, (b) pollutant type and (c) traffic stream 

composition. Roadway and pollutant types are static 

variables but vehicle composition is a dynamic 

variable that is assumed to vary with time. 

Determining vehicle composition is critical because 

different types of vehicle release different amounts of 

pollutants. Vehicle types in the MOVES model are 

predefined according to the Federal Highway 

Administration’s (FHWA) classification schema 

(where 13 vehicle types are classified based on size 

and number of axles). Due to the data collection 

limitation, the vehicle classification information is 

temporarily not available in this study, but the data 

can be easily incorporated into the current framework 

once the classification data is ready. In this study, 

static vehicle composition information provided by the 

Missouri Office of Administration’s annual report was 

used (SMOA, 2013). Seven vehicle types defined in the 

vehicle composition information report are mapped to 

the FHWA classification schema. Each vehicle type, 

stated as typem, is assigned with a fixed value of 

percentage, |
itypep . Therefore, the number of vehicles by 

type on a link i can be calculated as |
mi typev p∗ , where vi 

represents the volume on link i. 

In order to estimate the emission rates (r), scenarios 

are created by joint use of vehicle types, unit traveled 

miles and single vehicle. The resulting traffic emission 

rates given vehicle types (typem) and corresponding 

speed (sn) are expressed as ,|
m ntype sr  with the unit “per 

mile per vehicle.” “These values include the rates for 

exhaust and evaporative emissions that occur while 

vehicles are on real roads” (MOVES, 2011). 

Traffic Emission Inventory Calculation 

Given a specific vehicle type and link speed, an 

emission inventory on a link is the product of emission 

rate, traveling distances and the number of vehicles. 

Equation 1 and 2 formulate the traffic emission 

inventory calculation. 

 

, ,| | |
m n m m ni type s i i type type sEI L v p r∗ ∗ ∗=  (1) 

 
7

,

1

| |
n m ni s i type s

m

EI EI
=

=∑  (2) 

 

Where: 

,|
m ni type sEI  = The traffic emission inventory on link i, 

given a specific vehicle type typem and 

speed sn 

vi = The number of vehicles running on the link; 

|
mtypep  = The percentage of vehicles by types 

,|
m ntype sr  = The emission rate given a specific vehicle 

type typem and speed sn 

|
ni sEI  = The traffic emission inventory on link i, 

given a specific vehicle speed sn  

 

Emission Dispersion Modeling 

As described in the Introduction section, previous 

research (Amirjamshidi et al., 2013), used both total 

traffic emissions and air dispersion models to estimate 

pollutant dispersion with wind velocity and wind 

direction information. Our study includes two 

additional essential factors in the modeling process: 

Atmospheric stability and surface roughness. These 
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two factors have previously been ignored when 

modeling emission dispersion. 

Traffic Pollutant Dispersion Estimation 

Traffic pollutant dispersion estimation begins with 

estimating the magnitude of traffic emissions. The 

emission amount is then coupled with atmospheric 

conditions (e.g., wind speed and direction and 

atmospheric stability) to estimate the pollutant 

concentration at various locations. Several traffic 

pollutant dispersion models, such as AERMOD and 

CALPUFF, have been developed to estimate pollution 

from point sources, area sources and volume sources. 

Since traffic is a type of line pollution source, this study 

used the line-based air pollutant dispersion model, 

CALINE3, (Benson, 1979) to estimate pollutant 

concentrations because it is designed to estimate the 

concentrations of freeway traffic pollutants. Moreover, 

the EPA describes the advantages of CALINE3 by 

stating that “… this steady-state Gaussian model can be 

applied to determine air pollution concentrations at 

receptor locations downwind of ‘at-grade,’ ‘fill,’ 

‘bridge,’ and ‘cut section’ highways located in relatively 

uncomplicated terrain.” 

Many parameters in the CALINE3 model determine 

the pollutant concentration at receptors (individual 

monitoring sites). For example, “averaging time” acts as 

a temporal attribute but also affects the pollutant 

concentration. This occurs because the distribution of 

pollutants tends to change rapidly depending on 

atmospheric conditions including wind velocity and 

direction. Besides the temporal parameter, the pollutant 

concentration of a receptor is also determined by the 

emission inventory of pollutants, the location of the 

receptor, wind velocity, wind direction, surface 

roughness and the degree of atmospheric stability.  

Most of the information used in this study is 

geographically continuous, such as surface roughness, 

wind direction and pollutant concentration. To increase 

computational performance and improve visualization, 

the continuous surface of the study region, the Greater 

St. Louis area, was discretized into a 150*150 matrix 

(equivalent to 22,500 unit areas). The center point of 

each unit area was used as the location of the receptor. 

The CALINE3 model was applied to each unit area to 

compute the traffic pollutant concentration. The 

pollutant concentration in a unit area could be 

generated by multiple roadways. Therefore, the total 

pollutant concentration of a unit area is the sum of the 

pollutant concentration from surrounding highways. 

Equation 3 and 4 present the traffic pollutant dispersion 

estimation process. 

 

 (  ) | 3link iPCU unit area CALINE=  (3) 

|  

1

(  )
N

link i

i

PCU unit area PCC
=

=∑  (4) 

 

Where: 

PCC|link i = The pollutant concentration of a unit area 

caused by running vehicle on link i 

PCC  = The accumulated pollutant concentration 

based on individual links 

 

Atmospheric Stability Measurement 

As stated in the Introduction section, only a limited 

amount of previous research addressed atmospheric 

stability in the air pollutant dispersion modeling 

process. Because meteorological data is widely 

available, atmospheric stability can be measured. 

Turner (1994) recommended different methods to 

measure atmospheric stability, such as Pasquill-Gifford 

stability categories based primarily on solar radiation, 

surface wind velocity and direction. Wind velocity and 

direction are observed and monitored by meteorology 

sensors in many locations. However, solar radiation 

information was unavailable in our study. Because of 

this, our study adopted the atmospheric stability 

classification system used by the Nuclear Regulatory 

Commission (Slade, 1968). In this system, atmospheric 

stability classes are based on the standard deviation of 

horizontal wind direction. Table 1 shows the 

atmospheric stability classes corresponding to the 

standard deviation range of horizontal wind direction. 

Six atmospheric stability classes are defined on the 

basis of horizontal wind direction rate of change. 

Stability Class A refers to the most unstable condition 

while Stability Class G refers to the most stable 

atmospheric condition. 

The standard deviation of wind direction can be 

calculated using Equation 5. 

 

( )
2

1

1
*

N

i

i

wd
N

θσ µ
=

= −∑  (5) 

 

Where: 

σθ = The standard deviation of the observed 

horizontal wind direction in a time period 

wdi = The individual observed horizontal wind 

direction (in degrees) 

N = The number of observed wdi in a time period 

µ = The average value of the N observed wdi 

 

Surface Roughness 

The CALINE3 user’s guide (Benson, 1979) was 

referenced in order to determine the value of surface 

roughness. Table 2 lists the recommended values of 

surface roughness depending on the surface type. 
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Table 1. Atmospheric stability class with the range of standard deviation of wind direction 

Stability class Standard deviation of horizontal wind direction (degree) 

A σθ ∈ (22.5, +∞) 

B σθ ∈ (17.5, 22.5] 

C σθ ∈ (22.5, 17.5] 

D σθ ∈ (7.5, 12.5] 

E σθ ∈ (3.75, 7.5] 

F σθ ∈ (2.0, 3.75] 

G σθ ∈ (0, 2.0] 

 
Table 2. Surface roughness for different land use (excerpt from page 12 (Benson, 1979)) 

Type of surface Surface roughness values (cm) 

Smooth mud flats 0.001 

Tarmac (pavement) 0.002 

Dry lake bed 0.003 

Smooth desert 0.030 

Grass (5-6 cm) 0.750 

Grass (4 cm) 0.140 

Alfalfa (15.2 cm) 2.720 

Grass (60-70 cm) 11.40 

Wheat (60 cm) 22.00 

Corn (220 cm) 74.00 

Citrus orchard 198.0 

Fir forest 283.0 

Single family residential  108.0 

Apartment residential 370.0 

Office 175.0 

Central business district 321.0 

Park 127.0 

 

Study Data  

Model implementation and emission estimates are 

highly dependent upon data availability. Unlike 

conventional approaches, data used in this study was 

collected from public instead of propriety sources. Since 

the data was publicly available to users, one can expect 

that the applicability of the proposed integrated 

framework would be increased. 

Traffic Data 

Major freeways and highways in the Greater St. Louis 

area were covered by over 1000 traffic sensors operated 

by the Missouri Department of Transportation (MoDOT). 

These traffic sensors monitored traffic conditions in the 

region for traffic operations purposes. They were 

generally spaced one mile apart on roadways. Figure 2 

depicts the sensor locations in the region. Three 

fundamental traffic parameters-volume, speed and 

occupancy (percentage of time the detector is occupied by 

passing vehicles)-had been collected every 30 sec and sent 

to the University of Arizona Smart Transportation 

Laboratory through a File Transfer Protocol (FTP) server. 

Open Data 

Open data is a relatively new concept of data 

acquisition. Open data is defined as data that can be 

freely accessed by the public and reused and 

redistributed by anyone without requesting copyright 

permissions (OKF, 2013). The meteorological and 

surface roughness data used in this study were open data. 

Meteorological Data 

Meteorological data can be obtained from 
meteorological sensors. Wunderground (2014) 
provided meteorological data to the public and 
managed a variety of meteorological sensors. The 
sensors covered the entire greater St. Louis area and 
the unit of measured area was based on zip code. The 
large coverage area of the meteorological sensors 
made pollutant dispersion estimation over a large 
region feasible. The meteorological information 
included wind velocity, wind direction and sun 
radiation, all updated every five minutes. 

Surface Roughness Data 

Surface roughness is not constant across a large 

region. Since the study region was discretized into 

150*150 (22,500) unit areas, surface roughness 

information had to be manually collected by interpreting 

satellite images provided by Google Earth. Since land 

use information (e.g., apartment, residential and parks) 

rarely changes over short time periods, the surface 
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roughness data from the images was considered to be 

essentially static information. 

Traffic Pollution Dispersion and Sensitivity 

Analysis 

This section describes the concept of traffic sensors + 

meteorology sensors = emission sensors using the 

proposed integrated modeling framework. It should be 

noted that every possible pollutant in existence (e.g., CO2, 

NOx and PM) were incorporated into the modeling 

framework, but only CO was used to demonstrate the 

performance of the proposed framework. Traffic pollution 

dispersion maps are presented first to demonstrate how 

pollution concentration varies over time and two 

sensitivity analyses on atmospheric stability and surface 

roughness are then presented because these two factors 

were not addressed in previous studies. 

Traffic Pollution Dispersion Maps 

Figure 3 shows three traffic pollution dispersion 

maps using meteorological data from May 6, August 15 

and October 24, 2013. The wind velocities and directions 

during the three days were significantly different; the 

wind on May 6, 2013 was fairly light with an average 

wind velocity of 1 m sec
−1

 from the north and Class G 

atmospheric stability; the wind on the other two days 

was relatively strong and atmospherically unstable. As 

Fig. 3 shows, (1) pollution were more concentrated along 

roadways when the wind was light; and (2) pollution was 

dispersed along the wind direction in Fig. 3b, while, the 

pollution were dispersed on both sides of the roadways 

when the atmosphere was unstable in Fig. 3c. 

Sensitivity Analysis: Atmospheric Stability 

Atmospheric stability plays an important role in 

estimating air pollutant dispersion. To evaluate the 

impact of atmospheric stability on traffic pollutant 

dispersion, two scenarios were developed. Both 

scenarios used data collected on July 11, 2012 from 4-5 

pm. Scenario 1 used the most stable atmosphere 

condition (Class G), while Scenario 2 used the most 

unstable atmosphere condition (Class A). Figure 4 

presents the traffic pollutant emission and dispersion 

patterns for these two scenarios. 

For both Fig. 4a and 4b, traffic pollutants were 

concentrated along the roadways, especially around 

interchanges. The polluted areas in Fig. 4b dispersed 

more widely due to the unstable atmospheric condition. 

It was found that 7049 unit areas in Fig. 4b were polluted 

with a concentration greater than 42/m
3
 in contrast to 

6219 unit areas in Fig. 4a. The polluted region increased 

by approximately 13.3% due to the decline of 

atmospheric stability. 

 

 
 
Fig. 2. Locations of traffic sensors in the Greater St. Louis area (Background image is from ArcGIS Online World Topographic Map) 
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 (a) (b) 

 

 
(c) 

 
Fig. 3. Pollution dispersion maps in the greater St. Louis area (a) Atmospheric stability: Class G  (the most stable case); wind 

velocity: 1 m/s; wind direction: north; 1-2 pm on May 6 (b) Atmospheric stability: Class C; wind velocity: 4 m/s; wind 

direction: northeast; 1-2 pm on Aug. 15, 2013 (c) Atmospheric stability: Class A (the most unstable case); wind velocity: 

5m/s; wind direction: north; 2-3 pm on Oct. 24, 2013 

 

It was also found that the less-concentrated traffic 

pollutants were more evenly dispersed in the unstable 

atmosphere condition. To compare the difference, two 

areas of interest, Area A and Area B, are marked in Fig. 4. 

Area A was a residential area surrounded by Interstate 70 

and Interstate 170, whereas Area B was a residential area 

that was surrounded by more freeways (i.e., Interstate 44, 

Interstate 64 and Interstate 270). Table 3 shows the air 

pollutant statistics in the two areas. As expected, Area A 

was impacted by traffic pollutant because this area was 

surrounded by freeways. The average pollutant 

concentration in the two areas under the stable condition 

was 270.1 and 489.2 µg/m
3
, respectively. The average 

concentrations under the unstable atmosphere condition 

were decreased by 15.0 and 5.0%, respectively. Therefore, 

the traffic pollutants dispersed more when the atmospheric 

condition became unstable. Atmospheric stability had a 

higher impact on Area A (the area with low pollutant 

concentration). The result was consistent with results by 

Snow (2002), which showed that traffic pollutants would 

be trapped in the neighborhoods along roadways when the 

atmospheric condition is stable. 

Moreover, atmospheric stability had a much greater 

impact on the standard deviation of pollutant 

concentration in Area B. The standard deviation 

decreased by 60.2% due to atmospheric instability, 

indicating that pollutants dispersed faster when the 

concentration was high and atmospheric stability was 

low. It is worth mentioning that due to relatively large 

analysis cells and the effects of surface roughness, the 

colors representing the pollution concentrations in both 

Fig. 3 and 4 may be visually discontinuous. 
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Fig. 4. Atmospheric stability sensitivity analysis (a) Atmospheric stability: Class G (the most stable case); wind velocity: 2 m/s; wind 

direction: north; 4-5 pm on July 11, 2012 (b) Atmospheric stability: Class A (the most unstable case); wind velocity: 2 m/s; 

wind direction: north; 4-5 pm on July 11, 2012  

 

Sensitivity Analysis: Surface Roughness 

Pollutants disperse differently on surfaces with 

different roughness. Three scenarios were created to help 

understand the impacts of surface roughness on pollutant 

dispersion. Forest Park was selected as the area of 

interest (with an area of 5.55 km
2
) because it was a 

major recreational green area in St. Louis: 

 

• Scenario A (Baseline): The surface roughness 

remains as park type (roughness value: 127) 

• Scenario B (Pavement): Forest Park covered by 

pavement (roughness value: 0.002) 

• Scenario C (Fir Forest): Forest Park covered by fir 

trees (roughness value: 283) 
 

As shown in Table 4, the average pollutant 
concentration was highest in Scenario C and lowest in 
Scenario B. These results indicated that the fir forest can 
limit pollutant dispersion and capture more pollutants in 
the area. In contrast, when no park exists in the area, the 
pollutants would be more efficiently dispersed. 
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Table 3. Pollutant statistics comparison 

 Area A   Area B 

 ------------------------------------------ ----------------------------------------- 

Atmospheric stability Stable Unstable Decreased by Stable Unstable Decreased by 

Average pollutant concentration (µg/m3) 270.1 229.5 15.0% 489.2 464.9 5.0% 

Standard deviation of pollutant concentration (µg/m3) 141.9 125.2 11.8% 295.6 117.6 60.2% 

 

Table 4. Pollutant concentration comparison between scenarios 

Scenario Average pollutant concentration (µg/m3) Increase/Decrease  

A (Baseline) 377.8 -- 

B (Pavement) 370.4 -2.0% 

C (Fir Forest) 379.4 +0.4% 

 

Conclusion 

Air quality is of great concern to the public and 

managing agencies. Pollutants, such as CO, CO2 and 

PM, can negatively impact individual health. Vehicular 

exhaust is a major source of these pollutants. In order to 

quantify vehicle pollutants, a considerable amount of 

previous research has contributed to modeling traffic 

pollutant emission. Computational simulation-based 

methods have been popular due to the limited 

availability of traffic and meteorological data. The 

simulation would become technically not flexible when 

study areas are relatively large.  

Since traffic and meteorological data has recently 

become much more available, this study proposed the 

concept of traffic sensors + meteorology sensors = 

emission sensors to estimate traffic pollutant emissions 

over a large area. The concept was proposed to combine 

real world data from traffic and meteorology sensors to 

technically compensate for the limited availability of 

emission sensors in a large area. An integrated modeling 

framework was therefore proposed to implement the 

concept. The framework incorporated conventional 

traffic and meteorological data to estimate traffic 

pollutant emission and dispersion over a large area. Two 

primary existing emission-related models were included 

in the framework: The MOVES model and CALINE3 

model. The MOVES model was used to generate the 

emission rates based on average vehicle speed on 

freeways. Then, the total amount of pollutant emissions 

was estimated by incorporating freeway traffic data and 

the emission rates from the MOVES model. The 

CALINE3 air pollutant dispersion model was used to 

estimate pollutant dispersion along a regional freeway 

network. Rather than using conventional simulation-

based approaches to obtain traffic and meteorological 

data, this study utilized the real world data. This data 

(including wind direction and surface roughness) and the 

calculated pollutant emissions were streamed into the 

CALINE3 model as inputs. 

The results from the proposed traffic pollutant 

emission estimation and dispersion framework are 

summarized below: 

• Typically, primary inputs for conventional 

simulation-based methods of estimating vehicle 

emissions have included Origin-Destination (O-D) 

traffic information. Detailed vehicle movements on 

roadways would be simulated and then vehicle 

emissions could be estimated using these 

movements. Our study used real world traffic data 

instead, along with meteorological and geographical 

data. Using these inputs and relevant emissions 

models, traffic pollutant emissions could be more 

accurately estimated than by simply using 

conventional simulation-based methods 

• Pollutant emissions caused by traffic were estimated 

in the Greater St. Louis area using the proposed 

framework. It is worth mentioning that the proposed 

framework was designed for roadway vehicle 

emissions, which are a major pollution source. 

However, the overall pollution in the Greater St. 

Louis area could be estimated by considering other 

pollution sources (e.g., pollution from industries). 

Future work could focus on integrating other 

pollution sources into the current framework in order 

to estimate overall pollution across a large region 

• One of the major products from the framework, the 

pollutant dispersion map, has many potential 

applications. The sensitivity analyses demonstrated the 

applicability of this framework by implementing the 

three scenarios. The results of the sensitivity analyses 

clearly indicated that the forests can limit pollutant 

dispersion and retain more pollutants. Therefore, land 

with different surface roughness values can affect 

pollutant dispersion. These results could be useful for 

future land-use planning and guidelines, if a set of 

emission dispersion maps could be produced using 

yearlong traffic and meteorological data 

• The pollutant dispersion maps also showed areas 

where the public would be most exposed to traffic 

pollutants 

• Overall, the integrated platform provides many 

possibilities for applications in inter-disciplinary 

research. To further improve the framework, future 

work could focus on investigating different air 



Shu Yang et al. / American Journal of Environmental Sciences 2016, 12 (3): 140.151 

DOI: 10.3844/ajessp.2016.140.151 

 

150 

pollutant dispersion models and evaluating the 

interactions between different pollutants. 

Furthermore, the framework could be implemented 

in a system to monitor real-time pollutant dispersion 

or predict future pollutant dispersion trends 
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