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Abstract: Problem statement: There is a growing trend in the adoption of conaon tillage as an
alternative to conventional tillage farming systdmplications of this agricultural management shift
with respect to nitrous oxide §) emission, which has been a topic of intensearebefor the past
few decades, is not yet completely understéquproach: This study was conducted on a 2.4 ha field
located at Macdonald research farm of McGill unéitgry Montreal, to investigate the relative impact
of long-term Conventional Tillage (CT) and No-&tle (NT) practices on soil .8 fluxes (F20)
under grain and silage cordef mays L.) during the 2003 and 2004 growing seasons (MHapt).
Nitrous oxide fluxes were measured using statiselochamber by taking gas samples at 0, 10, 20 and
30 min.Results: In both years, the JO fluxes were generally similar between the twagié systems,
with the exception of few sampling dates at theif@gg of the growing season when@lemissions
measured under CT were significantly<Qp05) greater than NT. Despite our efforts to reduc
experimental error by deploying six chambers pegittnent plots, spatial and temporal variations were
high which might had obscured the treatment diffeess to be detecte@onclusion: An important
implication of present findings was that, contregymany reports in the literature, the adoptiomNaf
may not add to concerns over global atmosphesf@ bbncentrations. This might be due to a greater
rate of NO reduction to Nin soils under NT than CT during diffusion up thal profile because of
the higher moisture content under NT system than CT
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INTRODUCTION increase in acreage under NT however, raises cosicer
about potential trade-off between improved soil and
Growing concerns about climate change hasvater quality and enhanced nitrous oxide ,@QN
stimulated significant interest in the adoption ofemission; a potent greenhouse gas (GHG) relevant to
agricultural management practices that decrease thdimate change.
build-up of greenhouse gases (GHG) in the atmospher Soil water content is an important soil property
Consequently, sustainable soil use and managemedetermining the amount of J8 production from
systems that improve soil's health and capacitgttwe  agricultural soils. The presence of crop residueshe
GHG have attracted much attention in recent yédws.  soil surface will affect soil moisture contents,ighin
Till (NT) conservation is being recognized in many turn, dictates the D emission rates. Soils under NT
parts of the world as being a best managementipeact retain greater soil moisture than those under
that improves soil health minimizes soil erosidi ~ Conventional Tillage(Ct}®, which may enhance
and reduces production costs due to lower fuetenitrification, with NO being an intermediary product.
consumption and labor inptf. The continuing In addition to soil water content, it has long been
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established that D emissions are also dependent onhave been reported in previous stut?éd and only the
soil temperature, available carbon, soil pH, nignog salient aspects are stated here. The soil was ynotl
fertilizer rate and time of ye&t. All these soil the St Damase, series (Typic Endoaquent; Humic
parameters are affected by soil and crop residu&leysol according to FAO classification system).eTh
management practices and, consequently, the eafent upper soil layer (about 0.30 m) was a sandy loam,
N,O emissions. underlain by a sand layer (mean thickness about
Nitrous oxide emissions have been a topic 0f0.20 m), with clay beginning at a mean depth 000
increasing concern becauseNhas a well-documented The site was relatively flat with less than 1% slop
role in stratospheric o0zone {0 depletion and During the 12 years before the initiation of thisdy in
contributes to the atmospheric GHG eff8¢t? 2003, the site had been under CT and NT with
Agriculture sector in Canada is estimated to becontinuous corn cropping system. The site has been
responsible for 70% of anthropogenic emissions@,N under alfalfa prior to 1991 when the site was corede
most of it stemming from soils under crop to continuous corn production under CT and NT
productiod®. Inputs of Nitrogen (N) to agricultural systems.
soils from commercial N fertilizer applications,ganic Treatments were CT and NT, with or without
manures, or residues have been identified as majoesidue. Conventional tillage consists of moldboard
contributors to MO emissions from agriculture. The plowing the soil after harvest, to a depth of 0.2amd
Global Warming Potential (GWP) of N is estimated offset disking to a depth of 0.1 m before plantinghe
to be approximately 296 times greater than;CO gpring. No till plots were not tilled any time. &h
therefore, it is important to develop sustainableyggique (+R) treatments consist of harvesting dhéy
agricultural systems that reduce\emissions in the arnels as grain corn, whereas the cobs, leaves and
long term. stalks are chopped by a combine and returned to the

Although N?O produc_tion and emission u.nder field. The no residue (-R) treatments have therenti
commonly practiced cropping systems have beenia top lant harvested, and chopped as silage corn; hence
of intense research in Quebec, Canada, and eIse,vvheP. . S . '
minimal residue is left on the field. The surface

:\rll_?riazreor?r;gt :;?Sesrfgglegoﬁgagtj:ﬂﬁetshi;\ﬂ showroverage of residue retained on the soil for each
NT to produce larger O ehissions than CT sdiid? treatment, as measured in 1999, was NT+R: 86%,

as a result of increased soil moisture content anoc,:T”LR: 10, NT-R: 53 a”‘?' CT'R_: 19. ,
therefore, lower soil gas diffusivity, whereas athe Treatments were laid out in a randomized complete
studies report no significant effects of tillage N0 ~ Plock design replicated in three blocks. A 4-m wide
emission&®. Contradictory findings may be a result Strip of uncultivated land separated the blockse Th
of different climatic conditions and the duratiohNT  Study site consists of 18 plots, half (nine plotg}h
practice. The site of the present study had beeterun residue and planted to corn harvested for grain,cnd
the CT and NT since 1991 and, thus, may provide ughe other half without residue and planted to corn
with a better understanding into the conflictingdings  harvested as silage. Each plot measured 18 by 80 m
with respect to the impact of NT on,® emissions length and a 2 m wide buffer strip separated ¢dah
compared to CT under corZega mays L.) production Plots were drained by a subsurface drainage system
systems under southwestern Quebec. Corn is thiastalled to a depth of 1.0 m below the soil suefaend
dominant crop in southwestern Quebec. The objectiva5 m lateral spacing.
of the present study was to quantify sojONfluxes Corn (Funk 4120 hybrid) was planted in rows
from two long-term tillage practices; NT and CTrfro  spaced 0.76 m apart on 21 May in 2003 and on 20 May
grain corn production on a loamy sand soil undefn 2004. All plots received: at seeding, diammonium
southvyestern Quebec and similar enwronmentabhosphate (18-46-0), banded 50 mm below and 50 mm
conditions. laterally from tr;e seeds to provide 40 kg N'hand

102 kg BOs ha™. Ammonium nitrate NKO; (34-0-0)
MATERIALSAND METHODS and muriate of potash (0-0-60) were top-dressed 2-
Site description and experimental layout: This study, 3 weeks later to provide an additional 140 kg N laad
undertaken in 2003 and 2004, was conducted on 148 kg KO ha®. The second application occurred on 03
2.4 ha site at McGill University's agronomy resaarc July in 2003 and on 18 June in 2004. The grain-corn
farm on Macdonald Campus, Quebec. A detailed sit®lots were harvested with a combine that removeg on
description, field layout, and treatment arrangetsien grain, leaving all residues on the plots.
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Nitrous oxide sampling: Nitrous oxide fluxes were standard MO concentrations of 0.5 ppm at the end of
measured using static closed chambef@ Chambers the working day, to ensure the calibration of the. Go
(0.10 m depth) were made from 25 cm diameter PVQliminate the chances of contamination into thectet,
pipe with welded lids. Bases (0.15 m depth) madenfr 20-30 mL of N gas (blanks) was injected into the pre-
the same diameter PVC pipe were inserted into ¢ile s column, to prevent contamination and carryoveratéfe
(50 mm depth) to enable gas fluxes to be measured eeaching the detector. The injection of blanks was
the same position within each plot. A water-filled performed after each standard, the field standadl a
channel at the top of each base produced a gasstgh during regular intervals during the field,® sample
with the chamber during measurements. Two framesanalysis.
(each measuring 0.53 by 0.53; 0.14 m height) were A Campbell CR10 Scientific datalogger (Campbell
placed over the rows in each plot. The frames wergcientific Inc., Edmonton) was set-up on site tcore
inserted after the corn was and remained in thé Sohijr temperature and precipitation. Air temperatarel
during growing season to prevent soil disturbanee a precipitation were also recorded by Montreal PET
also allow repeated measurement at the same |acatiqnernational Airport, located 20 km east of thie sEoil
over time, th_er_eby facilitating the charactenzat_lof moisture and soil temperature were measured in
temporal variation of pD fluxes. The frame heights L h 0 t locations
extending from the soil surface were measured azyul proximity to the N _gas measuremen :
throughout the experimental period. All moisture

during the growing season, to account for the tiara . ) :
of headspace (because of removal, re-insertionsafd contents were determined gravimetrically and then

settling). Frames were removed after fall plowany convgrted to v.qumetric? soil moisture using thekbul

reinstalled the following year after spring disking density. Following planting, thermocouples (WatclgDo
In situ N,O fluxes (F.0) were measured once a Model 100 Docking Station, Spectrum Technologies,

day, 12 times in 2003 and 14 times in 2004. SamgplinInc.) were inserted in each plot to measure soil

was carried out in 2004 during the early springmvtiee  temperature at 0-10 and 10-20 cm depth. The

potential for large BD emissions was greater due to thermocouples were located no more than 0.10 m from

high soil-water contents to gain a better undettan  the flux measurement points. Hourly soil tempersur

of emissions during snow melt and spring thaw. Gagjuring the period of B0 measurements were averaged

samples from inside the chambers were collected by, each sampling date.

inserting a syringe through a rubber septum a0020

and 30 min after installation. At each samplingeda Calculation of soil N,O fluxes: The soil surface pO

25 mL air samples were taken and injected into mL2 fluxes r@m) were calculated from the following

evacuated vacuutainers (Vacuutainers brand, Beckoequatio U

Dickson Company, Rutherford, NJ) to ensure over

pressure of sample in the tubes. Before sampliet f Fn2o= dC/dt (V Mmol/A Vmol) 1)

standards were obtained by pre-injecting labeledsvi

with lab standards of 0 (0.1, 0.5 and 1.0 ppm) and Where: _

were brought to the field and acted as controlesgh dC/dt = The rate of change ot® concentration

field standards were used to calibrate theON V = The chamber headspace volumé)(m
concentrations obtained from the chambers in tiefi Mmol = The molecular weight of J0 (44 g moL")

to compensate for losses during fieldwork and sgera A = The surface area covered by the chamber
If there was a difference (usually a decline), My (0.29 )

concentrations measured from the field samples wer¥mol = The volume of gas at 20°C (0.024 moL™)
adjusted, based on the field concentrations. Miath

sampled MO gas were stored at room temperature inthe  The slope dC/dt was found by plotting time (in
laboratory until they were analyzed, usually no enor seconds) versus 9 concentration (in nmol mat).
than 1-2 weeks after being sampled from the field. The units of NO fluxes (F,0) Were ng it sec’.

Nitrous oxide concentrations were quantified vath The relationship between,® concentrations (four
Gas Chromatograph (GC) fitted with electron capturevalues) and time (t = 0, 10, 20 and 30 min) wagetes
detectors (Model 5890 Series, Hewlett Packard, d&wl for linearity. For linear conditions, a line of bdi was
Packard Company, Avondale, PA). The generaplotted through these four points, giving the slo@#dt
procedure in using the GC was to run three standardnd hence the rate. In cases where the relationgsp
N,O concentrations of 0.1, 0.5 and 1.0 ppm,found to be non linear, Eq®¥ was used to calculate
sequentially, at the beginning of the day, and ehre the rate and soil\zo:
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precipitation. August was a dry month causing soll
moisture contents to drop to extremely low levdlse
2004 growing season had temperatures and

fo VC-C)F { C,-C,

for t, =2t,
At(2C, -C,- ) C-G

and 2) precipitations that were similar to normal, excéfdy
ﬁﬂ when precipitation was greater than normal.
C.-G Precipitation in July and August were slightly lowe
than normal, causing soil moisture to remain lowirty
Where: this period. The soil temperatures (0-0.10 m depth
f =The measured flux (in units of mass atdane™) below the soil surface) were generally similar amat
Zv = The internal volume of the chamber treatments during both seasons, except few instance
A =The soil area it covers when CT plots tended to be warmer than NT,

t =Time and C is the trace gas concentration particularly during June and July (Fig. 1 and 2).

Statistical analyses: Al the Fo data were tested for a As expected, the lowest soil temperatures were

standard normal distribution. In cases where tamd Measured in spring and the beginning of summer, and
were not normally distributed, theo values were log- the highest soils temperatures were recorded agride
transformed; the results presented have been baéK June to the beginning of July (Fig. 1 and 2)e Boil
transformed to facilitate readability. Statistieadalyses was not covered by snow during the recording period
were performed using the General Linear Model (GLM)but experienced thawing and was saturated by ruatoff

3 -
proceduré?. _Differences among treatments were he peginning of spring which contributed to weted
evaluated using protected (only if ANOVA indicatas colder soils during this time

significant F value) Least Significant DifferendeSD) From May to early October, the,8 emissions at

comparison Unless otherwise statedq = 0.05 . X : _ 1
probability level was used to declare whether or ao the experimental site varied from 9']_'75 n_glz BEC In
difference is statistically significant. 2003 (Table 2) and from 11-290 ng“nsec” in 2004
(Table 3). In 2003, the CT-R treatment producea th
RESULTS highest NO emissions recorded during the season of
175.3 ng nt se¢' on May 22, following first
The spring of 2003 was wetter and cooler thargpplication of fertilizer on May 21 (Table 2). I10@4,
normal (Table 1). On average, the latter half l# t the highest average,® emissions for the season of
2003 growing season (July, August and Septembet) ha290 ng m’ sec' was recorded on April 16 prior to
warmer than normal temperatures, with less thamabr fertilizer application under CT-R plots (Table 2).

Table 1: Summary of climatic data for 2003 and 26€dson

Mean Temperature (°C) Normal Total Precipitationm)

mean Normal
Month (mm) 2003 2004 temperature* (°C) 2003 2004 ecjpitation*
April 6.9 4.2 5.70 79.9 76.9 74.8
May 11.3 13.4 12.90 1275 1105 66.7
June 17.5 18.8 18.00 106.0 70.0 825
July 221 21.6 20.80 55.0 54.0 85.6
August 21.8 21.6 19.40 11.0 79.0 100.3
September 18.3 17.7 14.50 64.5 104.0 86.5

*: Normal mean temperature and normal precipitati;mbased on data from 1971-2000; (Environmena@an2003 and 2004)

Table 2: Soil NO flux (ng m? sec¢®) for NT+R, NT-R, CT+R and CT-R in the growing seaf 2003
Sampling dates

Tillage 1May 9 May 22 May 8 June 18 Jun 24 June 6 Jdly 31 July 15 Aug. 29 Aug. 14 Sept. 3 Oct.
NT+R 10.8a(6.9) 15.6a(7.5) 36.4a(22.1) 93.6a8/4773.6a(37.9) 84.3a(25.6) 20.6a(12)  42.385)25.20.2a (10) 28.8a(8.7) 19.1a(12.5) 12.2a(9)
NT-R 13.8a(4.6) 27.4b(5.3) 152b((53.4) 77.99 (2 87.9a (27.6) 54.3a(17.4) 21.7a(7.3) 30.3a8)13.16.3a (12.8) 21.4a(10.0) 20.5a(8.1) 14.99 (7.4
CT+R 9.0a(7.1) 14.7a(4.8) 72.6a(40.2) 169b (3048.8b (21.4) 91.2b(16.7) 33.9a(24.2) 33.2a(15)12.4a(6.9) 15.6a(5.6) 20ab(5.8) 19.0a(9.8)
CT-R 10.1a(6.8) 30.4b(10.6) 175b (26.8) 32.1#)(5.32.1b (5.1) 42.8a(9.8) 20.6a(16.7) 26.3a(19.82.0a(8.4) 13.5a(4.3) 25.8b(6.9) 22.1a(13)
NT+R: No tillage with residue; NT-R: No tillage Wwibut residue; CT+R: Conventional tillage with reedCT-R: Conventional tillage without
residue. Values within the same column followeddifferent letters are statistically£p.05) different. Values between parentheses arelatd
deviations (n = 6)
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Table 3: Soil NO flux (ng m? sec™ for NT+R, NT-R, CT+R and CT-R during 2004 growisgason
Sampling dates

Tillage April 11 April16 April30 May7 May28 Jenll June 27 July14 July28 Aug.13 Aug.27 SEkpt.Oct. 01
NT+R 118.4a 50.1a 1443a 38.7b 31.8a 38.6a 45.4a .6a38 28.4a 17.6a 20.7a 12.3a 20.7a
(82.6) (24.2) (51.4) (27.3) (145) (149 (25.7) 184) (22.0) (9.8) (11.3) 2.7) (12.0)
NT-R  36.4b 23.9a 84.2b 63.4a 45.6a 49.0a 89.4a a37.613.3a 16.1a 20.3a 16.6a 11.1a
(22.5) (27.7) (48.6) (46.2) (11.1) (23.7) (74.5) 26.0) (7.9) (12.7) (6.4) (6.1) (3.9)
CT+R 63.8a 227.4b  1457a 909a 37.7a 51.7a 35.9a .6a21 22.9a 15.6a 12.0a 19.2a 11.0a
(36.0) (130.1) (24.3) (35.0) (5.6) (23.1) (16.7) 118) (8.1) (10.1) (5.2) (12.3) (8.9)
CT-R 30.6b 290.8b  109.7b 729a 34.7a 43.7a 29.8a .5a25 26.0a 18.4a 18.7a 13.7a 12.7a
(22.0) 117.7) (57.4) (50.3) (24.5) (21.9) (9.9) 198) (32.0) (8.5 (12.7) (5.9) (8.0)
NT+R: No tillage with residue; NT-R: No tillage \wibut residue; CT+R: Conventional tillage with reedCT-R: Conventional tillage without
residue. Values within the same column followeddifferent letters are statistically£p.05) different. Values between parentheses arelatd
deviations (n = 6)
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e NTR —e—NT-R -#:CTR —g—crg readings for 2004, at 0-10 cm depth for NT-R:
. o . _ No-till, silage corn; NT+R: No-till, grain corn;
Fig. 1: Precipitation and daily soil temperature CT-R: Conventional tillage, silage corn:
readings for 2003 at 0-0.10 m soil depth for NT- CT+R: Conventional tillage, grain corn

R = no-till, silage corn; NT+R: No-till, grain
corn; CT-R: Conventional tillage, silage corn;
CT+R: Conventional tillage, grain corn 80

There were a number of sampling dates where
there were significant §0.05) differences among the
treatments during the two growing seasons. These
sampling dates were May 09, 22, 08, June 18, 2d an
September 04 in 2003 (Table 2) and April 11, 16, 30
and May 07 in 2004 (Table 3). It was interesting to
observe that nearly in all cases, plots under Gih or
without crop residue, produced significantly greate
N,O than plots under NT. This was particularly eviden
in 2003 growing season following fertilizer applica
with the exception of September 04 sampling date
(Table 2), where DO fluxes increased within days after Fig. 3: water filled pore space in 2003 from: (@)

60

ace (WIPS, 7o)
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3-Ocl
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<
=3
s

ampling dates

fertilizer application, then declined towards backqd 10 cm and (b): 10-20 cm depth for NT-R: No-
levels. Although sampling was more frequent in 2004 till, silage corn; NT+R: No-till, grain corn;
than 2003, we measured2®| emissions under CT CT-R: Conventional ti”age’ S”age corn;
greater than NT only during spring prior to fertr CT+R: Conventional tillage, grain corn

application (Table 3).

Soil water contents were converted into percenthe NT under both with or without residue (+R/-R)
Water Filled Pore Space (WFPS) to get a bettecatidn  treatments had WFPS values above 0.62 for most of
of potential denitrification. Fromthese results, the period from May 8-June 27 (Fig. &d 4),
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and 2004, respectively). The slight peak on Junén27

—e— (TR

g W] BTy o o 2004 appears to have resulted from heavy rainfahe
€ At —g— TR immediately after second fertilizer applicationdFPR).
€ A Nitrous oxide fluxes decreased to background leasls
£ R the growing season progressed, regardless ofrttiedi

of the second fertilizer application.

The NO fluxes are known to be strongly episodic
in nature and a few peak values can contribute
significantly to overall NO production. We recognize
that peak values that can contribute significamilythe
overall NO production might not have been captured
‘ with the kind of sampling frequency in most studies
Sampling dates including ours. Increasing sampling frequency duyrin

the seasons of high potentiaJ®Iproduction, as well as
Fig. 4: Water filled pore space in 2004 from 0-2@ ¢ setting up more chambers in each treatment maythelp
depth for NT-R: No-till, silage corn; NT+R: No- determine the extent to which,® emissions estimates

till, grain corn; CT-R: Conventional tillage, can be improved by a given temporal sampling piitoc
silage corn; CT+R: Conventional tillage, grain From practical point of view however, the work we

Waterdil
W
S

14-Jul
28-Jul
13-Aug
27-Aug
17-Sep.
1-Ocl 4

11-Apr
16-Apr
30-Apr 4
7-May
28-May
11-Jun
28-Jun 4

corn report is labor-intensive and more frequent sangplin
was not feasible given the resources available.
indicating conducive soil conditions for dentrifim It is worth noting that trends of  fluxes for CT

process to occur. The CT (with and without residue)yere generally similar to, but of greater magnituttian
treatments had WFPS levels below 0.62 for the 2003 ose under NT for both growing seEws
growing season. Soil moisture for the 2004 seaso(Table 2 and 3). Results from more humid regions (o
(Fig. 4) for all the treatments exhibited the sgmatiern  periods) have generally produced greater emissions
as the 2003 season; high spring values, declinng iynder NT than CT systef3. In contrast, results
August and rising again in September. Apparently th gptained from a corn field in southwestern Quebec
lack of difference was due to overall higher préation  showed greater denitrification rates under NT stits

amounts received in 2004 (Table 1). under CT, not only during spring but also duringiren
growing seasdfr’. This has led them to recommend that
DISCUSSION corn production should be carried out under CT, if
. . ) mitigating NbO emission were a priority.
Soil temperature during the growing season was not Under controlled conditiofg), reported

affected significantly (50.05) by the tillage system. significantly higher NO emissions under NT compared
This finding is cpnsistent with _the recent repoy{z‘ﬂ) . Wi%h CT. O}':he?researchers noted thaONfluxes unrzjer
vv_ho found growing season soil temperature not beln%.l_ were not different than those under ®T The
different between NT and CT, except the month ojMa reason for these differing findings could be to thet

when soil temperatures tended to be warmer in A% so ) . o
compared with NT soils. As will be discussed in thethat wetter soils under NT produce higher dendsifion

coming sections, the slightly warmer temperature if&t€S, with NZPZ‘Z]COW'”Q the major or sole{zgﬁ)roduct of
early spring might have contributed the burst DN demtnﬂpatprﬁ 7. Similarly, Rolstonet al.* found
emissions in 2004. This is a suggestion thaDN that, with increasingly anoxic con_dltlons _(|._e_.,glh_mr
emissionwas not consistently responsive to fertilizer WFPS), the percentage of,® during denitrification
application alone. It was interesting to note thath  decreases, while the production of, Ns favored,
peak values of emissions occurred in CT in theyearl particularly when a source of readily available € i
days of spring (April 16, 2004), probably becauséhb presert” found that under NT, denitrification was
CT-R and CT+R warmed more rapidly than wetter NTincreased when compared with CT. They postulatat th
soils (WFPS 80%), causing the burst gfbNunder CT. the difference was in part due to the presencegoéater
However, it is not possible to verify this plausibl amount of oxidizable C in the surface soils und&r N
explanation since soil temperature probes were not Since source of carbon is one of the primary
installed until field operations were complete. &kft requirements for BO production, it is possible that®
June, treatment differences were minimal (all reatts  production through denitrification process is mikely
had similar values below 42 and 91 ng sec*in 2003  to be limited in soils under CT than R¥. reported that
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although soil organicC changes in response to
management practices could be relativalyid, it still
took about 10 y to obtain stable managenaéfects. By

the time our NO measurements were made in thecreating

present study, it hadeen 12 y after NT was
implemented and, therefore, it is plausible that il
processes associated with a change in croppingigeac
(changes in organic matter, pH, aggregate stapiidye

stabilized and reaching or approaching equilibrium

state. It is worth noting that previous study frans site
showed that the differences in Dissolved Organi
Carbon (DOC) between NT and CT tillage system
were not consistently significant at any soil d&fth

Despite somewhat contradictory findings, the
general consensus is that because of higher meiahd
organic matter content, and higher microbial
populations, NT tends to produce higher denitrifaa
rates, depending on prevailing climatic conditiahshe
time of measurements. For exaniflesuggested that
NT management in periods or regions that are veligti
warm and wet may result in,f8 emission rates similar
or less than those under CT and NT and may thus be
viable means to reduce,® emissions. These authors
documented that in drier periods or regions,ON
emissions were greater under NT because of inateas
soil moisture content.

The large variability of BD fluxes might have
obscured significant differences being detected
Although precautions were taken to lower experiment
errors, such as using a high quality septum orvitls,

and analyzing the gas samples within a week o

sampling, nevertheless,® emissions remained highly

water contents (i.e., WFPS) were higher under NT
filling more soil pores with water, which would heav
increased volume of anaerobic zones within soifilero
conditions conducive to denitrification
processes. They explained that soil moisture cimmdit
under NT (WFPS>70%) might have allowed complete
denitrification to N and the soil acted as a sink fofON
Similarly, Grundmann et al®®¥ showed that
denitrification is most apt to occur when soil wess, or
the WFPS, is above 0.62 (or 62%)) determined
denitrification to be highest at, or above, 60% \BFP

gfound that all of the PbD emitted at 70% WFPS was

produced during denitrification, but nitrificatiamas the
process producing /@ at 35-60% WFPS.

CONCLUSION

No-till conservation is commonly practiced in arde
to reduce soil erosion and energy consumption irtiNo
America. To gain better understanding, we investiga
the effects of CT and NT on,® emissions using long-
term plots. Observations of ., emissions over two
growing seasons demonstrate that NT system did not
contribute significantly greater atmospherigCNthan
CT as suggested by some in the literature. Wepraer

®hese results that denitrification in the NT treants

might have been producing more tthan NO. Further
research is required under different conditions to
determine if NT favors Nproduction. If so, then NT
maybe a Best Management Practice (BMP) to mitigate
PIZO emissions in agricultural soils.
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