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Abstract: Problem statement: For the purpose of low flows regionalization, relevant issue for water 
resources management like environmental flows requirements definition, this study focused on the 
controls on the seasonal and spatial variability of q95 (i.e., the specific discharge that was exceeded on 
95% of all the time) with particular reference to the role of soil characteristics, that, like soil infiltration 
rate, aquifers recharge, evapotranspiration and topography, usually play a relevant role in low flows 
seasonality and occurrence within a river. Approach: Piemonte and Valle d’Aosta Regions (North-
Western Italy) were the investigated study area (30,027 km2) where 41 catchments were analyzed with 
the aim of robust regression models enabling the transfer of hydrological information from gauged to 
un-gauged sites. Results: The regionalization method consisted of multiple regression models between 
low flows and catchment characteristics. Twenty-five catchment descriptors were used, checking their 
relative influence with the multi-regressive procedure and a special attention was devoted to the 
selection of significant soil characteristics in the regionalization process. Seasonality indices were used 
to classify catchments into two sub-regions and separate multiple regressions was performed by 
checking the prediction performance with cross-validation. Also a global regression was fitted out but 
it yielded a lower performance. In the study domain land use, topography and Thornthwaite moisture 
index demonstrated to be the most significant variables in order to represent relationships between 
catchment soil characteristics and low flows regime. Conclusion/Recommendations: Results obtained 
in this study were comparable with other regionalization studies carried out in Austria and Switzerland. 
The interpretation of the identified regression models provided, at local scale, new tools for water 
management and environmental flows requirements and, from a wider point of view, useful insights 
into the general comprehension of low flows processes. 
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INTRODUCTION 

 
 An accurate estimate of low flows is needed in 
many branches of water resources management, 
including environmental flows requirements. The 
literature has many references to techniques for 
estimating low flows regimes at un-gauged sites. In 
particular catchments are classified in sub-regions 
according to physiographic characteristics and 
transferring flow data between catchments in the same 
region. The most widely used method is the regional 
regression approach[9]. For each sub-region this method 
relates specific low flows indices (e.g., q95 that is the 

specific discharge that is exceeded on 95% of all the 
time) to catchment characteristics through linear or 
non-linear relationships. 
 Smakhtin[9] and Demuth and Young[2] give 
extensive lists of references for regionalizing low flows. 
In most of these methods, the study domain is divided 
into sub-regions in which the low flows behavior is 
assumed to be homogeneous. The identification of these 
regions is performed by grouping the gauged sites 
according to a classification criterion and checking the 
performance of prediction of low flows with cross-
validation. In Piemonte and Valle d’Aosta regions 
(North-Western Italy) low flows regime is characterized 
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by two different dry seasons (winter and summer low 
flows). The consequence is a slow depletion of the soil 
reservoir in accordance with the recession of discharge 
within the river. In Alpine climate, winter low flows are 
affected by freezing processes of snow cover or 
glaciers. Summer low flows, instead, occur during dry 
periods when evaporation exceeds precipitation and are 
normally derived from aquifers recharge. Since recent 
studies have shown its excellence in classification, 
seasonality is potentially useful for identifying 
homogenous groups of catchments[3,5,7]. Because of the 
fundamental differences of summer and winter 
processes, regionalization may take advantage of a 
separation into sub-regions based on low flows 
seasonality. 
 Gain and losses of stream flow during seasonal dry 
periods are generated from different natural factors 
which include soil types and morphological watershed 
characteristics. Topography, aquifers hydraulics, soil 
infiltration rate, vegetation distribution and types, 
geology and climate are basically the most important 
factors in low flows processes. The driving forces 
operate on a catchment scale and affect the released 
discharge from watershed storage[9]. The relevance of 
different ‘gain’ and ‘loss’ processes to the wide soil 
types, topography and climatic conditions, which exist 
naturally, is far from obvious to determine. 
 Using a comprehensive multi-regressive approach 
(i.e., regional regression) it is possible to select the most 
influential descriptors for the geographic context of the 
study domain[11]. Results of this procedure can ensure 
complete control of the quality of estimates obtained 
with regression models based on different kinds of 
descriptors. In this study, several morphologic and 
climatic attributes of catchments were selected and 
computed for 41 river basins in North-Western Italy in 
order to have an accurate regional estimation of low 
flows indices. 
 

MATERIALS AND METHODS 
 
 This study was carried out in Piemonte and Valle 
d’Aosta regions, which have different orographic and 
climatic characteristics. In this relatively small area 
(30,027 km2) the climate changes from the Apenninic-
mediterranean one, with summer low flows in the 
south-eastern hills, to Alpine-continental one in the 
Alps mountain range, characterized by winter low flows 
regime. In this territory catchments areas between 21 
and 1,800 km2, elevations range from 106-4,725 m and 
mean annual precipitation from 841 mm in South-
Eastern hills to a maximum of 2,113 mm Northern 
mountainous areas, were considered. For this reason, in 

this territory an analysis of soil characteristics influence 
in low flows regime is both complex and interesting. 
Figure 1 shows the spatial distribution of stream gauges 
considered in this study, while Table 1 lists, for each of 
them, the related catchment area, the Mean Annual 
Runoff (MAR) and the specific discharge q95. 
 
Discharge data: For discharge data, the reliability of 
stream flow data series was taken into account: Dams 
presence in the upstream part of the catchment, a 
minimum of 10 years of daily stream low registration 
and relevance of abstractions or karts effects during the 
low flows periods were the most important factors used 
in the gauge choice. For instance, gauges located on the 
plains were excluded owing to flow alterations due to the 
presence of irrigation abstractions and reservoirs in the 
upper stream part. Coming from 41 stream gauges, daily 
discharge data series between 1942 and 1975 were used 
in this study. As a reference of low flows regime the low 
flows index q95 (i.e., Pr(q>q95) = 0.95, the discharge 
exceeded on 95% of all days of the measurement period), 
 

 
 
Fig. 1: River network and selected stream gauges in 

North-Western Italy. As characteristic unit 
runoff, MAR (mean annual runoff) and q95 are 
expressed in L sec−1 km−2 
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Table 1: Stream gauges 
  Area MAR q95  
Code Gauge name (km2) (L sec−1 km−2) (L sec−1 km−2) 

1 Artanavaz St.Oyen 70.90 32.44 10.65 
2 Ayasse Champorcher 40.60 39.89 3.43 
3 Borbera Baracche 201.80 24.70 2.65 
4 Bormida Cassine  1,523.80 16.17 0.98 
5 Bormida Mallare Ferrania 49.88 30.60 1.39 
6 Cervo Passobreve 75.00 46.33 6.72 
7 Chisone Fenestrelle 156.75 20.74 4.53 
8 Chisone SMartino 581.00 22.01 5.15 
9 Chisone Soucheres Basses 91.94 25.97 5.51 
10 Corsaglia Molline 88.94 33.87 3.90 
11 Dora Baltea Aosta 1,823.80 28.48 6.33 
12 Dora Rhemes Pelaud 54.10 46.07 10.98 
13 Dora Riparia Oulx 254.31 21.02 6.71 
14 Dora Riparia S.Antonino 992.56 18.74 9.01 
15 Erro Sassello 82.69 27.97 2.48 
16 Evancon Champoluc 104.90 30.98 5.10 
17 GessoValletta S.Lorenzo 110.44 43.89 10.35 
18 Grana Monterosso 103.25 25.72 5.55 
19 Grand'Eyvia Crétaz 178.60 35.17 3.87 
20 Lys Gressoney 90.50 43.03 6.35 
21 Mastallone Ponte Folle 146.88 50.74 4.95 
22 Orco Ponte Canavese 614.50 32.79 9.66 
23 Po Crissolo 37.50 39.76 11.89 
24 Rio Bagni Bagni Vinadio 61.63 39.35 9.05 
25 Rio Piz Pietraporzio 21.44 40.33 10.04 
26 Rutor Promise 45.60 52.26 5.67 
27 S. Bernardino Santino 118.81 54.86 8.87 
28 Savara Eau Rousse 83.90 34.21 1.08 
29 Scrivia Serravalle 616.13 26.22 1.15 
30 Sesia Campertogno 169.88 40.43 3.99 
31 Sesia Ponte Aranco 702.88 45.28 5.33 
32 Stura Demonte Gaiola 560.06 32.06 7.83 
33 Stura Demonte Pianche 179.94 29.33 9.36 
34 Stura Lanzo Lanzo 576.94 34.56 7.85 
35 Tanaro Farigliano 1,516.06 24.61 4.81 
36 Tanaro Nucetto 375.63 28.60 4.07 
37 Tanaro Ponte Nava 147.63 32.66 3.48 
38 Toce Cadarese 189.69 49.82 16.56 
39 Toce Candoglia 1,539.81 43.82 15.34 
40 Vermenagna Limone 57.44 35.77 8.44 
41 Vobbia Vobbietta 56.88 26.48 1.46 

 
was selected because of its large use in literature and its 
relevance for multiple topics of water resources 
management[9]. q95 is standardized by the catchment 
area, (L sec−1 km−2) in order to make it more 
comparable across scales, expressing characteristic unit 
runoff. All selected catchments cover a total area of 
more than 12,000 km2, which is about the 40% of the 
entire study domain. 
 
Catchment characteristics: The choice of the 
catchment descriptors used in low flows regionalization 
depends largely on the availability and quality of the 
data. Demuth and Young[2] analyzed the frequency of 
different categories of catchment descriptors in 120 low 
flows estimation models and assessed that the 73% of all 
catchment characteristics used are drainage basin 
parameters, 22% are climatic parameters and 5% are 

hydrological parameters. For the drainage basin 
parameters, 46% are morphometric descriptors, 17% 
surface cover, 10% geology and 10% soil characteristics. 
 In this study, for low flows regionalization, 25 
morphoclimatic watershed characteristics were used. 
These descriptors give synthetic information of the 
shape of basin surface, the nature of the soil and 
vegetation, the topography and climate (Table 2). Due 
to the low spatial accuracy of digital information, 
geology parameters were not considered and land use 
and runoff curve number were used as geological 
surrogates[4,3]. Also the Thornthwaite moisture index, 
runoff curve number and the drainage density were 
included in the analysis because of their relationship 
with geology, soil infiltration rate and vegetation type 
distribution. Morphometric parameters of drainage 
basins and river networks were computed using GIS 
tools and ‘R’ statistical software was used for 
computation of statistical indices[11]. Some of the 
catchment characteristics had to be adapted to make 
them more useful for regionalization. For instance, it is 
possible to condense the original Corine land cover 
classification into 5 land use classes. Drainage basin 
descriptors were divided into different categories 
explained using a capitol letter: catchment area A, 
elevation H, physiographic slope S, orientation O, 
watershed parameters W, land use L, climatic 
parameters C. Table 2 shows a summary of these 
catchment characteristics. Among these, the following 
are the less common catchment descriptors[11]. 
 Starting from physiographic slope S a mean slope 
invariant from DEM resolution (Sinv) was considered, 
defined as:  
 

( )med min
inv

2 H H
S arctg

A

 −
=   

 
 

 
Where: 
A  = The catchment area 
Hmed = The median elevation  
Hmin = The elevation of the closing section 
 
 This is a slope measure of a square equivalent 
basin which does not account for basin shape and 
whose definition is objective. 
 For catchment shape factors WSF and WCR were 
chosen. The first one expresses the ratio between the 
catchment area and the square longest drainage path 
length, while WCR is the circularity ratio between 
drainage basin area and the area of a circle having the 
same perimeter. 
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Table 2: Catchment descriptors included in the regional regression analysis. Units were chosen in order to give similar ranges for all 
characteristics 

Symbol Units Description Min Mean Max 
A 101 km2 Catchment area 2.14 35.35 182.38 
A2000 Percentage Catchment area above 2000 m 0.00 44.03 97.80 
Hmax  102 m Maximum elevation 9.99 30.56 47.25 
Hmin  102 m Minimum elevation 1.06 8.34 18.80 
Hmed 102 m Mean elevation 4.81 17.76 27.43 
S Percentage Mean slope 20.20 45.28 63.00 
Sinv Percentage Mean invariant slope 0.80 15.53 38.70 
SLDP Percentage Mean slope of the longest drainage path 5.80 18.36 29.30 
O deg Main catchment orientation angle 1.01 126.15 355.84 
ONORD - Northing (cosine of O) -0.81 0.43 1.00 
OEST - Easting (sine of O) -1.00 0.20 1.00 
WDD km km-2 Stream network density 0.52 0.59 0.74 
WRL 102 m Length of the main river 7.17 31.93 133.85 
WLCS 102 m Mean length of watershed sides 60.69 74.72 87.06 
WSF - Watershed shape factor 0.08 0.30 0.65 
WCR - Watershed circularity ratio 0.24 0.49 0.74 
LU Percentage Urbanized areas 0.00 0.11 0.75 
LF Percentage Forested areas 0.47 46.94 99.96 
LCG Percentage Crop and grassland 0.04 11.08 53.21 
LR Percentage Wasteland (rocks) 0.00 41.83 99.35 
LW Percentage Wetland 0.00 0.04 1.17 
LCN - Runoff curve number 26.32 42.19 50.06 
CP 102 mm Mean annual precipitation 8.41 12.62 21.13 
CIT - Thornthwaite moisture index 0.04 0.89 1.92 
CIB - Budyko aridity index 0.45 0.85 1.20 

 
 In the land use section L, the runoff curve number 
(LCN) is an empirical parameter used in hydrology for 
predicting direct runoff or infiltration from rainfall 
excess. LCN is based on the hydrological soil groups, 
land use, treatment and hydrological moisture 
condition. The curve number method was developed by 
the USDA Natural Resources Conservation Service, 
which was formerly called the Soil Conservation 
Service (SCS). In literature LCN is also known as ‘SCS 
runoff curve number[10]. 
 For climatic parameters C, the Thornthwaite index 
(CIT) and the Budyko index (CIB) were considered. CIT is 
a global moisture index that can be estimated as the ratio: 
 

P 0
IT

P

C ET
C

C

−=  

 
Where: 
ET0 = The mean annual potential evapotranspiration on 

the basin 
CIB = Instead, is a radiational aridity index expressed 

as: 
 

n
IB

P

R
C

C
=

λ ⋅
 

 
Where: 
Rn = The mean annual net radiation  
λ = The latent vaporization heat 

 Values assumed by CIB are lower than 1 for humid 
regions and greater than 1 in arid regions[11]. 
 
Regional regression analysis: The regional regression 
analysis was performed in two step: The first is to 
divide the study domain into sub-regions in which the 
low flows behavior is assumed to be homogeneous, 
while the second is to build a multi-regressive model 
that relates the q95 (i.e., dependent variable) to 
morphoclimatic descriptors (i.e., independent variables) 
in order to select the most influential descriptors for 
low flows regionalization. 
 Recent studies have shown the reliability of 
seasonality indices method for classifying catchments 
in order to divide the study domain. Laaha and 
Blöschl[6] investigated four catchment grouping 
strategies when developing multi-regressive models to 
estimate low flows indices in Austria. Due to the large 
difference in low flows occurrence a catchment 
grouping based on seasonality gave the best 
performance. Engeland and Hisdal[3] compared a 
regional regression model with a regional rainfall-
runoff model in Norway for regionalizing low flows. In 
the regional regression they used seasonality indices to 
divide the territory into sub-regions. Also in that case 
regression method generally gives better estimates of 
low flows in un-gauged catchments. 
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Seasonality indices: In order to investigate the low 
flows seasonality three indices, as in Laaha and 
Blöschl[7], were used. 
 The first one is the Seasonality Ratio (SR) which 
expresses the difference of summer (q95s) and winter 
(q95w) low flows. SR is defined as: 
 

s

w

q95SR q95=  

 From April 1st to November 30th daily discharge 
time-series are considered as winter discharges and 
from December 1st to March 31st as summer 
discharges. Values of SR>1 indicate the presence of a 
winter low flows regime and values of SR<1 indicate 
the presence of summer low flows regime (Fig. 2a). 
 The second seasonality parameter is composed by 
two indices θ and r[7,12]. These represent the seasonal 
distribution of low flows occurrence. The parameter θ 
is a circular statistic. Its values range between 0 and 2π, 

 

  
 (a) (b) 
 

  
 (c) (d) 
 
Fig. 2: Seasonality indices analysis: (a): Seasonality Ratio (SR) between summer and winter low flows discharges; 

(b): Variability and mean day of occurrence of q95; (c): Non-exceedance frequency histograms (SHs) of 
specific low flow q95; (d): Groups of catchments based on seasonality indices 
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explaining the q95 mean day of occurrence (e.g., θ = 0 
relates to January 1st, π/2 relates to April 1st, π relates 
to July 1st and 3π/2 relates to October 1st). The 
parameter r shows the variability of low flows 
seasonality. It ranges from zero to unity, where r = 1 
corresponds to strong seasonality (all low flows events 
occurred on exactly the same day of the year) and r = 0 
corresponds to no seasonality (low flows events are 
uniformly distributed over the year). Indices are 
calculated from Julian dates Dj (values on the range 1-
365 or 1-366 in leap years) of all days of the 
observation period when discharges are equal or below 
q95. θ j is the Dj directional angle expressed in radians 
as: 
 

j
j

D 2

365

π
θ =  

 
 The mean direction angle expressing the q95 mean 
day of occurrence is defined by: 
 

0

0

y
arctan

x

 
θ =   

 
 1st and 4th quadrants: x>0 

 

0

0

y
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x

 
 θ = + π
 
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 2nd and 3rd quadrants: x>0 

 
where, x0 and y0 are the mean Cartesian coordinates for 
a total of n single days j: 
 

0 j
j

1
x cos( )

n
= θ∑  

 

0 j
j

1
y sin( )

n
= θ∑  

 
 In the end, the measure of the variability of low 
flows seasonality is expressed by the length of the mean 
vector r: 
 

2 2

0 0
r x y= +  

 
 With θ and r the mean day of occurrence and the 
intensity of seasonality can be displayed by using a 
vector map (Fig. 2b). 
 The third seasonality index is expressed with 
seasonality histograms based on a monthly scale. 
Columns represent the frequency of discharges below 
the threshold q95 over time (Fig. 2c). Regions with 
approximately homogeneous seasonality are shown in 

Fig. 2d. Group 1 includes the Alpine region, 
characterized by winter low flows and Group 2 is 
referred to the Apenninic-mediterranean climate where 
low flows normally occur during summer.  
 
Low flows indices estimation: Discharge data used in 
this study were daily discharges. To make the low flows 
characteristics more comparable across scales, q95 was 
standardized by the catchment area (q95 [l s−1 km−2]). 
The types of linear models investigated were divided in 
four classes: 
 

95 0 1 1 2 2 p 1 p 1

1/2
95 0 1 1 2 2 p 1 p 1

1/3
95 0 1 1 2 2 p 1 p 1

95 0 1 1 2 2 p 1 p 1

q x x ... x

q x x ... x

q x x ... x

ln(q ) x x ... x

− −

− −

− −

− −

= β + β + β + + β + ε

= β + β + β + + β + ε

= β + β + β + + β + ε

= β + β + β + + β + ε

 

 
Where: 
xi = The morphoclimatic descriptors  
βi = Regression coefficients 
 
 The analysis of low flows data series showed that 
distribution of q95 and its transformations resulted in 
approximate normality. For the estimation of the 
coefficients βi the Ordinary Least Squares technique[8] 
was used. For all regression models, a combination of 
all morphoclimatic variables was attempted, satisfying 
the three general assumptions: The absence of 
multicollinearity between βi, the homoscedasticity 
(Var[resi] = const.) and the unbiasedness (E[resi] = 0, 
guaranteed by the OLS procedure) of residuals, where 
resi is the residual for catchment i. All the models for 
which at least one of the independent variables resulted 
to be non-significant according to the Student t test at a 
95% significance level were discarded. The descriptive 
power of each regression was assessed through the 
adjusted coefficient of determination R2

adj, defined as: 
 

( ) ( )

( ) ( )

n 2

95,i 95,i
2 i 1
adj n 2

95,i 95,i
i 1

ˆn 1 q q
R 1

n p q q

=

=

− −
= −

− −

∑

∑
 

 
Where: 
n = The number of considered stations 
p = The number of estimated coefficients 
q95 and 95,iq̂  = The measured and estimated mean 

annual flow at the i-th site 

95,iq   = The average of the mean annual flows 

for all considered gauges 
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 The coefficient of determination R2
adj is useful to 

choose the best model among the ones belonging to a 
given class but cannot be used to compare models of 
different nature. To this purpose a cross-validation 
method was carried out, computing the RMSE (Root 
Mean Square Error) on the residuals 95,i 95,iq̂ q− , where 

95,iq̂  is the estimated value of the i-th dependent 

variable obtained using a model estimated with all the 
observations except the i-th one. The RMSEcv is 
defined as the square-root of the average residual 
square error VCV: 
 

( )
n 2

CV CV 95,i 95,i
1

1 ˆRMSE V q q
n

= = −∑  

 
 Finally, it is possible to define the coefficient of 
determination based on cross-validation as: 
 

2 95 CV
CV

95

Var(q ) V
R

Var(q )

−=  

 
 For each class the multi-regressive model based on 
the best performances in terms of R2

adj, with the lower 
RMSEcv (the best model) and with the use of the most 
commonly-available parameters (the simplest model) 
was chosen. Finally the selected model was then 
checked with respect to the assumptions underlying the 
regression analysis. 
 Multi-collinearity affects the OLS procedure 
determining large variances and co-variances for the 
least-squares estimators of the regression coefficients. 
A simple statistic to measure the presence of multi-
collinearity is the Variance Inflation Factor (e.g.[8]): 
 

( ) 1
2
jVIF 1 R

−
= −  

 
Where: 
R2

 j  = The coefficient of determination obtained when 
the independent variable  

xi = Regressed on the remaining p-1 regressors 
 
 Practical experience indicates that if any of the 
VIFs exceeds 5 or 10, the associated regression 
coefficients are poorly estimated because of multi-
collinearity.  
 In the end normality of residuals is required for 
hypothesis testing (the significance t test). To detect 
non-normality and heteroscedasticity of the residuals, 
they were plotted respectively on a normal probability 

plot and against the fitted values, in order to recognize 
if they display particular patterns.  
 As a first approach, one global regression model 
was fitted to all 41 catchments. In the second step, 
corresponding to the original classification of 
catchments obtained by seasonality indices analysis, 
regionally restricted regression models were each fitted 
for the two contiguous regions (Fig. 2d). 
 

RESULTS 
 
 Best regressions were chosen on the basis of the 
criteria previously discussed considering all the 
possible linear regression models. Table 3 outlines the 
best regressions obtained for each model classes, along 
with R2 and RMSECV statistics. Chosen multi-regressive 
relationships and their performance are reported in 
Table 4, which also outlines two measures of model 
performance, the coefficient of determination R2

cv and 
the root mean squared error RMSECV. Both were 
obtained from cross-validated residuals and, therefore, 
are representative of the prediction of low flows in un-
gauged catchments.  
 
Table 3: Best regression obtained between the q95 (dependent 

variable) and morphoclimatic parameters (independent 
variables) with R2 and RMSECV statistics 

Dependent   R2adj  

variable Model Independent variable RMSECV 

q95 Global A2000 SLDP LCG CIT 0.669 2.357 
 Gr. 1 A2000 WRL LCG CIT 0.647 2.207 
 Gr. 2 Hmax WRL LF CIT 0.960 1.612 
q95

(1/2) Global A2000 LCG LCN 0.669 2.378 
 Gr. 1 A2000 WRL LCG 0.442 2.319 
 Gr. 2 Hmed SLDP LCG 0.893 1.826 
q95

(1/3)
 Global A2000 S LCG  0.680 2.336 

 Gr. 1 A2000 S LCG 0.568 2.640 
 Gr. 2 Hmed SLDP 0.818 1.950 
ln(q95) Global A A2000 LCG LCN  0.639 2.986 
 Gr. 1 A2000 S WRL LCG 0.561 2.807 
 Gr. 2 Hmed SLDP 0.826 1.775 

 
Table 4: Regression coefficients and performance of selected 

regional regression models for q95 (L sec−1 km−2). For the 
units of catchment characteristics (Table 1) 

Model q95 regression model R2adj RMSEcv RMSEcv-TOT R2
CV 

Global 
3

95 2000

CG

q 0.8130 0.0037 A

0.0146 S 0.0132 L

= + ⋅

+ ⋅ + ⋅
 0.68 2.336 2.336 0.60 

Gr. 1 

95 2000

RL

CG IT

q 6.6656 0.0780 A

0.09137 W 0.1916

L 4.5929 C

= − + ⋅
+ ⋅ + ⋅

+ ⋅
 0.65 2.207 1.931 0.72 

Gr. 2 

95 max

RL

F IT

q 5.0551 0.2478 H

0.020653 W

0.0463 L 2.5648 C

= + ⋅
− ⋅
+ ⋅ − ⋅

 0.96 1.612
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 Global model Group 1 Group 2 
 
Fig. 3: Diagnostic plots of residuals. Each column refers to one regression model (global and sub-regional models) 
 
 Global regression showed a relative performance of 
R2

cv = 60%, corresponding to RMSECV = 2.336 L sec−1 
km−2. Grouping catchments into two sub-regions and 
separate regressions using seasonality indices improved 
the overall model performance to R2

cv = 72% and 
RMSECV = 1.1931 L sec−1 km−2. 
 Normality and homoscedasticity of residuals are 
desirable properties if one is interested in interpretable 
estimates of model performance. In this study, model 
assumptions (i.e., normality of residuals and 
heteroscedasticity) were carefully checked by three 
diagnostic graphs: Scatter plots of observed versus 
predicted values, residual plot as a function of observed 

values and normal probability plots of residuals. 
Diagnostic graph derived by the regression results are 
showed in Fig. 3. Each column corresponds to one 
regional regression model and each point to one 
catchment. Proceeding by rows, the first two graphs 
allow a detailed examination of the performance of 
individual catchments, including the existence of 
outliers and a potential heteroscedasticity (diversity in 
variance) of the residuals. In the graphs the outliers do 
not tend to increase with q95 and the residuals of the 
three models can be considered homoscedastic. In the 
context of this study, results of this check are positive 
for all regression models, as the main focus is on 
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evaluating the influence of soil characteristics on low 
flows regionalization.  
 The third graph is the representation of cross-
validated residual in normal probability plot. Only 
single extreme outliers appear and residuals can be 
considered approximately normally distributed. In order 
to check for multi-collinearity, the VIF factor was 
computed for all the regressors considered. Factor 
values ranges between 1.02 and 2.65 for all descriptors 
considered in regression models. In all cases VIF is 
much below 5, value indicating possible multi-
collinearity. 
 
Relative importance of catchments descriptors: A 
more detailed analysis of Table 3 and 4 yields the 
relative importance of predictor variables in the context 
of low flows regionalization. Starting from the global 
regression model, parameters importance consists of 
three catchment characteristics. Percentage of catchment 
area above 2000 m (A2000), mean slope (S) and the 
proportion of crops and grassland (LCG) demonstrate to 
be the most significant variables for the transfer of 
hydrological information. Especially for the geographic 
context under exam, LCG (i.e., proportion of crop-
grasslands) appears in all selected regression models and 
it is the most influential descriptor for land use. 
 Grouping into two regions and separate regressions 
in each region led to two similar regression equations in 
terms of considered descriptors. Models exhibit quite 
the same parameters. Land use, river length and 
Thornthwaite index appear in both models as the most 
influential descriptors. The two different sub-regional 
models differ because of changes in selected regressors. 
Particularly, in the regression models of Group 2, A2000 
and LCG are replaced by similar descriptors Hmax 
(maximum elevation) and LF (proportion of forest). 
 In the context of this study very little influence on 
low flows appears to exist for soil characteristics such 
as runoff curve number, stream network density and 
portion of urbanized areas, rocks and wetlands. They 
are never selected in the regression equations. 
 

DISCUSSION 
 
 Soil characteristics and especially land use 
demonstrate to be significant variables for the 
regionalization of low flows indices. It is interesting to 
compare this result with studies in the literature using 
similar catchments characteristics and examined q95 
specific discharges. 
 The frequency of the catchment descriptors used 
depends largely on the availability and quality of the 

data. In literature catchment descriptors affecting low 
flows controls are comprehensively provided by 
Smakhtin[9]. In that study it is possible to find an 
overview of catchment descriptors used in regional 
estimation models. Catchment area, mean annual 
precipitation, channel and/or catchment slope, stream 
frequency and/or density, percentage of lakes and 
forested areas, various soil and geology indices, length 
of the main stream, catchment shape, watershed 
perimeter and mean catchment elevation are the 
morphoclimatic characteristics most commonly used. 
 In this study 25 catchment descriptors were used, 
checking they relative influence with the multi-
regressive procedure. In the resulted regional regression 
models, only 7 catchment characteristics were selected. 
Moreover, as shown in Table 2, regression models 
contained similar parameters and most of them 
occurred for different regression classes. 
 The overall regression model yielded a lowest 
performance (R2cv = 60%). For this global model three 
catchment characteristics were selected as predictors: 
A2000 (catchment area above 2000 m), S (mean 
catchment slope) and LCG (proportion of crop-
grasslands). In Alpine climate A2000 is related to the 
catchment topography and consequently to the special 
influence in snow cover and glaciers formation. These 
processes characterize the whole Alps mountain range 
in Northern Italy and regulate the hydrological response 
during winter low flows periods. Smakthin[9] give an 
extensive list of low flows studies related to the 
influence of glaciers and snow pack. Freezing and 
melting processes include a decrease in runoff variation 
and, consequently, more sustained low flows. The mean 
slope S generally has a positive effect on low flows[7] 
and it is possibly correlated with storage volume in high 
mountains. 
 Grouping catchments into two sub-regions had the 
best performance (R2cv = 72%). Separate regressions 
using seasonality indices in catchment classification 
were carried out. Catchment relief was represented also 
in separate grouping equations by A2000 or maximum 
altitude (Hmax). Hence, altitude and slope (catchment 
topography) appears as an important control of low 
flows in the study domain. Other catchment 
characteristics that appeared into sub-regional 
regressions are WRL (river length), LF (proportion of 
forest) and CIT (Thornthwaite moisture index). River 
length relates to the longest drainage path and its 
interactions with aquifers. Engeland and Hisdal[3] find 
main river length as a reference for winter low flows 
regime in Norway. 
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 Land use is significant for all selected models in 
the study domain. It affects evapotranspiration and soil 
infiltration rate which are related to water losses in low 
flows discharges during dry periods. The proportion of 
forest, crops and grasslands (LF and LCG respectively) 
are the land-use characteristics which more frequently 
appear in regressions. In contrast with Laaha and 
Blöschl[7] portion of rocks and wetland were never 
selected and did not appear to be important controls. On 
the other hand, Aschwanden and Kan[1] within a study 
concerning the low flows regionalization for 
Switzerland, outlined that land use plays an important 
role in predicting low flows indices, especially 
considering the characteristics proportion of 
agricultural areas and pre-Alpine farming structures. 
 The climatic parameter CIT (the Thornthwaite 
index) expresses the ratio between mean annual 
precipitation and evapotranspiration. It relates to the 
catchment global moisture as a reference of the average 
water balance. It was selected in the two separate 
regression models, supporting the finding that 
Thornthwaite index is one of the most important 
controls of low flows in North-Western Italy. 
 Catchment area, orientation parameters, watershed 
shape factors, runoff curve number and Budyko aridity 
index were never selected in the regression equation, so 
very little influence on low flows appears to exist. 
According to Laaha and Blöschl[7], also stream density 
WDD (parameter related to geology and land use) never 
occurred in the regression equations and does not 
appear to be a significant indicator of low flows for the 
study domain.  
 Results obtained in this study are therefore 
comparable with regionalization studies in literature, 
especially in Austria and Switzerland. We believe that 
the interpretation of the regression models provides 
useful insights into the comprehension of low flows 
processes. Topography, Thornthwaite moisture index 
and land use conditions appear to be the most 
influential parameters for regionalizing low flows in 
North-Western Italy. 
 

CONCLUSION 
 
 Gain and losses of stream-flow during seasonal low 
flows periods are generated from different natural 
factors that include morphoclimatic descriptors of 
catchments. The objective of this study was the 
examination of the relative influence of soil 
characteristics in regionalizing low flows. In this study, 
the specific discharge q95 is considered as an index of 
low flows regime with regard to its estimation in un-

gauged basins within the Piemonte and Valle d'Aosta 
regions (North-Western Italy). Regionalization has a 
primary importance in water resources management in 
order to transfer hydrological information from gauged 
to un-gauged sites. Multiple regression analysis were 
used and tested in order to establish a relationship 
between catchment characteristics and the low flows 
index q95. Based on the results, using regression 
method, catchment grouping based on the dominant low 
flows seasonality was an effective method for obtaining 
homogeneous sub-regions in North-Western Italy 
where winter low flows and summer low flows are 
controlled by different processes. The best results in 
this study were obtained with an overall predicting 
performance of R2cv = 72%. Topography, Thornthwaite 
moisture index and land use conditions are the best 
index for determining low flows estimates for un-
gauged catchments. According to other studies in 
literature, it can be affirmed that these kinds of analyses 
are useful in order to assess the relative importance of 
different kind of descriptors. Moreover, the 
interpretation of soil and land use parameters using 
regression models provides useful insights into the 
comprehension of low flows processes. 
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