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Abstract: Problem statement: There are numerous difficulties associated with replenishing 
intermittent demand items and these are compounded when the demand distribution(s) vary seasonally. 
Excess inventories during an “off” season are typical, while shortages frequently occur during the “in” 
season, especially at the transition points between “seasons”. Approach: Evaluate the extent to which 
items characterized by non-stationary (seasonal) intermittent demand can be managed with commonly 
used forecasting and replenishment methods, including existing “intermittent demand” methods. 
Extensive simulation studies were conducted using combinations of two commonly used forecasting 
methods and two replenishment policies to evaluate the impact of non-stationary intermittent demand 
on key inventory performance measures, including average inventory and net profits, including the 
extent to which combinations of forecasting and replenishment models is adversely impacted by the 
non-stationary demand distributions. Results: No combination of forecasting and replenishment 
methods tested consistently outperformed the others and all methods demonstrated a propensity to 
replace demanded units an average of 10 weeks before the inventory was required to avert a shortage. 
Conclusion: The inventory performance of the policies tested was consistent with our expectations 
and offered evidence of the need for further development of forecasting and replenishment models 
addressing the special characteristics of items with non-stationary intermittent demand.  
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INTRODUCTION 

 
 The difficulties associated with managing 
inventory for items with intermittent demand are widely 
recognized and this problem characterizes a large 
percentage of the inventory management decisions 
faced by many companies. Spare parts, accessories, 
slow selling items in large assortments and low volume 
big ticket items are all representative of classes of items 
likely to be typified by intermittent demand. An August 
2000 Business Wire article (Business Editors, 2000) 
quotes a study estimating spare parts spending of $700 
billion (8% of US GDP) in the US alone. 
Approximately 90% of the items stocked at retail by a 
national specialty retailer known to one of the authors 
sell fewer than one unit per week. These statistics help 
to illustrate the scope of this problem and emphasize 
the need for an efficient and effective method for 
making intermittent demand item inventory decisions. 
 It is this particular specialty retailer who motivated 
this study. In this case, the retailer’s business is of a 

highly seasonal nature such that both the frequency of 
demand events and the size of demand events may differ 
substantially between the retailer’s “in” season and “off” 
season. Although initially motivated by a single company, 
the nature of the demand described is consistent with the 
nature of retail demand for a wide variety of merchandise 
including apparel, consumer electronics, toys and other 
holiday items, patio furniture and other summer seasonal 
merchandise and school supplies. 
 In this study, we use a large-scale simulation to 
evaluate the impact of non-stationary intermittent 
demand on inventory performance. We assume that the 
time between demand events is variable, such that 
demand frequently does not occur in consecutive 
periods and that both the inter-demand event times and 
the number of units demanded during a demand event 
can be characterized by probability distributions. We 
further assume, consistent with the motivation, that 
both the time between demand events and the size of 
demand events are non-stationary. Specifically, we 
assume   that   the   company’s   selling   year   can    be 
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Fig. 1: Demand plots for four items showing non-stationary intermittent demand 
 
separated into two intervals, one “in” season and one 
“off” season. Within each of these intervals, the time 
between demand events and the unit size of demand 
events can be characterized by probability distributions 
 The demand shown in Fig. 1 illustrates this “in” 
and “off” season behavior. For these four items, it is 
easy to see that demand events are more common 
during fifteen to twenty weeks in the middle of the 
year. Moreover, demand events occurring during this 
time frame tend to be of greater magnitude than those 
that occur during the remainder of the year. 
 We assume that a rational inventory manager is 
concerned with increasing net profits, reducing holding 
costs, limiting inventory time supplies, increasing 
realized service levels and fill rates and improving other 
common profit-oriented metrics of inventory 
performance. This may not always be the case. For 
example, Teunter and Duncan (2009) consider the 
intermittent demand problem in the context of service 
parts for the UK Royal Air Force (RAF) where 
profitability clearly is not the primary objective. In such 
a context, a rational inventory manager may wish to 
minimize total relevant inventory costs incurred for an 
intermittent demand item while satisfying an acceptable 
fraction of the demand.  
 It is without doubt that the performance objectives 
of the inventory manager are frequently in conflict with 
one another (e.g., increasing service levels may 
decrease net profits due to corresponding increases in 
holding costs). Arguably, then, an inventory manager 

may accept a small percentage decrease in net profits, 
for example one percent, if accompanied by a large 
reduction in average inventory, say twenty percent, 
which could be invested in other inventory with better 
performance characteristics.  
 We assume that lead times are deterministic and 
constant and are sufficiently short such that the 
probability of a non-zero demand event before a 
resupply operation can be completed is zero. 
Additionally, we assume that the unit holding cost rate 
is deterministic and that 100% of the gross margin for 
the demanded item is lost in the event of a shortage. 
This latter assumption may be easily relaxed by 
retaining a portion of the gross margin, in the event of a 
shortage, where the retention percentage <1.00 
indicates the margin retained on a less profitable 
substitute item and <1.00 represents the margin 
retained on a more profitable substitute item. Order 
placement and setup costs are assumed to be negligible. 
 This study makes four contributions. First, we 
highlight a new class of intermittent demand 
replenishment problems, where the distributions of time 
between demand events and the size of demand events 
are not stationary. This is an important practical 
problem faced by many companies in supply chain 
management, manufacturing and service operations. 
Second, we evaluate the performance of commonly 
used methods and highlight their weaknesses with 
regard to the intermittent demand replenishment 
problem when both the time to a demand event and the 



Am. J. of Economics and Business Administration 2 (1): 90-102, 2010 
 

92 

size of a demand event are non-stationary. To the best 
of our knowledge, this is the first paper to look at this 
important and relevant variation of this problem. Third, 
we show that a simple policy combining a forecasting 
approach suggested by Croston (1972) with a non-
optimal (s,S) reordering policy can substantially reduce 
average inventory and improve net profits, as compared 
to the simple base stock policy in Croston’s seminal 
paper. And finally, we introduce a new metric for 
evaluating a policy’s ability to recognize when a 
replenishment order can be deferred in the face of non-
stationary intermittent demand.  
 This study is related to previous research on 
demand forecasting and inventory replenishment. 
Croston (1972) develops a method for improving 
intermittent demand item forecasting and replenishment 
in which he measures the time between demand events 
separately from the quantity of an item demanded. In 
this study, Croston assumes that demand occurs in any 
period with probability p and that demand occurring in 
a period is independent of demand occurring in any 
other period, so that the number of periods between 
demand events follows a geometric distribution. He 
assumes that the size of a demand event (units) follows 
a normal distribution and is independent of the time 
between events. Using these assumptions, Croston 
develops a method for updating the average number of 
periods between demand events p  and the mean z  

and mean absolute deviation m of demand per demand 
event, compared to the average per unit time seen in 
typical time series methods. He then suggests using a 
base stock policy where the order up to level is 
calculated as z km  , with k = 3 corresponding to a 

target service level of approximately 99%. Croston 
further asserts that an unbiased estimator of the average 

demand per period can be calculated as z
ŷ p





 . 

 Shenstone and Hyndman (2005) write that Croston’s 
method is the most widely used approach for intermittent 
demand forecasting. However, there are a number of 
papers, several recent, revisiting this topic. Many of these 
focus on whether Croston’s method yields a biased 
estimator of expected weekly demand (Syntetos and 
Boylan, 2001), while a number of papers propose bias 
adjusting corrections (Syntetos and Boylan, 2006; 
Syntetos et al. 2005; Eaves and Kingsman, 2004; Boylan 
and Syntetos, 2007; Gutierrez et al., 2008; Teunter and 
Sani, 2009). Johnston and Boylan (1996) compare the 
performance of exponentially weighted moving average 
intermittent demand forecasts to those developed from 
a model generating demand forecasts from order size 

mean and variance and average inter-order times. They 
find that their method yields superior results when 
average inter-demand times exceed 1.25 forecast 
review periods. Shenstone and Hyndman (2005) point 
out that Croston’s method is an ad-hoc procedure with 
no properly  formulated  underlying  stochastic  model. 
Hua et al. (2007) use logistic regression to predict non-
zero demand events and bootstrapping to estimate lead 
time demand. Syntetos et al. (2009) provide a complete 
review of the literature in this area.  
 Instead of demand forecast accuracy and bias, 
Schultz (1987; 1989) focuses on restocking policies that 
schedule replenishments a specified number of time 
periods after a demand event, rather than replenishing 
immediately after an event as is typical of a base stock 
policy. Schultz (1987) introduces the concept of 
scheduling replenishment orders k time periods after a 
replenishment under the assumption of stationary 
demand sizes and stationary time between demand 
events. If a stockout occurs before the replenishment 
order is placed, then an emergency order is placed to 
meet the shortage and the remainder of the scheduled 
order quantity is placed as scheduled. Under the added 
assumptions of unit demands, high unit item costs 
relative to order processing costs, constant lead times 
that are short relative to the average time between 
demand events and large holding costs relative to 
shortage costs, Schultz (1989) finds optimal 
replenishment delays for distributions of time between 
demand events with increasing failure rates. 
 Present research is also related to recent 
“bootstrapping” approaches to estimate lead time 
demand for items with intermittent demand 
(Willemain et al., 2004; Porras and Dekker, 2008) as 
well as traditional approaches to forecasting non-
stationary demand (Makridakis et al., 1997) and 
traditional replenishment models (Hadley and Whitin, 
1963; Silver et al., 1998). Bookbinder and Lordahl 
(1989) use a bootstrapping procedure for determining 
reorder levels when the lead time demand distribution 
cannot be adequately represented by a standard 
distribution. Teunter and Duncan (2009) evaluate the 
performance of Croston’s method and “bootstrapping” 
and find that both methods outperform single 
exponential smoothing and moving averages. They note 
that replenishment orders are triggered only in periods 
with demand events and propose an alternative method 
for estimating lead time demand. 
 The rest of the study is organized as follows. First, 
we explicitly define the general problem, including 
assumptions and develop our approach, using graphical 
examples to highlight key problem considerations. 
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Next, we simulate inventory levels and ordering 
activity, evaluating the resulting inventory performance 
on a variety of performance measures. We compare and 
contrast performance across forecasting methods and 
reordering policies, drawing insights into which 
methods are best suited to address particular 
intermittent demand characteristics. We conclude by 
summarizing our findings, discussing implications for 
practicing inventory managers, and identifying potential 
extensions of present research.  

 
MATERIALS AND METHODS 

 
Method formulation: 
Problem definition: Croston (1972) establishes the 
basic problem setting which consists of a routine stock 
control system in which updating occurs at fixed unit 
time intervals, which are typically much shorter than 
the times between successive demands for the product. 
Thus there will be frequent occasions for which the 
demand will be zero, although the average demand can 
be greater than one since it is calculated over multiple 
periods from demands of varying size. 
 We assume the demand year for an item consists of 
two intervals defined as “in” season and “off” season. 
“In” season, demand is generated by a Bernoulli 
process with probability pI that a demand event will 
occur in a period. During the “off” season, demand is 
generated by a Bernoulli process with probability pO 
that a demand event will occur. The distribution of the 
size of a demand event is also non-stationary and 
assumed to follow a shifted Poisson distribution with 
average demand per event I “in” season and O “off” 
season. Demand generated according to this process 
will exhibit characteristics similar to the demand shown 
in Fig. 1. 
 Under these assumptions about demand, we 
consider the performance of four policies consisting of 
the possible combinations of the commonly used 
forecasting and reordering methods listed in Table 1.  

 
Forecasting models: Single Exponential Smoothing 
(SES) is a simple method that can approximate the 
results of weighted moving averages with minimal data 
requirements (Brown, 1959). Let yt and tŷ  be the actual 

and expected (i.e., forecasted) demand for period t, with 

tŷ  calculated at the end of period t-1, t t tˆe y y   and , 

0 1   , the exponential smoothing factor. Then: 

 
 t 1 t t t tˆ ˆ ˆy y 1 y y e          (1) 

Table 1: Forecasting and reordering methods 
Forecasting approaches Reorder policies 
Single Exponential Smoothing (SES) Base stock (order up to S) 
Croston’s Method (CM) (s,S)1 
1: This type of reordering policy is frequently referred to in practice as 
an OP/OUTL policy. Although it is theoretically possible to 
simultaneously determine s and S to minimize (maximize) a cost 
(profit) objective, it is more common in commercial practice to select 
the value of s to satisfy some form of target service objective, while S 
is generally selected to reflect constraints in ordering frequency and 
holding capacity 
 
 The Mean Absolute Deviation (MAD) (Given a 
MAD, m, for a normally distributed RV, the standard 

deviation, , can be found using the relation m
2


  ), 

a common measure of demand variability, is often 
calculated using SES: 
 

 t 1 t tm e 1 m       (2) 

 
 The difficulties associated with using exponential 
smoothing with intermittent data are well-known, 
including overstatement of demand variability. 
Croston’s method attempts to address these by 
separately estimating the average size of demand and 
time between demand events, assuming size and time 
between events are independent. In periods when 

ty 0 : 

 
 

 
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and when yt = 0: 
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
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 
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 (4) 

 
 Finally, the estimate of single period demand is 

given by t
t

t

ẑ
ŷ

p̂
 . 

 
Reorder policies: A base stock policy generally is used 
to calculate a replenishment order quantity, Q, each 
period when the desired system behavior is to return the 
inventory position, IP OH OO BO CS    , to a base 
stock level S. OH is the current quantity on hand 
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(typically in units), OO is the current quantity on order 
(in systems where orders may be placed for a delivery 
more than a lead time in advance, for special purposes, 
then OO should represent the units currently on order 
for delivery within a lead time), BO represents the 
number of units currently backordered to customers and 
CS represents committed stock units (i.e., units on hand 
but reserved for special purpose and therefore not 
available for satisfying customer demand). In the 
remainder of this study we assume for simplicity and 
without loss of generality, BO CS 0   so that: 
 

t t i t t tQ S IP S OH OO      (5) 
 

 t t lˆS l c y ss    (6) 
 
Where: 
l = The lead time 
c = The cycle time (the desired sell-through time of 

the on hand inventory)  
ssl = The safety stock necessary to buffer against 

uncertainty during the lead time (8) 
 
 There are various methods for determining ssl, 
depending on the demand distribution and the nature of 
shortage costs (Silver et al., 1998). Croston’s paper 
uses a simplification of (6) consistent with an 
assumption of short lead times relative to the time 
between demand events. Using Croston’s 
recommendation of k = 3, a base stock level calculated 
using (7) would be expected to satisfy 99.17% of 
demands completely from stock on hand. To provide a 
consistent basis for comparison, we use t t tˆS y km    
for a base stock policy used in conjunction with SES, 
also setting k = 3: 
 

t t tˆS z km   (7) 
 
 To calculate the replenishment order quantities 
when using an (s,S) policy, we use: 
 

 

t t t t
t

t t l

S IP IP s
Q

0 otherwise

ˆs r l y ss

 
 


  

 (8) 

 
where, r represents the review interval (i.e., the time 
between order placement opportunities). We calculate 
safety stock to satisfy a target probability that demand 
will be met from stock: 
 

 1
l t tˆss F P l y    (9) 

 
where,  1

tF P  is the inverse cumulative demand 

distribution function for the item given information at 

time t. Equation 9 is useful as it is easily applied using 
any demand distribution. 
 The introduction of the order point, st, provides a 
mechanism inhibiting the automatic replacement of 
inventory when the remaining on hand inventory may 
be sufficient for satisfying demand. This would seem 
particularly true in the case of intermittent demand, 
where there may be significant positive probability that 
a demand event will not occur during one or more 
periods following a demand event. 
 The non-stationary nature of our demand makes it 
even less reasonable to assume that the occurrence of a 
demand event should automatically trigger a 
replenishment order. Consider the demand shown in 
Fig. 2. It seems reasonable to assume that the “in” 
season starts at approximately week 14 and concludes 
at about week 35. Assume a base stock level of 8 units 
and consider the sequence of events that would occur 
beginning in week 4. Using a base stock policy, the 
demand events in periods 31 and 35 would generate 
replenishment orders for four and two units respectively 
and the “off” season would begin with 8 units of 
inventory, which would be carried with very little 
probability of a sale for roughly thirty weeks. 
Considered another way, the remaining inventory of 
four units after the demand is satisfied in period 31, 
would be sufficient to handle the demand for the next 
thirty-three weeks (nearly eight months), without a 
replenishment order. This would seem to suggest that 
the (s,S) policy should perform better than the base 
stock in terms of idle inventory. 
 The actual inventory performance is a function of 
the forecasting method and inventory policy. Figure 3 
shows the actual performance given the demand in 
Fig. 2 when using Croston’s forecasting and a base 
stock reorder policy. This evidences a definite bias 
toward providing a very high level of service 
performance, which illustrates why new methods are 
required under non-stationary intermittent demand. The 
circles show the replenishment order quantity, clearly 
calculated to return IP to S. The ending inventory 
position (denoted by the inverted triangles) in every 
period is significantly larger than the demand observed 
in the period. The elevated IP levels in the initial weeks 
are clearly the result of one or more very large demand 
events in the item’s history prior to the plotted weeks. 
We can observe the result of the Croston’s forecast 
update, lowering the ending inventory position each 
time a demand event occurs prior to the beginning of 
the “in” season. Of greatest note, however, is that the 
ending inventory at the entry into the “off” season is 
adequate to meet demand during the next thirty-seven 
periods. Similarly, the ending inventory in week 32 is 
also sufficient to meet demand in the next thirty-seven 
demand   periods.  The   reordering   decisions   made in 



Am. J. of Economics and Business Administration 2 (1): 90-102, 2010 
 

95 

 
 

Fig. 2: Sample demand showing “off” season 
 

 
 

Fig. 3: Sample demand with order quantities and order up to levels 
 
weeks 32 and 35 resulted in carrying 225% more 
inventory through the “off” season. 
 Figure 4 shows the order quantities resulting from 
the use of an (s,S) order policy in conjunction with 
Croston’s forecasting method. A simple count shows 
that the (s,S) orders with less than half the frequency 
as the base stock policy and, as a result, the ending 
inventory and consequently the ending inventory 
position, are allowed to assume lower levels, resulting 
in holding costs savings. 
 Figure 4 suggests the need for non-stationary 
demand intermittent forecasting methods and update 
policies even more clearly than Fig. 3 does. Although 
the (s,S) policy places orders with only 39% of the 
frequency of the base stock policy, it still places a 

large order in week 32, resulting in high on hand “off” 
season inventories, relative to demand. 
 
Simulation studies: We wished to evaluate the ability 
of the methods listed in Table 1 to manage inventory: 
 
 How well do the methods perform in general? 
 Does any single method consistently perform better 

than the others? 
 How significantly is a method’s performance 

affected by the degree of non-stationarity in the time 
between demand events and the size of demand 
events given a fixed set of policy parameters? 

 
Simulation overview: We conducted extensive 
numerical simulations in order to analyze the inventory 
performance for the four combinations of the two 
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Fig. 4: Sample demand, order quantities and order up to levels using (s,S) policy 
 
forecasting methods and the two order policies 
(collectively referred to as replenishment policies) and 
also for varying inter-demand event time, demand size 
and gross margin ratio characteristics. Inventory 
performance was simulated 100 times for each 
replenishment policy over a ten year period (Each 
combination of forecasting method and reordering 
policy was evaluated for 100, 10-year periods against 
54 different demand datasets. Effectively, each method 
was evaluated over a total of 10,000 years on 54 
different classes of non-stationary intermittent demand). 
We calculated inventory performance on a large 
number of metrics: 
 
 Average on hand inventory (period ending) 
 Total units shorted 
 Total gross profit 
 Total holding costs 
 Total net profit 
 Total opportunity costs 
 Average order periods delay 
 Maximum order periods delay 
 Average inventory position time supply 
 Maximum inventory position time supply 
 Percentage of order delay periods exceeding the 

maximum desired time supply (max DTS) 
 Percentage of inventory position time supplies 

exceeding max DTS 
 Average service level (all periods) 
 Average service level in periods with demand 

events (i.e., |demand > 0) 
 Average fill rate (all periods) 
 Average fill rate |demand >0  

 Most of these are self-explanatory, while a few 
probably merit a description. Average (and maximum) 
Order Periods Delay (OPD) is calculated any time an 
order is placed and indicates the number of weeks an 
order could have been delayed without incurring a 
shortage (i.e., while satisfying demand from stock). 
OPD is an accurate calculation, based on demand 
realized after the order placement rather than on 
estimated demand at the time the order was placed. 
 Average (and maximum) Inventory Position Time 
Supply (IPTS) is calculated using the inventory position 
at the end of a period (i.e., including any order 
quantities placed during the period) and accurately 
indicates the number of periods’ demand that could be 
satisfied without placing an additional order. As with 
OPD, IPTS is calculated based on demand realized after 
the order placement. 
 The average service levels and fill rates over all 
periods are predictably high (due to the many instances 
of zero demand periods in which both service level and 
fill rate would be 100%). Of significantly more interest, 
especially in conjunction with average inventory levels, 
are service levels and fill rates given a demand event. 
These provide a much more informative assessment of 
service level and fill rate performance, calculated only 
from periods in which demand >0.  
 Averages and confidence intervals were calculated 
on each of the metrics for each dataset (described 
previously). In particular we were interested in 
observing the differences in average inventory, average 
service levels and fill rates and the order delay periods 
across the replenishment policies. The following 
parameters were kept constant in all of simulations: the 
initial on hand amount was established as the average 
demand from the first five demand events, initial order 
amount was 0 units, unit holding cost per period was 
0.48%  of  the  item’s value  and  lead time was 1 week. 
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Table 2: Inter-demand event time and demand size parameters for 
generated data 1-9 

 Inter-demand event time 
Demand size 
Distribution pI = 0.25 pI = 0.5  pI = 0.5 
Parameters pO = 0.02 pO = 0.02 pO = 0.25 
λI = 1.5  Data 1 Data 2 Data 3 
λO = 1.02 
λI = 5.0  Data 4 Data 5 Data 6 
λO = 1.02 
λI = 8.0  Data 7 Data 8 Data 9 
λO = 1.02 
 
The exponential smoothing factor used for both Croston 
(1972) method and SES was α = 0.1. The safety factor 
used in the base stock policy was k = 3. A Target 
Service Level (TSL) of 0.999 was used for the (s,S) 
policy calculations, roughly approximating the same 
level of target service as k = 3 for the base stock policy. 
Desired time supply for the (s,S) policy was held 
constant at 45 days when using Croston’s forecasting 
method and 14 days when using simple exponential 
smoothing (the only real accommodation made for the 
different replenishment methods). All other parameters 
were consistent across the methods (i.e., no effort was 
made to optimally select parameters for each method).  
 
Generating random demand data: We used the 
probability distributions described in Method 
Formulation to randomly generate the demand data; the 
inter-demand event times followed the non-stationary 
geometric distribution and the demand sizes were 
assumed to follow a shifted Poisson distribution. We 
chose nine different quadruples (pI, pO, λI, λO) to vary 
the expected inter-demand times and demand sizes both 
in and out of season and created a dataset for each. 
These values are summarized in Table 2. 
 In addition, for each of these nine data types we 
simulated data for six different gross margin ratios 
varying from 0.25-1.5, in increments of 0.25. The gross 
margin ratios were calculated as (sales cost-unit 
cost)/(unit cost). Thus in total we generated fifty-four 
data sets with different characteristics. Inventory 
performance for each of these data sets was simulated 
over 520 periods (weeks) and replicated 100 times 
(independently).  
 

RESULTS 
 
 Although this study is more concerned with how 
well these replenishment policies handle non-stationary 
intermittent demand, the results of the simulation 
appear to confirm findings of prior researchers (e.g., 
Teunter and Duncan, 2009) that no method outperforms 
the others consistently for all variations of intermittent 
demand characteristics. 

 
 
Fig. 5: OH Averages from 100 10-year simulations 
 
Comparing the average on hand, total units shorted 
and total net profit: Figure 5 shows the average on 
hand inventory values calculated over the 10-year 
simulation horizon from 100 independent replications 
(Bar height represents average inventory levels. The 
“whiskers” bracketing the top of each bar indicate 95% 
confidence intervals, which are very narrow due to the 
large scale of the simulation). On hand inventories for 
Croston’s/base stock are the lowest across all methods 
only for Data 1-3, where the size of the average demand 
event is small and the difference between the “in” 
season and “off” season demand size distributions is 
small. In the remaining six cases, Croston’s/base stock 
inventory levels exceed those of at least one other 
replenishment method, while combining Croston’s 
forecasting method with an (s,S) reorder policy yielded 
reduced inventory levels in 5 of those 6 cases and the 
lowest levels overall in 3 of those cases. 
 On hand inventory levels alone yield an 
incomplete picture. With the exception of the Data 1-3 
(low volume, small demand rate differences “in” and 
“off” season), the Croston’s/base stock replenishment 
policy consistently provides the best performance 
(with shortages considerably below those of other 
methods). However, this result is interesting when 
considering the average inventories in Fig. 5 in 
conjunction with Total Units Shorted in Fig. 6. For 
example, the average inventory for the SES/base stock 
policy is considerably higher than the Croston’s/base 
stock policy for Data 8, yet the SES/base stock policy 
clearly incurs higher shortage costs than Croston’s 
method.  
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Fig. 6: Average total shortages from 100 10-year 

simulations 
 
 The average  total  net  profit  results  shown  in 
Fig. 7 are important. Although the shortage costs 
associated with the Croston’s/base stock policy are 
very low, the cost of achieving the higher fill rates is 
an increase in holding costs. When calculating the net 
profit (net of holding costs), we see that the net profit 
performance across the four methods is fairly 
consistent.  
 Figure 7 indicates that while the Croston’s/base 
stock policy may be a good choice for management of 
critical supplies where shortages cannot be easily born 
by the system, any of the policies is capable of 
providing comparable performance in terms of net 
profits. By choosing a different policy, a firm could 
earn roughly the same profits on an item while gaining 
inventory dollars to invest in another item, thereby 
increasing its total earnings from inventory operations. 

 
Comparing the order weeks delay and the IP time 
supply: Figure 8 shows the average number of weeks 
an order could have been delayed without incurring 
shortages. The values are high for all methods, with 
the lowest being for the Croston’s/(s,S) policy in all 
cases except Data 1 and 3. This graph shows the 
significance of the (s,S) policy’s ability to postpone 
reordering until a subsequent demand event occurs. 
Figure 8 shows that the (s,S) policy outperforms the 
base stock policy in six of nine cases. Moreover, a 
more detailed evaluation shows that the (s,S) policy 
consistently outperforms the base stock policy when 
the degree of demand size non-stationarity is greater 
(Data 4-9). 

 
 
Fig. 7: Average total net profit from 100 10-year 

simulations 
 

 
 
Fig. 8: Average order weeks delay from 100 10-year 

simulations 
 
 However, Fig. 9 also gives clear indication that 
none of the methods’ performances is beyond criticism. 
With the majority of cases showing maximum order 
delays of 30 or greater for all policies, all of the policies 
are seen to raise inventory levels well above that 
required to meet demand. 
 Figure 10 and 11 show average and average 
maximum inventory position time supplies respectively 
for all methods. They all fare poorly, with minimum 
average time supplies of two months and average 
maximum time supplies of nine months or more. These 
large inventories could be mitigated, to some extent, by 
reducing   the   safety   stock  for  all  of   the   methods. 
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Fig. 9: Average maximum order weeks delay from 100 

10-year simulations 
 

 
 
Fig. 10: Average IP time supplies from 100 10-year 

simulations 
 

 
 
Fig. 11: Average maximum IP time supplies from 100 

10-year simulations 

 
 
Fig. 12: Average % order delay periods exceeding 

maximum desired time supply 
 
This would certainly reduce the time supplies, but 
would almost certainly increase shortages as well. 
Because the existing methods do not address the non-
stationary characteristics of the intermittent demand, 
they are incapable of maintaining the service 
performance while simultaneously reducing inventory 
levels (and thereby improving the rate at which an 
inventory investment generates net profits). 
 

DISCUSSION 
 
 Most organizations that manage inventory employ 
rules of thumb for quickly analyzing inventory levels. 
Maximum time supplies, while problematic for 
maximizing inventory performance, nonetheless have 
value in high-level analyses. Figure 12 shows the results of 
applying a maximum time supply to order delay periods 
(i.e., the number of periods an order could be delayed 
without incurring shortages). Specifically, the graph shows 
the frequency with which orders were placed even though 
the existing inventory exceeded a maximum time supply 
benchmark. All methods display a propensity to order 
when the existing time supply would exceed the threshold. 
This does not imply that a simple order cutoff of this 
nature should be implemented. On the contrary, doing so 
would very likely jeopardize service performance. Rather, 
high percentages give evidence to the need for 
replenishment methods that explicitly account for the non-
stationary nature of the intermittent demand. 
 Figure 13 shows further evidence that non-stationary 
intermittent demand specific methods could yield 
superior performance. The central tendency for the base 
stock policy used with both forecasting methods clearly 
indicates a greater incidence of unnecessary ordering 
behavior. Moreover, the dispersion of the base stock 
policy methods is larger, especially for the 
Croston’s/base stock replenishment policy. 
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Fig. 13: Order weeks delay frequency distributions 

from 100 10-year simulations. (a) Croston’s/ 
base stock; (b) SES/base stock; (c) Croston’s/ 
(s,S); (d) SES/(s,S) 

 

 
 
Fig. 14: Average service levels when demand >0 
 
 Finally, Fig. 14 and Fig. 15 show the methods’ 
performances in terms of realized service levels and fill 
rates, respectively, measured only in periods when 
demand events occur (both measures would be 100% in 
other periods by definition). Service levels measure the 
percentage of periods when demand is completely 
satisfied from stock. In other words, demand is satisfied 
only when all units are filled directly from stock. Fill 
rates, in contrast, measure the fraction of unit demand 
satisfied from stock. From an aggregate perspective, the 
performance of all methods is quite good, with fill rates 
nearing 100%. Greater variation is observed in the 
datasets with higher degrees of non-stationarity of inter-
demand event time and demand event size. 

 
 
Fig. 15: Average fill rates when demand >0 
 
 Owing largely to the higher inventory levels, the 
Croston’s/base stock policy yielded the highest service 
levels on all but the three cases with the least non-
stationarity in demand size. 
 

CONCLUSION 
 
 In this study, we introduce an important problem 
faced by many inventory managers; specifically, we 
consider the problem of replenishing items with 
intermittent, non-stationary demand. While this 
problem is related to previous study on intermittent 
demand replenishment, our study shows that prevailing 
methods cannot adequately manage inventory when 
intermittent demand exhibits non-stationary 
characteristics. In general, we show that a manager who 
wants to attain good net profitability with less inventory 
investment should adopt a policy incorporating explicit 
order triggers (rather than the implicit trigger of the 
base stock policy). Thus, in choosing from the existing 
methods, managers in industries requiring high service 
performance at nearly any cost (i.e., military parts and 
supplies and hospitals) could be well-served by a 
Croston’s/base stock (Croston, 1972), or similar, policy 
while those in profit taking operations would do well to 
consider the adoption of a Croston’s/(s,S) policy. 
 Our results seem to corroborate those of previous 
researchers that no one method consistently 
outperforms the other methods. When demand levels 
are very low, a traditional Croston’s method application 
(i.e., Croston’s forecasting/base stock policy) yields the 
lowest average inventory levels. However, for higher 
average demand sizes, this method yields average 
inventories that are among the highest of the methods. 
In some cases we observed that the shortages yielded 
by the methods were not consistent with the average 
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inventories suggesting, not surprisingly, that improved 
fill rates can be attained by holding inventories 
judiciously. We demonstrated that service level and fill 
rate performance was very good for all methods despite 
the sometimes substantial differences in average 
inventories. We note this high service level and fill rate 
performance is the result of high inventory levels and 
that unnecessarily high inventory levels are frequently 
maintained during the “off” season, reducing net profit 
and offsetting the gross margin earned on sales.  
 This study represents the first of a number of 
research projects related to the problem of replenishing 
non-stationary intermittent demand items. We are 
currently working on a project to develop a non-
stationary intermittent demand replenishment policy, as 
well as a project to characterize demand size and time 
to demand event distributions. Due to the scarcity of the 
intermittent demand data, commonly used goodness of 
fit tests frequently do not yield acceptable results. In 
another extension, we are working to develop an order 
policy that more directly targets the rate at which 
inventory investments generate profits. A fourth related 
research project involves developing an efficient and 
effective method for updating the rates at which 
demand events occur “in” and “out” of season.  
 The opportunity exists to conduct a comprehensive 
study evaluating and comparing the performance of the 
four replenishment policies studied here under base 
case performance. This would involve selecting policy 
control parameters (e.g., ,k) that yield the best 
performance on some inventory metric. A difficulty 
would be in selecting a metric as the outcomes will vary 
considerably by choice of metric. Finally, this study has 
focused primarily on the problem of replenishing non-
stationary intermittent demand items with short lead 
times. Extending this study to items with long lead 
times would yield an important practical extension for 
organizations managing international supply chains and 
extensive outsourcing. 
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