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ABSTRACT 

This study investigated how to utilize multiple frequency components of pressure data from periodic pulse 
tests to estimate the intra-well permeability and compressibility distribution and also the presence of 
heterogeneities in a real field case. Periodic well testing is a technique in which injection or production pulses 
of a fluid are applied to a well in a periodic fashion. One of its main advantages is that ongoing operations do 
not have to be interrupted during the test as the superposed harmonic components can be identified using 
Fourier analysis. Further, modeling calculations are much faster than calculations in the time domain as no 
time-stepping is required and only the frequencies observed in the test need to be evaluated. We applied an 
earlier developed numerical code in the frequency domain to evaluate periodic-test results in a shallow aquifer 
and obtained a good match between data and calculations. The interpreted formation heterogeneity is in line 
with the local geology. Joints of various orientations constitute the main hydraulic conduits of the tested 
subsurface but they do not directly connect the wells. Thus communication between the wells has to be 
established through low-permeability features. The interwell periodic testing has corroborated the geological 
understanding of the aquifer and helped understanding the fluid flow pattern.  

 

Keywords: Periodic Well Testing, Harmonic Pulse Testing, Well Connectivity, Fourier Transformation, 

Aquifer Heterogeneity  

1. INTRODUCTION 

Well testing is a valuable source of information on 

reservoir properties and a lot of work has been done 

and is being performed in this realm (Kruseman and 

Ridder, 1990; Horne, 1995; Fetter, 2001; Bourdet, 2002; 

Gringarten, 2008; Fokker et al., 2005; Beretta et al., 

2007; Benetatos and Viberti, 2010; Viberti, 2010;   

Verga et al., 2011; 2012; Cancelliere and Verga, 2012). 

Two issues remain which need further attention in well 

test analysis: the inclusion of reservoir heterogeneity 

and the treatment of rate variations. Reservoir 

heterogeneity which cannot be handled with traditional 

analytical methods is usually approached using 

numerical techniques (Neuman et al., 2004; Copty and 

Findikakis, 2004; Ye et al., 2004; Houze et al., 2010); 

rate variations are approached with deconvolution 

techniques (Schroeter et al., 2004; Gringarten, 2010).  
Periodic pulse testing in the way we presently apply 

it addresses these two issues. Periodic pulse testing is a 
form of testing in which the flow rate is varied a number 
of times with a fixed frequency and amplitude. Pulse 
testing was first proposed by Johnson et al. (1966); other 
authors have later elaborated on the idea and particularly 
on the benefits of periodic pulsing (Kuo, 1972; Black 
and Kipp, 1981; Marschall and Barczewski, 1989; Rosa 
and Horne, 1997; Hollaender et al., 2002; Renner and 
Messar, 2006; Rochon et al., 2008; Ahn and Horne, 
2010; Fokker and Verga, 2011; Fokker et al., 2012). The 
periodic pulses consist in the repetition of two different 
rates at regular intervals. Pulses are created in one of the 
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wells, called active well or pulser well and the pressure 
response can be measured both in the pulser well and in 
observation wells, also called responders. Because pulse 
tests do not require the observation wells to be shut-in, 
only limited disturbance is created to production or 
injection operations. The duration of the pulse and the 
flow rates are estimated a priori on the basis of the 
expected reservoir characteristics to ensure that a 
pressure variation can be detected at the responders. In 
all cases the amplitudes of the pulse test response 
measured at the observation wells are small, frequently 
less than 1 bar and sometimes less than 0.1 bar. The test 
duration may be longer than for a simple interference test 
because several periods are required for the frequency 
analysis, but the advantage is that the oscillating 
response due to repeating pulses is easier to identify in a 
noisy reservoir environment than a single pulse 
interference signal and that it is less affected by a 
possible drift of the pressure gauge.  

The analysis of the distinct frequencies in the 

pressure response requires a harmonic approach to the 

pulse test interpretation (Renner and Messar, 2006; Ahn 

and Horne, 2010; Fokker and Verga, 2011). Fourier 

transformation unravels the signal by picking out the 

imposed frequencies and the corresponding response 

function. The identified amplitude and phase responses 

provide information about the reservoir properties in the 

volume of investigation. The amplitude response 

represents the signal strength in relation to the imposed 

signal; the phase shift represents its relative delay. In 

contrast to conventional well testing analysis, neither 

pressure derivative analysis nor deconvolution is required. 
The interpretation of periodic pulse tests, based on 

the analytical solution of flow equations in the frequency 
domain, can be successfully applied to multiphase flow 
in anisotropic formations (Fokker and Verga, 2011). 
Ahn and Horne (2010) developed a solution for 
periodic testing that accounts for radial multi-composite 
reservoirs. To be able to obtain reliable results in more 
complicated heterogeneous systems we recently 
developed a numerical simulator in the Fourier space 
(Fokker et al., 2012). In this study we report on the 
application of this simulator to results of a field study 
(Renner and Messar, 2006). The original interpretation 
using analytical expressions for a homogeneous reservoir 
yielded highly varying results for the effective 
transmissibility and the effective storativity for the range 
of imposed pumping frequencies. This variability 
motivated us to use the same data in the present study in 
order to explore to what extent reservoir heterogeneity 
can explain all the measurements simultaneously and to 
what extent the characteristics of the heterogeneity can 
be resolved from such data sets.  

2. MATERIALS AND METHODS 

2.1. Numerical solution in the Fourier space  

A comprehensive description of the numerical 
solution scheme is provided in Fokker et al. (2012). Here 
we only give the main line of thought and the extension 
presently applied. We consider a heterogeneous reservoir 
with space-dependent permeability k containing a 
slightly compressible fluid. The fluid pressure p obeys a 
diffusion Equation (1):  
 

( )pk
t

p
c ∇⋅∇=

∂
∂

µφ  (1) 

 

where, Φ, c and µ denote porosity, fluid compressibility 

and fluid viscosity, respectively. Boundary conditions at 

the reservoir edge are a constant pressure for an open 

reservoir and no flow for a closed reservoir.  
For water, compressibility and viscosity are nearly 

independent of pressure in the range of hydrological 
applications and thus the diffusivity equation is linear. 
The linearity allows for treating the combined pressure 
solution of many frequency components as a 
superposition of the individual contributions and each 
harmonic component pω(x, t) = Pω(x)e

iωt
 can be 

considered independently. We evaluated the time 
derivative and incorporated the source term qω(t) = 
Qωe

iωt
 to obtain an equation in the frequency domain 

without explicit time dependence. In addition to our 
earlier work we also incorporated a wellbore storage 
coefficient Cw = cfVwell in the equation for the cell 
containing the pulser. We then have: 
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Equation (2) can be discretized by the finite 

difference method so that a numerical solution in the 
spatial domain can be obtained independently for each 
frequency. We have used a 2D implementation, but the 
approach is fully applicable to 3D.  

Simulation results can be compared with real data in 
terms of amplitude ratio and phase shift. The amplitude 
ratio Aω is defined as the ratio between the pressure 
amplitude and the rate amplitude for the corresponding 
frequencies; the phase shift ϕω is defined as the 
normalized time delay between the pressure and the rate 
for the corresponding frequencies (Equation 3):
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Fig. 1. Borehole logs of wells BK1 and BK3 with indication of the dipping angle of the layers also constituting one of the joint 

systems present 
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2.2. Aquifer Test Details  

We re-evaluate previously presented experiments in 

three shallow boreholes penetrating a jointed sandstone 

formation (Renner and Messar, 2006). Pumping tests had 

been performed in a triangle of three water wells, called 

BK1, BK3 and BKs at distances of 20.6, 38.1 and 51.8 

m. The western and southern sides of the reservoir are 

bordered by a quarry wall; the south-eastern side is 

bounded by a fresh-water reservoir. The boreholes 

penetrate steeply-dipping layers of sandstone and 

claystone that cannot be correlated between the wells 

(Fig. 1). A series of injectivity and interference tests for 

puckered intervals demonstrates that joints constitute the 

dominant hydraulic conduits in the subsurface. While the 

wells hydraulically communicate the communication 

apparently has a strong spatial restriction. For example, 

communication between wells BK1 and BK3 was shown 

to be strongest between the bottom of BK3 and a shallow 
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zone in BK1 in some agreement with the traces of joints 

projected from borehole logging information (Fig. 1).  
Periodic pulses had been applied both in well BK1 and 

in well BK3 and the response was measured in the pulser 
and in the observer wells. Cycle periods varied between 
10 s and 5400 s providing the opportunity to test a large 
range of frequency responses both in the pulser and in the 
observer wells. The imposed injection and production 
rates had been corrected for wellbore storage effects. 

3. RESULTS 

We re-analyzed the original pressure tracks. A fast 
Fourier transform was first operated on the corrected 
flow rate and on the detrended pressure records (example 
given in Fig. 2) yielding amplitude spectra (Fig. 3). In 
the rate spectrum of every experiment, only those 
frequencies were selected that gave at least three times 
larger amplitude response than the background. For these 
frequencies the pressure responses were evaluated: only 
if the amplitude was significantly larger than the 
background signal and if the phase difference with the 
corresponding signal in the rate was in line with the 
general trend they were used in the analysis. In this way, 
all frequencies for which a good response could be 
identified rather than restricting the analysis to the 
leading frequencies were used in the analysis. Indeed, as 
it was already pointed out, the fact that the records 
contain more frequency components than the leading 
ones, is one of the advantages of periodic testing with 
square or non-sinusoidal pulses (Fokker and Verga, 
2011). The signals used in the further analysis were the 
amplitude ratio and the phase difference between 
pressure and rate signal responses in the Fourier domain. 

The identified frequency spectra were combined to a 
single set for every test setup. Five setups delivered useful 
results: the observed pressures in BK1, BK3 and BKs for 
pulses applied in BK1 and the observed pressures in BK3 
and BK1 for pulses applied in BK3. The amplitude ratio 
and phase difference values are considered to be 
independent of the test details like injection rate, but they 
are influenced by the local permeability distribution. As a 
first attempt an homogenous permeability field was 
assumed; matching results of the tests where BK1 is the 

pulser are shown in Fig. 4 and 5 in terms of permeability 
and total compressibility, respectively. 

At a later stage we used our 2D numerical tool to arrive 
at a single heterogeneous permeability field matching all the 
data. For the reservoir thickness we took 5 m, which was 
deemed a representative number for the high-permeability 
streaks identified with the well logs and we chose constant-
pressure boundary conditions because of the reservoir 
characteristics. The matches obtained from each single-well 
response suggested the presence of two homogeneous zones 
of different permeability.  

The presence of these zones is in line with the 
characteristics of the system as observed from the well 
logs, showing uncorrelated large-permeability streaks. 
We completed the geological setting by introducing 
permeability boundaries between the wells, which 
ensured the reproduction of the response in the observer 
wells. Pressure is thought to communicate from well to 
well through lower-permeability layers of considerable 
extent. A map of the different zones is presented in    
Fig. 6. We matched the test responses using a geometry 
with four simplified geological zones. The matching 
procedure was quite ill-conditioned and largely depended 
on the weighting of the different sources of information. 
Most areas mainly influenced one of the 5 test scenarios; 
only the BK1-BK3 barrier critically affects both the 
pulser-observer pairs BK1-BK3 and BK3-BK1. To cope 
with the different dependencies an iterative matching 
procedure was employed starting with the most sensitive 
parameters and then fine-tuning the model response by 
adjusting all the parameters together. After the general 
geometry had been determined using a broad sensitivity 
analysis we subsequently applied an optimization algorithm 
to estimate permeabilities in different zones: firstly around 
the pulser wells using the responses in those; then between 
the pulser and observer wells using the observer responses; 
and, finally, accounting for all the measurements 
simultaneously. Results are reported in Table 1. 

In addition to the reservoir properties, we accounted 

for wellbore storage effects. In fact, the wellbore acts as a 

storage tank when the rates are changed and causes the flow 

rate at the interface between well and reservoir to approach 

the requested surface flow rate as a function of time 

(Ramey, 1965). Results are shown in Fig. 7 and 8.

 

Table 1. Results of the reservoir zone parameters and the test setup they mainly influence 

 Test setup mostly influenced   

Reservoir zone (pulser →observer) Permeability (Darcy) Compressibility (bar−1) 

Barrier BK1-BK3 BK1→BK3 0.250 2 10−4 

Barrier BK1-BK3 BK3→BK1 0.250 2 10−4 

Barrier BK1-BKs BK3→BK3 0.035 3 10−4 

North BK3→BK3 7.000 2 10−5 

South BK1→BK1 9.000 5 10−4 
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(a) 

 

 
(b) 

 

Fig. 2. Example of a periodic test in well BK1 with a cycle time of 600 seconds. Imposed and corrected pump rates (a) and 

resulting pressures in the three wells (b) 



Peter A. Fokker et al. / American Journal of Environmental Science 9 (1): 1-13, 2013 

 

6 Science Publications

 
AJES 

     
(a) (b) 

 

     
(c) (d) 

 

Fig. 3. Amplitudes after Fourier transformation of the traces of Fig. 2. The frequencies identified in the rate spectrum (a) were 

evaluated in the pressure amplitude spectra (b-d). Only the frequencies (filled circles), identified in the rate spectrum, having 

significantly larger amplitudes than the background and phases following the general trend were used in the analysis 
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(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 4. Comparison between frequency responses and calculated responses at (a) wells BK1, (b) BK3 and (c) BKs for different 

homogeneous permeability fields (k = 7000-20000 mD) and a total compressibility of 5 10−4 bar−1. Pulses were applied in 

well BK1. Constant-pressure boundaries were applied 
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 (a) 

 

 
 (b) 

 

 
 (c) 
 
Fig. 5. Comparison between frequency responses and calculated responses at (a) wells BK1, (b) BK3 and (c) BKs for different total 

compressibilities (3÷10 10−4 bar−1) and a permeability of 10 D. Pulses were applied in well BK1. Constant-pressure 

boundaries were applied 
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Fig. 6. Map of the reservoir as used in the optimization procedure, with a different permeability assigned to each zone. Zones with 

reduced permeability (the 35mD and the 250 mD zones) form relative barriersbetween the wells 

 

4. DISCUSSION 

By assuming a homogeneous field permeability the 

responses in the pulser could be matched when wellbore 

storage and skin were employed and when constant-

pressure boundaries were used. However, as expected 

from the earlier work by Renner and Messar (2006), it was 

impossible to simultaneously match the responses in wells 

BK1, BK3 and BKs upon pulsing in BK1 with a 

homogeneous model, as explicitly demonstrated in Fig. 4 

and Fig. 5. Adjusting the parameters (i.e., k and cf) to 

honor all the recorded responses yielded poor results. We 

also evaluated an analytical model and obtained the same 

unsatisfactory results. The model was a homogeneous, 

radially-symmetric scheme with finite-extent and open or 

closed boundaries and contained two-layers: the lower-

permeability layer fed a higher-permeability layer which 

connected to the wellbores. These analyses corroborated 

that a heterogeneous model was needed. 

Considering the heterogeneous permeability 

configuration with four simplified zones (Fig. 6) and using 

an optimization procedure the test responses were 

successfully matched. Such a process can be performed by 

using any standard optimizer. In this study the active set 

method for constrained programming was used within a 

Sequential Quadratic Programming algorithm (Gills et al., 

1981). This iterative method calculates a numerical 

approximation of the Hessian of the Lagrangian function 

to generate a Quadratic Programming subproblem whose 

solution is used to form a search direction for a line search 

procedure. The active set strategy was adopted to 

constrain the optimization parameters to physical ranges. 

The optimized permeabilities in the barriers are much 

smaller than in the reservoir parts connected to the wells 

(Table 1). Compressibilities did not vary as consistently 

and showed smaller differences. It should be noted here 

that the resulting values for both are correlated with the 

layer thickness of the different zone, which was chosen to 

be 5 m for all. The wellbore storage numbers amounted to 

Cw = 0.1 m
3
/bar for BK1 and Cw = 0.03 m

3
/bar for well 

BK3. A good final match was obtained between the 

measured and calculated responses from both the pumping 

in BK1 and in BK3 (Fig. 7 and 8, respectively). 
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(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 7. Comparison between frequency responses and calculated responses of (a) well BK1, (b) BK3 and (c) BKs for the optimized 

permeability field represented in Fig. 6 Pulses were applied in well BK1. Constant-pressure boundaries were applied 
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(a) 

 

 
(b) 

 

Fig. 8. Comparison between frequency responses and calculated responses of (a) well BK3 and (b) BK1 for the optimized 

permeability field represented in Fig. 6 Pulses were applied in well BK3 

 

5. CONCLUSION 

We applied a numerical simulator in the frequency 
domain to a field case of periodic pulse testing. The 
simulator performs the calculations for a limited number 
of distinct frequencies rather than for proceeding time 
steps. As a result, calculations can be performed much 
faster. For periodic pulse testing, field operations can also 
be simpler than for conventional well testing because 
production does not have to be interrupted but can be 
continued during testing. In fact, the frequency signal can 
be isolated from the overall signal using Fourier analysis.  

Our field example is a well triplet penetrating a 
shallow aquifer. Imposed pulsing periods ranged from 10 
to 5400 seconds. Numerical interpretation of the periodic 
tests facilitated a realistic and simultaneous match of all 

the frequency components of the analyzed well pairs, in 
contrast to the earlier analysis with analytical modeling. 
An effective 2D description of the aquifer geological 
features was obtained in agreement with the well log data. 
The zones of decreased permeability between the wells are 
in line with the geological setting of a very laminated 
reservoir with steeply dipping layers. As a result the layers 
are not continuous between the three wells and 
communication has to take place through the intermediate 
layers. The interwell periodic testing thus has corroborated 
the geological understanding of the reservoir.  

Prior geological and operational information was 

required to constrain the ill-posedness of the inverse 

problem. In particular the geometry of the various 

regions was input in our optimization scheme. A further 

improvement can presumably be obtained by employing 
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a global optimization scheme which also updates the 

geometrical layout. Ensemble-based schemes like the 

Ensemble Kalman Filter (Evenson, 2009) are promising 

in this respect as they combine a robust optimization 

with a probabilistic approach and result.  
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