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Abstract: Problem statement: This study addressed the essential questions of non linear financial 
flows forecasting and prevention regarding the means of periodicity. Approach: We implemented 
some new computational tools to weigh up the presence of periodicity in 10 years financial price time 
series. The data consists of NYSE-Euronext listed corporations’ closing prices and East-Asian, North-
American and European markets indexes closing prices. Results: Empirical evidence put forward that 
the tools allow considering the periodicity plus a forecasting side effect for the next months. The 
lengths of the cycles are determined for indexes and assets with strong disparity between the two 
categories. Conclusion: Extensively, the results open the road to determine structural changes in time 
series by allowing the calculation of the fundamental frequencies. It introduces some concepts from 
physics and discusses their potential usefulness in financial economics. This shows the way to detect 
financial and economic extreme events (burst of bubbles, companies’ failures, markets or sectors’ 
recessions) as to prevent them.  
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INTRODUCTION 
 
 Kendall and Hill (1953); Osborne (1962); Cootner 
(2000) and Mandelbrot (1962) investigated the 
statistical properties of the successive prices of shares, 
their unpredictable character and the shape of their 
distributions of probability. They all agree to say that 
there are no doubts on the presence of periodicity in the 
financial time series. Granger and Joyeux (1980), as 
well as Hosking (1981); Granger (1995) and Levy 
(1954), developed long dependence stochastic models. 
The most fervent opponent, Lo (1991), countered his 
own results explaining that the results could be bound 
to the method he used: “If there is long dependence in 
the returns, the accurate test is still missing to prove it”. 
Facing this “no evidence” proof, we search to assess 
this periodicity through methodological investigations.  
 Specifically, the aim was to confirm the necessary 
condition of periodicity that allows modeling the 
market place prices global evolution by means of the 
NLSE (a nonlinear non quantum Schroedinger 
equation). For this purpose, we have developed two 
methods that will be discussed in this study: One 
through fundamental frequencies computation, the other 
by means of polynomial fit. Both methods are based on 
the adaptation of the Von Neuman spectral theorem, 
through respectively Fejer theorem and Weierstrass 

theorem, to the model Jehlen (2009a; 2009b). We 
discovered that most importantly, the second method 
allows smoothing and denoizing of the financial price 
time series. Hence, it facilitates the research for the 
harmonics. These are the fundamental frequencies 
playing a role in interferences and extreme events 
occurrence. 
 In the second part, we summon up the assumptions 
and the theory of the model Jehlen (2009a; 2009b). 
Despite the successes in the past of the models 
modeling the Brownian motion by means of the one 
dimensional linear heat equation and assets returns 
dynamics by means of diffusion processes resulting 
from the Gaussian and one-dimensional framework of 
Black and Scholes (1973) and Merton (1973) (solved 
by Merton by means of the heat equation), we broaden 
these models to consider a non linear and two-
dimensional framework and show that both reasoning 
and mathematics ensue then in the Schrodinger 
equation. The reasoning and the mathematics allowing 
us to switch to the Schrodinger equation are wholly and 
extensively developed in our previous study (Jehlen 
2009a; 2009b). The objective of the current study is not 
any longer to prove the new fundamental model 
developed. On the one hand, it consists in explaining 
the quantitative methods that had to be determined and 
implemented to put in evidence the periodicity in the 
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financial assets prices time series and on the other hand 
in sharing the forecasting helpfulness of the resulting 
experimentations with the research community.  
 The third part presents the materials and methods 
dedicated to validate the periodicity condition for the 
assets prices trajectories. Two methodologies are 
implemented assessing the periodicity of market prices 
time series and by consequence the use of the NLSE 
(Nonlinear Schrodinger Equation) for modeling packets 
of market prices trajectories. The two inventive 
methodologies are explained theoretically and 
experimented on ten years time series of real data, on 
the one hand, daily closing prices of six international 
indexes from 1993-2003 and on the other hand, daily 
closing prices of companies listed on Euronext from 
1995-2005 and belonging to the equipment economic 
sector. The fourth part shows that the findings 
corroborate perfectly the assumptions, showing the way 
to detect burst of bubbles, companies’ failures, markets 
or sectors’ recessions as to prevent them. It describes 
also the different contributions and achievable 
applications of the new model and finally, the fifth part 
concludes.  
 
Theoretical background: 
The fundamentals of the model and its postulates:  
The description of the considered system: The 
marketplace is thought about as a whole dynamic 
system in evolution (Fig. 1).  The marketplace 
capitalization is the middle in which the studied asset 
price dynamics take place. The assets prices evolve in 
an environment having its own characteristics: the stock 
market where their quotation takes place. In our model, 
the whole marketplace, its indexes and shares and the 
amount of money which is exchanged and invested 
there, constitute the system.  
 The asset prices and the total value of the 
capitalization of the marketplace are the studied random 
variables. 
 Figure 1 shows the target representation to be 
reached by applying the model. All the securities 
price trajectories of a whole marketplace are put one 
to one by front of waves to form the envelope 
of  the marketplace value and volume evolution. 
 

 
 
Fig. 1: Representation of a market place as a dynamic 

system 

As the surface consists of several component waves, of 
various periods and wavelengths, the rise of the level of 
the marketplace, the free surface η is the geometrical 
sum of the constituents of the waves. The vertical axis 
represents by projection the value of the prices 
evolution for every listed company on the marketplace. 
The Fig. 1 represents a double vertical axis: The upper 
positive vertical axis, the above zero semi-axis 
represents the price elevation or decline of each traded 
assets on the market place (represented by the random 
surface) at each time and the negative vertical axis, the 
below zero semi-axis represents the depth under the 
surface envelope. The X axis represents the time t. The 
Y axis represents the additive part of each security in 
the total capitalization of the marketplace. The size of a 
security represents its proportion in the total 
capitalization.  
 
The postulates and features of the model Jehlen 
(2009a; 2009b): Before reminding here the main 
assumptions and equations of the model built in these 
previous studies, we should specify that it is not simply 
an application of new PDEs taken from physics. It 
consists in the result of numerous years of research for 
extending the fundamental one-dimensional heat 
equation and Gaussian framework for the representation 
equations of asset returns dynamics into a two-
dimensional and non linear representation of a market 
place assets prices dynamics.  
 
The first postulate: It states the necessary existence of 
two strengths components of the dynamics. Therefore 
the model postulates two necessary strengths for the 
asset prices motion. These two strengths allow the asset 
value to oscillate and pass by equilibrium phases. The 
diffusion strength results from the shocks due to the sell 
and buy orders of the operators on the marketplace. It is 
the diffusion without jumps commonly considered in 
diffusion process modeling. Taking in account a 
potential strength is new. This potential strength 
depends on the position of the asset price, it represents 
the endogenous characteristics of the share (and 
furthermore of the listed company). We mean by 
endogenous characteristics what makes the firm’s value 
(potential of growth, fundamental value, total of assets, 
turnover, market share, capital, reputation) of the firm. 
This potential component introduces the existence of a 
“sleeping” intrinsic nonlinearity.  
 The conjecture of the existence of two strengths 
components implies that the future value of the studied 
random variables depends on the position, X = (x, t, z), 
at the time of measure t and on the period of time τ  
between the last measure and the future measure. We 
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define the position X by the following parameters: x is 
the size of the asset in the capitalization of the 
marketplace at the time of measure t; z, is the asset 
price at the time of measure t; t is the time of measure. 
 The studied variables, the asset prices and the total 
value of the capitalization of the marketplace, are 
supposed continuous and differentiable functions of (x, 
t, z). 
 
The second postulate: The property of flow for the 
considered trajectories induces the choice of the Linear 
Schrodinger Equation (LSE) as basic representation 
equation: This postulate allows us to define the basic 
equation of the built model. The detailed proof of the 
property of flow for financial asset price time series is 
given in Jehlen (2009b). 
 Chorin and Marsden (1993) provide the following 
definition of a flow: “A flow is the propagation, 
according to time, of a countable quantity (mass, 
volume, energy), or uncountable quantity (wave), in an 
environment”. Considering our model, we observe that 
the collection of all the future possible states (possible 
asset prices future positions) is uncountable. 
 The Fig. 2 represents the bundle of possible paths 
between two measures M and M’ of an asset position 
X.  
 The set of possible future values and positions is 
uncountable; therefore the future trajectories can be 
modeled as waves. However the observations of asset 
prices positions (the realizations) belong to a real and 
compact domain taking values in R3. As a result the 
studied system is also limited to a bounded region of 
the phase space, besides it presents a fractal character. 
The detailed mathematical proof (Jehlen, 2009a; 2009b) 
confirms that the representation equation for the 
dynamics of the prices of the packets of assets traded on 
a market place develops too in the linear Schroedinger 
equation, SLE.  
 The specific LSE of the model spells: 
  

²
a i

t x x²

∂Φ ∂Φ ∂ Φ= − + α
∂ ∂ ∂

 (1) 

 

 
 
Fig. 2: Representation of the bundle of possible paths 

where, a, α, are real coefficients; Φ (the flow field 
function), is a complex function of x (the position) and t 
and i2 = -1. Thus, the model allows the representation of 
the dynamics of prices composing the random envelope 
(surface) engendered by the packets of assets listed on 
the marketplace, by means of the SLE, (when extreme 
events do not intervene).  
 
The third postulate: This postulate adjusts the model 
to take in account extreme events occurrences. It 
assumes that the origin of the extreme events (even if 
connected to an intrinsic structural defect, (Sornette, 
2009; Aglietta, 2008), embedded in the potential, 
(Jehlen, 2009a), is triggered by an important external 
non linearity.  
 This postulate allows us to add a non linear term, 
iβ|Φ|2Φ, to the LSE equation for the general 
representation of the dynamics of the assets. This term 
represents the external instabilities at the origin of 
crashes, bubbles and consequent corrections of prices 
(the massive contributions and removing of capital, the 
excessive speculations and the contagions). We postulate 
that it can either be positive or negative. The associated 
risks belong to the systemic risks. The specific Nonlinear 
Schrodinger Equation for our model spells:  
 

2
a i i

t x

∂Φ ∂Φ= − + α∆Φ + β Φ Φ
∂ ∂

 (2) 

 
 It is denoted NLSE. Where a, α, β are real 
coefficients; Φ, the flow field function, is a complex 
function of x (the position) and t; and i2 = -1. Hence, the 
financial assets price series are supposed non linear, nor 
stationary, but periodic.  
 Since Bachelier (1995) and Black and Scholes 
(1973) and Merton (1973), denoted 1973 BSM, every 
continuous time default risk model or pricing model 
considers the Wiener Brownian as a determinant of the 
asset dynamics equation. Einstein (1905), characterizes 
the Brownian motion by the means of the heat equation 
as representation equation of the dynamics. He considers 
a perfect fluid and the normality of the distribution of the 
moves. Merton (1973) assumes the form C(S,t) = 
f(t)y(u1,u2), for the solution of the BSM PDE and 
represents the dynamics of the unknown function y by 
means of the one-dimensional equation of heat, denoted 
EH. The assumptions are perfect market hypotheses and 
gaussianity of the distribution of the returns.  
 The Table 1 establishes the correspondences 
between Merton (1973) and Einstein (1905) and our 
upper-dimensional model in accordance with Jehlen 
(2009a; 2009b).  
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Table 1: Correspondences between Merton (1973); Einstein (1905) and Jehlen (2009a, 2009b) models 
Merton (1973)  Einstein (1905) Jehlen (2009a; 2009b) 
Solving of the European call EH representation for the dynamics LSE representation of the dynamics of packets 
price 1973 BSM PDE by means of the EH of the Brownian motion of assets prices, out of extreme events occurrence  
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∂Φ ∂Φ ∂ Φ= − + α
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Constant coefficient 1/2 Constant diffusion coefficient D Real coefficients a and α 
 depending on the middle depending on the market place 
Function y Flow function f Envelope flow field function Φ 
Variable µ2 (Time t) Time t Time t 
Variable µ1 Spatial coordinate x Spatial position X = (x, t, z) 
One-dimensional frame  One-dimensional frame  Two-dimensional frame 
 

Periodicity, a feature that allows forecasting and 
prevention, analysis and regulation: The following 
results ensue from the necessity to verify the conditions 
of non stationary, periodicity and size) allowing to 
apply the NLSE equation. We will see that the 
compliance to the size condition is obvious. Non 
stationary has largely been put in evidence in financial 
literature. The third condition, periodicity, until today 
was more controversy, periodicity was assumed in 
consideration of long dependence but cycles had never 
been measured.  
 

MATERIALS AND METHODS 
 
The data considered for the operated tests: The data 
used for these tests are, the daily closing prices from 
1993 till 2003 of the French CAC 40, Canadian TSX, 
German DAX, English FTSE, American S&P500 and 
the Japanese NIKKEI, indexes and the quotations on 
Euronext from 1995 till 2005 of French companies of 
the specific branch of industry motor and equipment 
and automotive. This chosen sector consists of 213 
companies. It represented in 2005, 36.7% of the 
turnover and 20% of the added value of the total 
manufacturing industry, as well as 16.4% of the 
workforce, what makes it interesting to study. The 
dataset of Euronext quotations originates from the 
laboratory DRM-CEREG CNRS, UMR 7088 at Paris-
Dauphine University, with Euronext-Parisbourse 
Limited Company sourcing. The high frequency dataset 
volume for the 86 listed securities represents a total of 
23 gigabytes. For the indexes, historical data constitute 
a base of 5.1 gigabytes. The size of the dataset files 
made complex their manipulation and required double-
core computer equipment and a Linux universe for their 
treatment. To fulfill the testing of the periodicity we 
decided to consider only the daily closing prices. The 
daily closing prices from 1995 till 2005 for the 
companies securities consist of 210 000 observations 
and the indexes empirical analysis is founded on 175 
900 daily closing prices, over a period ranging from 

April 27th, 1993 to July 14th, 2003, for the six indexes 
considered. All the companies in the 213 panel show 
the first year a turnover superior to 750 000 Euros and 
leverage superior to 350 000 Euros. This excludes from 
the dataset the tiny companies but ensures a rather 
homogeneous sampling. The tests are based on the 
calculation specificities and programming (explained 
pages 5 to 9 in this study when we describe the 
methods) of Matlab blocksets and toolboxes provided 
by the Mathworks company. 
 
The conditions of appliance of NLSE and the 
periodicity: To apply the NLSE equation three 
conditions must be satisfied: The size of the elements 
moving in the middle must be tiny in consideration of 
the volume of the middle. The time series must be non 
stationary and periodic.  
 As shown in Jehlen (2009a; 2009b), the 
condition of size is satisfied for the indexes as well 
as the asset prices. For the indexes, the size of an 
individual share represents in average 10−9 of the 
capitalization of the index and respectively for the 
companies, the nominal of an individual share of the 
sector represents in average 1.12×10−9 of the total 
float of the sector.  
 The condition of non stationary characteristic of 
asset price time series is also satisfied. It has been 
largely proven in the financial literature. The non 
stationary has been demonstrated by numerous authors, 
from Mandelbrot (1971); Boness et al. (1974); Fielitz 
(1971); Lo and MacKinlay (1988) and Poterba and 
Summers (1988), to McCauley (2004) stating: 
“Observed financial market distributions are very far 
from stationary”.  
 By consequence, the key point consists in assessing 
the condition of periodicity. 
 
The literature point of view on periodicity: Though 
there are no doubts about the existence of periodicity in 
financial asset price time series, the computational 
evidence is still missing. Facing this “no evidence” 
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assertion, we search to assess this periodicity feature 
through some new methodological investigations. 
 In the early sixties, Kendall and Hill (1953); 
Osborne (1962); Cootner (2000) and Mandelbrot (1962) 
investigated the statistical properties of the successive 
prices of shares, their unpredictable character and the 
shape of their distributions of probability. They all 
agree to say that there are no doubts on the presence of 
periodicity in the financial time series. Mandelbrot 
(1963) states that periodicity may not be detected as the 
period of the phenomenon exceeds the interval of 
measure. Then the period extends over all the interval 
of measure, rejecting the no periodicity postulate. We 
will see in the results part that the cycles that we put in 
evidence for the assets daily closing prices time series 
are effectively large.  
 The Fig. 3 in the vein of Von Arx, (1962), is an 
example of periodic phenomenon for which the period 
extends beyond the range of measure: It represents the 
movements of the water of a lake and the periodic cycle 
of the move. 
 Since the eighties, numerous researchers have 
linked periodicity with non stationary and long range 
dependence evidence as Greene and Fielitz (1977). 
Granger and Joyeux (1980), as well as Hosking (1981) 
and Granger (1995), developed long dependence 
stochastic models. The most fervent opponent, Lo 
(1991), countered his own results explaining that the 
results could be bound to the method he used: “if there 
is long dependence in the returns, the accurate test is 
still missing to prove it”.  
 
The new periodicity tests developed for our model: 
If asset prices dynamics behave like waves there must 
exist fundamental frequencies characterizing their 
periodicity. This study implements two innovative 
methods of periodicity characterization for financial 
time series. We illustrate these two methods on both the 
real data of daily closing prices for the indexes and for 
the securities belonging to the studied economic sector. 
 
First method, the frequencies determination by 
means of the spectral Fejer theorem for the 
computation of the fundamental frequencies: The 
principle of calculation for the search for periodicity is 
straightforward, the following example Andreasen 
(2005) explains it easily: “ If we are interested in the 
measure of the temperature in a given place according 
to time, intuitively we can expect to have a dominant 
frequency of 1/24 h or 0,042 which represents the 
maximum of heat in the daytime (peak at around 
midday) and the minimum of heat at night (hollow 
towards midnight). By considering an interval of a 
week, we can approximate the temperature variations 

according to time by a sinusoidal wave having a period 
of 24 h. If the Fourier Transform is made on this 
sinusoidal wave, it is noticed that it contains only a 
single frequency”.  
 Of course, this case is elementary and needs no 
special calculation method to help at the determination 
of the period. It is totally different in the case of the 
financial prices time series, we study. Then methods 
like the Fourier Transform or the Fast Fourier 
Transform are of great help. The advantage of the Fast 
Fourier Transform is that it separates the even 
frequencies of the odd frequencies during the 
calculation of the Discrete Fourier Transform to 
decrease the number of operations. Thus we 
characterize the harmonics (fundamental frequencies) 
by means of the Fourier decomposition theorem, the 
calculation of the Fourier coefficients and the 
determination of the spectral Density of Power 
specified either in days per cycles or in frequencies, the 
one being the inverse of the other. 
 The first step of reasoning and computation is the 
following: The Fourier decomposition in harmonic 
waves allows a fine analysis of the non stationary 
signals. It is based on the seminal works of Huygens 
(1690), those of Bernoulli (1754) and those of Fourier 
(1768-1830). Huygens (1690), defined the famous 
principle of overlapping: “The waves cross each other 
and unite so that, appreciably, they form a single wave. 
The wave, in a given point, is the overlapping of the 
wavelets emitted by the diverse points”. This principle 
can be considered as “the” principle constituent of the 
concept of wave. If a simple addition allows combining 
waves, then reciprocally these waves can be 
decomposed into a sum of elementary waves, called 
harmonics. 
 Second, the Fourier Theorem allows to formalize 
mathematically this decomposition: It reads for real 
functions: «Any function f(x) of a real variable x can 
under certain conditions of regularity, that we shall 
suppose satisfied, be decomposed into a sum of 
harmonics of the variable x, according to 

n n
n

f (x) C exp[i( x n)]= ω + α∑ . Each elementary Fourier 

coefficient is characterized by its rate of evolution ω in 
x». In continuous time, these discrete sums must, 
naturally, be replaced by an integral in ω. 
 

 
 
Fig. 3: The period of the move extends the range of 

measure (the lake) 



Am. J. of Economics and Business Administration 2 (4): 366-376, 2010 
 

371 

 Third, as we model financial asset prices time 
series like waves, we base the method on the 
trigonometric Fejer theorem (the extension of the 
Fourier theorem for complex valued functions): “Let 
denote f, (in our testing: The function of each asset 
prices path), a complex valued function, supposed 
periodic and defined over the period T, (in our testing: 
10 years) and let Cn be the associated series of the 
Fourier coefficients, n T

C f (t)exp( 2 int)dt= − π∫ , then the 

function f(t) can be described as a suite of cosine and 
sine functions on the interval (0, T) of module Cn.  For 
n = 0, the value of the coefficient of Fourier is the mean 
value of f. 
 
The second method is the non parametric 
polynomial fit of the studied time series: It is based 
on the extension of the Von Neuman spectral theorem 
for our studied series: “Let f(t), (our function of asset 
prices path), be a continuous function on an interval as 
a Banach space (the path we consider is continuous and 
the measures (the realizations) belong to a compact 
domain of R3+), then according to the theorem of 
Weierstrass, it can be found a suite of polynomials Pn(t) 
approaching f(t) uniformly on this interval”.  
 
LEMMA: “First, let us consider the possible future 
trajectories of the prices for the built model, the 
possible future states of the system are modeled by a 
process denoted Φ(X, t) which takes value in the 
vector-space defined by a base of N vectors: 

[ [(X, t) : 0, MΦ Ω × +∞ →  where the set M is defined 

by: { } N
1 NM e ,...,e R≡ ⊂r r

, under real probability and 

where X is the position that we defined previously as X 
= (x, t, z), at the time t.  
 Second, in contrast, the collection of the observed 
values (asset prices positions) of the studied dynamic 
system is measurable. These realizations belong to a 
compact subset β of M. Then by application of the 
theorem of Heine, β being a compact subset of this 
normed vector space, any continuous function on β  is 
uniformly continuous there.  
 Third, considering the functional that are the linear 
continuous applications composing the trajectories, 
these linear continuous applications of the space into 
itself form a Banach space, consequently the spectral 
theorem applies to the studied financial series”. 
 

RESULTS 
 
For the first method: The Computation of the Fourier 
coefficients is operated for the 86 companies and the 

six indexes by use of MATLAB for the programming 
of the algorithm. In this phase, the output is a set of 
complex numbers defining the amplitude and the phase 
of the frequencies components that shows symmetry 
near the imaginary axis Im = 0.  
 For instance, the two Fig. 4 and 5 display the 
coefficients resulting in the case of respectively the 
company 29512 and of the French index CAC 40. 
 We operate the calculation of the periodogram that 
is a technique of estimation of the spectral density of 
power of the signals, by use of MATLAB for the 
programming of the algorithm, for each index and 
companies time series. This spectral density captures 
the frequency content of the stochastic process and 
helps identify the periodicities. The spectral density of 
power is computed as the square of the magnitude of 
the Fourier transform of the signal.  

 

 
 
Fig. 4: Fourier coefficients for the company 29512 

 

 
 
Fig. 5: Fourier coefficients for the index CAC40 
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Table 2: Summary of the diverging range features of cycles for companies and indexes  
Closing prices CAC 40 France NIKKEI Japan  TSX Canada  DAX Germany  Company 29512 Company 35356 Company 43625 
Cycles in  300 300 250-300 250 120 280 100 
Number of days  500 500 600 600    
    800        
 

 
 
Fig. 6: Power spectrum density of the frequencies for 

the company 29512 
 

 
 
Fig. 7: Power spectrum density of the periods for the 

company 29512 
 
 By use of MATLAB for the programming of the 
algorithm, we compute the periodograms, plotted in the 
Fig. 6 and 7, of the power of the signal, in order to 
respectively render the frequency and the period for the 
29512 company. 
 This method has been implemented on both 
Indexes and Companies of the data set. The results are 
summarized in the representative extract of the Table 2. 
 The results bring to light the periodicity and 
allow the valuation of the periods and the 
frequencies. The findings show a large difference 
between  the  indexes  and the companies periodicity. 

 
 

Fig. 8: Polynomial approximation of French CAC 40 
index ten years time series 

 
The indexes present generally two cycles lasting around 
300 and 500 days and the companies, a unique cycle 
which is shorter, close to one hundred days. We report 
also, in this Table 2, two exceptions that are the 35356 
company which frequency (280 days) is out of the 
range for unknown reason and the Japanese NIKKEI 
Index for which a third cycle intervenes in the series.  
 
For the second method: The method shows predictive 
results (ranging from 4-6 months), for the values of all 
the studied assets, for the six international indexes 
tested, as for all the companies of the sector tested. 
More importantly, the method allows smoothing the 
time series to facilitate the research for the harmonics 
(fundamental harmonics intervening in interferences 
and extreme events). These outcomes arise while 
considering either ten years or two years daily closing 
prices time series, (a complement testing would be to 
test this feature for other frequencies of measure then 
daily closing prices).  
 Only 10 figures are given in this study for 
preserving the number of pages of the study in 
reasonable length.  
 The polynomial fit of the ten years time series of 
daily closing prices for the French CAC40 index from 
April 1993 to July 2003 results in the Fig. 8. (The other 
index time series represented above the CAC 40 Index 
prices concerns the German index DAX). The fit is the 
smooth (denoised curve). The Fig. 9 covers the next 
months  of  the  polynomial estimation from 1987-2007.  
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Fig. 9: Twenty years of French CAC 40 index closing 

prices 
 
It shows the good prediction of the future tendency by 
the fit and the excellent forecast character of the 
method on a short-term basis of four to six months.  
 

DISCUSSION 
 

Consequences of the periodicity feature: 
 
• The periodicity feature legitimates the use of the 

NLSE to model market place envelopes 
• The periodicity feature allows the detection of 

interferences and Benjamin Feir instabilities 
through frequency and speed calculations. 
The Benjamin Feir focal interference expresses 
itself through explosions and collapses. If 
calculation of speed is trivial, this method allows the 
determination of the harmonics. Therefore the 
methods developed in this study help to detect focal 
interference or absorption of energy from nearby 
securities and open the way to detect abnormal 
moves, bubbles and collapses (on-going research). 

• The periodicity feature embedded in the studied 
time series authorizes Haar decomposition of the 
time series. It allows the detection in the middle of 
the profusion of the peaks, of the moment at which 
the trajectories change as well as the amplitude of 
the structural change  

 
 By applying the Haar decomposition to the global 
set of the 83 companies of the sector, only one of the 
companies’ time series showed a rupture and a change 
in its structure. The decomposition is plotted in the 
Fig. 10. 
 Wavelet analysis has not a predictive effect. 
However the computation of frequencies and speeds 
enables to determine the problem before occurrence.  

 
 

Fig. 10: Haar decomposition of price time series 
 
 This periodic feature combined with theoretical 
mathematical modeling through NLSE computation, 
(Jehlen 2009a; 2009b), can help at the better 
comprehension of crisis and ruptures and all the more 
useful for prevention and regulation.  
 Researchers in hydrodynamics (Dysthe and 
Trulsen, 2001), proposed a particular solution of the 
NLSE, to explain the  giant  waves  of 30 m height in 
oceans, causing the wrecks of big ships.  
 
The short-term price evolution forecast feature put 
in evidence through polynomial fitting. The 
polynomial fit seems to take on an unmistakable quality 
of short-term extrapolation of the future values. 
However, this method was not driven for the forecast of 
prices but to simplify the search and calculation of the 
fundamental frequencies. The polynomial fit main 
quality consists in simplifying the time series into 
simple cosine and sine curves. It results in a sort of 
smoothing of the time series oscillations. Thus the 
determination of the fundamental frequencies of the 
signals by this second approach can be largely 
facilitated, the noise being eliminated from the series.  
 
Contribution of the model itself (Jehlen, 2009a; 
2009b): By deviating from the Gaussian and one-
dimensional frame of Black and Scholes (1973), 
Merton (1973), denoted 1973 BSM, specific 
applications are: Extending the Black and Sholes 
(1973) and Merton (1973) frame and endogenous 
Markov regime-switching models for the calculation of 
options.  
 Besides, the global 2D reading of the market place 
time series aims at detecting the similar behavior of 
classes of assets, the inflections points and the degrees 
of development of bubbles before breaks.  
 NLSE computation may be used to model the 
evolution in respect to the time of the random surface 
envelope in order to forecast global price evolution and 
instabilities.  
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 The computation of geometric rupture points aims 
at detecting the instabilities like inflection points even 
in individual trajectories. 
 

CONCLUSION 
 
 Using data of NYSE-Euronext listed corporations 
and data of East-Asian, North-American and European 
markets indexes, we implemented some new 
computational tools in finance that are harmonics 
computation by means of the Fourier Decomposition 
theorem, on the one hand and polynomial fit through 
Weierstrass theorem, on the other hand. Empirical 
evidence shows that the harmonics’ determination, the 
cycles’ determination and the smoothing of the time 
series are successful with these tools. For the first time, 
the periodicity is fully put in evidence in financial asset 
price time series and the frequencies and the periods are 
measured. In addition, the method points up the great 
disparity of indexes’ price evolution cycles (250-600 
days) and securities’ price evolution cycles (100-250 
days) for daily closing price time series. Besides, it 
pinpoints a systematical forecasting side effect for the 
four to six next month’s values. Finally, this study 
weights up the periodicity assumption of the model we 
proposed in Jehlen (2009a; 2009b), allowing the 
modeling of financial prices evolution according to 
time by means of the NLSE, Nonlinear Schrodinger 
Equation. Therefore, another input of the study resides 
in introducing some concepts from physics, to make 
them known to a wider scientific community and 
discuss their potential usefulness in financial 
economics. Hence, it has the potential to stimulate the 
interest of applied econometricians and financial 
economists. Extensively, the model intends to find out 
structural changes in time series through the calculation 
of the fundamental frequencies. This shows the way to 
detect financial and economic extreme events (bubbles 
and burst of bubbles, companies’ failures, markets or 
sectors’ recessions, excessive speculation) as to prevent 
them and for regulation purposes as well (on-going 
research). 
 
Endnotes: 
 
• The specific SLE equation does not entail the 

Planck constant
h

2
=

π
h . Our economic frame 

departs from the quantum framework of the initial 
equation of Schroedinger describing the motion of 
an electron of mass m in a potential V. 

(i V )
t 2m

∂Φ −= ∆Φ + Φ
∂

h
h as the scale of observation is 

not the same. Therefore our equations (resembling 
the Novikov et al. (1984) water wave equations 
used by Chang et al. (1995), do not entail the 
Planck constant. That assumption taken in our 2006-
2008 work is also established in Nottale (2009). It 
relies on the “principle of relativity of scale”, 
which postulates that the fundamental laws of 
nature must be valid regardless of the “state of 
scale” system of reference. It complements the 
“principle of relativity” of Galilean, Poincare and 
Einstein, which applies to statements of position, 
orientation and movement. In a fractal space-time 
as the one we consider for the model, the 
fundamental law of dynamics in such geometry is 
especially that of the Schroedinger equation, which 
can be generalized as to no longer necessarily 
depend on the microscopic Planck’s constant. 

• For the same reason as the one given for the 
specific LSE, there is no Planck constant in the 
considered NLSE equation 

• Former researchers have applied spectral theory and 
hydrodynamics to finance. By instance, Azais et al. 
(2005), model the level up crossings with a maximum 
likelihood method, based on the hypotheses of 
normality and stationary of the moves. Recently 
Printems (2005), started studying the stochastic 
behavior of the Korteweg de Vries equation in the 
case of the INRIA Premia project, which is dedicated 
to improve option pricing methods  
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