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Abstract: Dynamics, or dynamic processes, is the part of mechanics dealing 
with the study of processes trying to describe as real as possible the 
movement of a body, element, mechanism, car, etc., also taking into account 
the action of the forces on the respective system with their influence on the 
actual movement of system. The present paper aims to present the study of 
the dynamics of the vehicles, with particularization on the buses. Here are the 
main elements of the bus dynamics, taking into account all the elements that 
influence the dynamic operation of a bus, in general and in particular 
situations, with emphasis on the main systems and elements that act on the 
actual, dynamic, on a normal path or on an inclined with an alpha angle path. 
The position of the bus center on a bus needs to be known first in order to 
study the stability of the bus and then to determine the normal dynamic 
reactions for the suspension design... The position of the center of mass in 
the longitudinal plane is determined by weighing the bus on a tiller. In the 
beginning determine the maximum total mass of the Gt bus and then two 
other weights determine the loads G1 and G2 that belong to the front and to 
the rear axle. The stability of the bus will be studied, which means its 
ability not to overturn or slip during travel or in stationary. The longitudinal 
stability of the bus means its ability not to overturn around the rear or front 
wheels or to slip longitudinally when climbing a slope. Figure 3 considers a 
bus that climbs a slope at a low and uniform speed. The movement can be 
considered because the overturning can occur in the case of large slopes. 
Flipping around the straight line through the contact points B of the rear 
wheels with the road may occur when the tipping moment is greater than the 
moment of stability relative to the same point, i.e. 
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Introduction 

Transport management is the responsibility of 
transport engineering and engineering for the design of 
transport networks and systems, aiming at optimizing 
transport systems, increasing transport safety, protecting 
the environment, etc. 

The most widespread and efficient form of land 
transport uses vehicles equipped with liquid-fueled 
engines (Frăţilă et al., 2011; Pelecudi, 1967; Antonescu, 
2000; Comănescu et al., 2010; Aversa et al., 2016a; 
2016b; 2016c; 2016d; 2017a; 2017b; 2017c; 2017d; 2017e; 
Mirsayar et al., 2017; Cao et al., 2013; Dong et al., 2013; 
De Melo et al., 2012; Garcia et al., 2007; Garcia-

Murillo et al., 2013; He et al., 2013; Lee, 2013; Lin et al., 
2013; Liu et al., 2013; Padula and Perdereau, 2013; 
Perumaal and Jawahar, 2013; Petrescu and Petrescu, 
1995a; 1995b; 1997a; 1997b; 1997c; 2000a; 2000b; 
2002a; 2002b; 2003; 2005a; 2005b; 2005c; 2005d; 2005e, 
2016a; 2016b; 2016c; 2016d; 2016e; 2013; 2012a; 2012b; 
2011; Petrescu et al., 2009; 2016a; 2016b; 2016c; 2016d; 
2016e; 2017a; 2017b; 2017c; 2017d; 2017e; 2017f; 2017g; 
2017h; 2017i; 2017j; 2017k; 2017l; 2017m; 2017n; 2017o; 
2017p; 2017q; 2017r; 2017s; 2017t; 2017u; 2017v; 2017w; 
2017x; 2017y; 2017z; 2017aa; 2017ab; 2017ac; 2017ad; 
2017ae; Petrescu and Calautit, 2016a; 2016b; Reddy et al., 
2012; Tabaković et al., 2013; Tang et al., 2013; Tong et al., 
2013; Wang et al., 2013; Wen et al., 2012; Antonescu and 
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Petrescu, 1985; 1989; Antonescu et al., 1985a; 1985b; 
1986; 1987; 1988; 1994; 1997; 2000a; 2000b; 2001). 

Materials and Methods 

The Bus Mass Center  

The position of the bus center on a bus needs to be 
known first in order to study the stability of the bus and 
then to determine the normal dynamic reactions for the 
suspension design... 

The position of the center of mass in the 
longitudinal plane is determined by weighing the bus 
on a tiller. In the beginning determine the maximum 
total mass of the Gt bus and then two other weights 
determine the loads G1 and G2 that belong to the front 
and to the rear axle (Fig. 1). 

Knowing the loads G1 and G2 can determine the a 
and b distances of the center of mass at the axes of the 
two decks, using the relations (1): 
 

2

1

t

t

G
a L

G

G
b L

G

 = ⋅


 = ⋅


 (1) 

Determining the height of the center of mass hg is 
done by placing the bus in an inclined position (Fig. 2) 
with the rear wheels on a weighing platform. 

If the sum of the moments of all the forces in relation 
to the front wheel axle is obtained, the relation (2) where 

'
2G  is the weight on the rear axle when the bus is 

inclined with an angle α and obtained by weighing: 
 

( )'
2 cos cos sin 0t t gG L G a G h rα α α⋅ ⋅ − ⋅ ⋅ − ⋅ − ⋅ =  (2) 

 
Using the relationship (2) it is explicit from (2) the 

unknown hg (thus, expression 3 is obtained): 
 

'
2

g

t

G
h L ctg a ctg r

G
α α= ⋅ ⋅ − ⋅ +  (3) 

 
Replacing in relation (3) Gt = G2.L/a, the final 

expression of the dimension hg (4) is obtained: 
 

'
2

2

1g

G
h a ctg r

G
α

 
= ⋅ − ⋅ + 

 
 (4) 

 
Next, the stability of the bus will be studied, which 

means its ability not to overturn or slip during travel 
or in stationary. 

 

 
 

Fig. 1: Weighing the bus to determine bridging load 
 

 
 

Fig. 2: Weighing the bus (trolleybus) to determine the height of the center of gravity 
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Longitudinal Stability of the Bus 

The longitudinal stability of the bus means its ability 
not to overturn around the rear or front wheels or to slip 
longitudinally when climbing a slope. 

Figure 3 considers a bus that climbs a slope at a 
low and uniform speed. The movement can be 
considered because the overturning can occur in the 
case of large slopes. 

Flipping around the straight line through the contact 
points B of the rear wheels with the road may occur 
when the tipping moment is greater than the moment of 
stability relative to the same point, i.e. (5): 
 

1sin cosg t th G Z L b Gα α⋅ ⋅ + ⋅ > ⋅ ⋅  (5) 

 
If we consider the moment of the beginning of the 

overturning, when the point A deviates from the path, 
then the Z1 reaction is canceled (no longer exists) and the 
relation (5) will be simplified by taking the form (6): 
 

. .sin .cosg t th G b Gα α> ⋅  (6) 

 
Thus, we can determine the value of the slope angle 

α at which the overturning (7) can occur, or the 
condition that the overturning of the bus does not occur 
around the wheels of the rear axle considering a 
maximum permissible slope α = 45°, for which the 
tangent of the angle α take the unit value (8): 
 

g

b
tg

h
α >  (7) 

max 45[deg] 1

g

g

b
h

tg

with tg

h b

α

α α

 <



 = ⇒ = ⇒
⇒ <

 (8) 

 
It is understood from the relationship (8) that the 

secret of the longitudinal stability of the bus (in a 
possible longitudinal overturning of the wheels of the 
rear axle) is that its design should be such that the center 
of gravity of the bus is as low as possible with possibly, 
hg being as small as possible. 

Transverse Stability of the Bus 

Loss of lateral stability may occur by turning or side-
by-side swing due to the centrifugal force that occurs. 

In the case of transverse tilt roads (Fig. 4), the 
centrifugal force Fc and the bus weight are 
decomposed into parallel and perpendicular 
components on the road surface. 

The overturning of the bus will occur when the sum 
of the moments of roll over the O2 point is greater than 
the sum of the moments of stability (opposing the roll) 
relative to the same point (9): 
 

( )

( )

cos sin

sin cos
2

d c t g

c t

Z B F G h

B
F G

β β

β β

⋅ + ⋅ − ⋅ ⋅ >

⋅ + ⋅ ⋅
 (9) 

 

 
 

Fig. 3: The forces that act on the bus when climbing a slope 
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Fig. 4: Forces acting on a bus being in the curve 
 

Because at the moment of the inversion Zd is 
canceled, the relation (9) changes accordingly and we 
obtain the expression (10) in which tgβ must be limited 
in order not to overturn (in the expression 9 both terms 
were divided into costes and Zd was considered 0, after 
which the value of (tgβ) is explicit. The expression on 
the right is the limit value for which rollback begins: 
 

2

2

g c t

c g t

B
h F G

tg
B

F h G

β
⋅ − ⋅

=
⋅ + ⋅

  (10) 

 
We know the centrifugal force that occurs during turn 

(11), where v is the bus speed in m/s and R is the radius 
of the turn in m: 
 

2
t

c

G v
F

g R
= ⋅  (11) 

 
Entering the value of the centrifugal force (11) in the 

relation (10) gives the expression (12), which shows the 
value of the angle at which the overturning begins: 
 

2

2

2

2

g

g

h v B

g R
tg

B v
h

g R

β

⋅
−

⋅
=

⋅
+

⋅

 (12) 

 
From here you can explain the value of the tipping 

speed at the turn with a radius R on a tilt slope β (13): 

2

2

g

r

g

B
g R h tg

v
B

h tg

β

β

 ⋅ ⋅ + ⋅ 
 =
− ⋅

 (13) 

 
If the turn takes place on a flat road (β = 0), the 

tipping speed of the bus will be given by the particular 
relationship (14): 
 

2r

g

g B R
v

h

⋅ ⋅
=

⋅
 (14) 

 
In order to have cornering stability, the bus must 

have a distance B between the wheels on the same deck 
as large as possible, the radius of rotation R must be as 
large as possible (i.e., the swing should be as wide as 
possible) and the center height the hg weight must still 
be as small as possible. 

The slip of the bus (Fig. 4) is possible when the 
relationship (15) occurs: 
 

cos sinc t s dF G Y Yβ β⋅ − ⋅ > +  (15) 

 
The maximum cross-reactive value Ys + Yd is equal to 

the cross-link force (16): 
 

( )sin coss d c tY Y F Gϕ β β+ = ⋅ ⋅ + ⋅  (16) 

 
By replacing the value (16) in relation (15) the 

expression (17) is obtained: 
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( )cos sin sin cosc t c tF G F Gβ β ϕ β β⋅ − ⋅ > ⋅ ⋅ + ⋅  (17) 

 
The expression (17) explains the value of the angle β 

at which the skew begins (18): 
 

c t

c t

F G
tg

F G

ϕ
β

ϕ
− ⋅

=
⋅ +

 (18) 

 
If the centrifugal force Fc is replaced with the relation 

(11), the expression (18) takes the form (19): 
 

2

2

v
g

Rtg
v

g
R

ϕ
β

ϕ

− ⋅
=

⋅ +
 (19) 

 
From relation (19), the derating speed vd (20-21) 

results at the radius with a radius R on a cross-pivoting 
path β: 
 

[ ]
[ ] ( )2/

/
1d

R m g m s tg
v m s

tg

ϕ β

ϕ β

 ⋅ ⋅ + =
− ⋅

 (20) 

 

[ ] ( )
/ 11,28

1d

R tg
V km h

tg

ϕ β
ϕ β

⋅ +
= ⋅

− ⋅
 (21) 

 
When cornering on a flat road (β = 0), the skid speed 

limit will be given by the simplified relations (22-23): 
 

[ ]/dv m s g R ϕ= ⋅ ⋅  (22) 

 

[ ]/ 11,28dV km h R ϕ= ⋅ ⋅  (23) 

 
It is recommended that loss of transverse stability 

occurs by skidding and not by overturning, for security 
reasons. For this reason, the skid speed should be less 
than the tipping speed vd. 

Results and Discussion  

Maniability of the Bus 

Maniability or maneuverability of a bus, is the ability 
of the bus to move in the direction controlled by the 
driver, or to maintain its rectilinear stroke. 

It is considered a bussing turn (Fig. 5) with the 
parallel guides parallel to each other and inclined with 
the angle γ to the longitudinal plane (in reality the 
steering wheels are not parallel in the turn but describe 
concentric circles with the center in O). With the traction 
on the rear wheels, each front wheel is driven by its axis 
with a thrust force F parallel to the longitudinal axis of 
the bus. The two forces F can decompose into a 
component in the plane of the wheel Fx and one in a 
plane perpendicular to the plane of the wheel Fy. These 
components are given by the relationships (24): 
 

cos

sin
x

y

F F

F F

γ

γ

= ⋅
 = ⋅

 (24) 

 
 

Fig. 5: Manageability of the bus when in a turn (in a curve) 
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The rolling resistance Rr1, which opposes the 
movement of a wheel, must be defeated by the force Fx. 
The condition of rolling the wheel (25) to be produced is: 
 

1cosx rF F Rγ= ⋅ ≥  (25) 

 
The Fy component seeks to produce the transverse 

sliding of the wheel, but is prevented by the Y1 
transverse grip. The condition that the transverse 
sliding does not occur is (26): 
 

1sinyF F Yγ= ⋅ ≤  (26) 

 
The condition of the maneuverability of the turn buss 

(30) (i.e., the turn is properly performed by the inclination 
of the steering wheels) is obtained by eliminating the force 
F between the relations (25) and (26). From the relations 
(24) the expression (27) is obtained: 
 

y

y x x

F
F F tg F

tg
γ

γ
= ⋅ ⇒ =  (27) 

 
The expression (27) together with relation (25) 

generates the relation (28): 
 

1 1
y

r y r

F
R F R tg

tg
γ

γ
≥ ⇒ ≥ ⋅  (28) 

 
Taking account of relations (28) and (26) 

simultaneously, the expression (29) can be written: 
 

1 1r yR tg F Yγ⋅ ≤ ≤  (29) 

 
From (29) we stop only the expression (30) which 

represents the maneuverability condition and which 
can be processed in the form (31) if the rolling resistance 
(Rr1 = f.Zr1) and the transverse adhesion (Y1 = ϕ.Zr1), 
where Zr1 is the normal path reaction at one of the 
steering wheels, ϕ is the coefficient of rolling resistance 
and f is the coefficient of adhesion: 
 

1 1rR tg Yγ⋅ ≤  (30) 

 
f tgγ ϕ⋅ ≤  (31) 

 
When traveling on a dry road with hard cover, the 

maneuverability condition is automatically satisfied 
because the adhesion coefficient f is several times lower 
than the rolling resistance coefficient ϕ and tgγ is less 
than 1 because the angle γ does not exceed 40 [deg]. 

On slippery roads (poles, water, snow...) it is often 
possible that the maneuverability condition (8) is not 
satisfied if the bus is to move in a straight line and when 

it has the inclined wheels to turn, from the cause of 
slippage on wheels. This phenomenon is not desirable, 
as it is an inexperienced driver a great danger of 
producing road accidents. 

Study of Bus Braking 

Braking the bus is the process of reducing its speed to 
a certain value or to stopping. 

The more secure, the more intense, the faster and the 
braked, the more the bus can move safely at higher 
speeds. The braking capacity therefore depends on the 
possibility of increasing the average speed of the bus and 
also the safety of the bus and its passengers depends on it. 

Each bus is constructively provided with a braking 
system that acts on each wheel, giving rise to braking 
moments on each wheel, moments that seek to 
immobilize each wheel individually. 

The brake torque Mf (Fig. 6) is produced by friction 
of a drum or disk 1 (solidarity with the wheel marked 
with 2) with some brakes with the fixed part of the deck 
(carter). The braking torque is opposed to the rotation of 
the wheel and seeks to immobilize it. 

During the braking, the bus moves only under inertial 
forces, consuming the kinetic energy produced and 
accumulating at acceleration. 

Under the action of the Mf braking torque in the contact 
area of the wheel with the road, the soil reactivity Ff is 
directed in the opposite direction to the bus movement. 

When braking the brake apart from the braking force, it 
contributes to slowing speed and resistance to advancing. 

According to the principle of dynamic balance in the 
bus braking, we can write the relation (32), where Fi is 
the inertia force of the bus: 
 

i f r p aF F R R R= + ± +  (32) 

 
Replacing Fi and all forward resistances with their 

already known expressions, obtain the expression (33): 
 

2

cos
13

t
f f t t

G K A V
a F G f G p

g
δ α

⋅ ⋅
⋅ ⋅ = + ⋅ ⋅ ± ⋅ +  (33) 

 
Taking into account that both rolling and air 

resistance to bus travel at speeds of less than 100 [km/h] 
are small compared to the braking force, both can be 
neglected so that the relationship (33) will take the 
simplified aspect (34). 
 

t
f f t

G
a F G p

g
δ⋅ ⋅ = ± ⋅  (34) 

 
The braking capacity of a bus (like any other vehicle) is 

characterized by the following parameters: deceleration, 
braking area and braking time (eventually stopping). 
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Fig. 6: The forces and moments acting on a braked wheel 
 
Determination of Braking Deceleration 

The expression of deceleration results from the 
relationship (35): 
 

( )f f t

t

g
a F G p

Gδ
= ⋅ ± ⋅

⋅
 (35) 

 
If braking is considered to be with the engine off the 

transmission, the coefficient of mass influence in 
rotation can be taken δ ≅ 1. For a road with a certain 
slope p, the deceleration obtained will be maximum 
when the braking force has the maximum value (36): 
 

( ) ( )maxmaxf f t

t

g
a F G p

G
= ⋅ ± ⋅  (36) 

 
The maximum braking force is limited by grip (37), 

where Gadf is the adherent brake bus weight: 
 

maxf adfF G ϕ= ⋅  (37) 

 
In the case of a bus (trolley) having all the braked 

wheels when traveling on a slope, the relation (37) is 
written in the form (38): 
 

max cosf tF G ϕ α= ⋅ ⋅  (38) 

 
By replacing the expression (38) in the relation (36) we 

obtain the relation (39) which defines the deceleration of the 
deceleration of the bus on any slope road: 
 

( ) ( )
max

cosfa g pϕ α= ⋅ ⋅ ±  (39) 

If the bus travels on a straight road at the moment of 
braking, the deceleration of the brake deceleration 
changes accordingly, simplifying it to form (40), being 
proportional to the gravitational acceleration g and the 
coefficient of rolling resistance ϕ: 
 

( )
maxfa g ϕ= ⋅  (40) 

 
Determination of the Braking Area 

During braking, according to the kinetic energy 
theorem, the variation of the kinetic energy is equal to 
the mechanical work (braking force) corresponding to 
the braking space. 

Considering that the braking takes place with the 
off-set motor, according to the kinetic energy theorem, 
the relation (41), where m is the mass of the bus, v1 is the 
speed at the start of braking in m/s, v2 is the end braking 
speed in m/s and sf represents the braking area in m: 
 

( ) ( )
2 2
1 2

2 f r p a f

m v v
F R R R s

⋅ −
= + ± + ⋅  (41) 

 
If the bus runs at speeds of less than 100 km/h 

when braking, the influences of the rolling resistance 
Rr and the air resistance Ra can be neglected, so that 
the relation (41) takes the simplified form (42-43) 
where the mass of the bus was substituted with Gt/g 
and all elements are measured in SI: 
 

( ) ( )
2 2
1 2

2 f p f

m v v
F R s

⋅ −
= ± ⋅  (42) 
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( )
( )

2 2
1 2

2

t

f

f p

G v v
s

g F R

⋅ −
=

⋅ ⋅ ±
 (43) 

 
However, if we want to introduce the two speeds in 

km/h, the relation (43) takes the form (44) where V1 and 
V2 are introduced in km/h: 
 

( )
( )

2 2
1 2

26

t

f

f p

G V V
s

g F R

⋅ −
=

⋅ ⋅ ±
 (44) 

 
The minimum braking distance corresponding to a 

certain slope shall be obtained when the braking force 
has a maximum value (45): 
 

( )
( )

2 2
1 2

min

max26

t

f

f p

G V V
s

g F R

⋅ −
=

⋅ ⋅ ±
 (45) 

 
For a bus that has all braked wheels, replacing Ffmax 

from relation (38) and Rp = p.Gt, the relation (46) or 
braking to stop (when V2 = 0), (47): 
 

( )
( )

2 2
1 2

min 26 cosf

V V
s

g pϕ α

−
=

⋅ ⋅ ⋅ ±
 (46) 

 

( )

2
1

min 26 cosf

V
s

g pϕ α
=

⋅ ⋅ ⋅ ±
 (47) 

 
If the bus travels on a straight path, the expression 

(46) takes shape (48) and the relation (47) takes the 
simplified form (49), where (48) is the minimum 
braking space on a straight road, the minimum stop on 
a straight road, the bus: 
 

( )2 2
1 2

min 26f

V V
s

g ϕ

−
=

⋅ ⋅
 (48) 

2
1

min 26f

V
s

g ϕ
=

⋅ ⋅
 (49) 

 
Determination of Braking Time 

If the bus is considered to have an even slowed down 
motion during the braking period and if its deceleration 
is equal to (af) max, then the minimum braking time will 
be given by the relation (50), where all elements are 
given in the international system (v1 and v2 being entered 
in m/s), so the time will also result in s. 
 

( ) ( )
1 2 1 2

min

max
cos

f

v v v v
t

g pa ϕ α
− −

= =
⋅ ⋅ ±

 (50) 

 
In the case of braking to stop (v2 = 0), the 

minimum braking time will be given by the simplified 
relationship (51): 
 

( ) ( )
1 1

min

max
cos

f

v v
t

g pa ϕ α
= =

⋅ ⋅ ±
 (51) 

 
In reality, however, both the minimum braking distance 

and the minimum braking time have values higher than 
those calculated with the theoretically indicated 
relationships, because during the total braking time, the 
time needed to react to the bus driver and the time required 
to enter the action of the bus braking system. 

Observation 

The previously determined formulas have all been 
deduced when all brakes instantaneously come into 
action with their full braking force. 

Figure 7 shows the variation of deceleration over 
time as well as the braking time intervals. 

 

 
 

Fig. 7: Variation of deceleration in function of the time 
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Time t1 is the response time of the driver and is equal 
to the time elapsed since the brake application was 
sensed until the actual start of braking. This time ranges 
from 0.4 to 1 s, depending on both the physiological 
state of the driver and his skill and experience. 

The deceleration delay time ∆t1 depends on the 
operating time of the pedal brake transmission mechanism 
and is due to the joints in the joints, the fluids of the fluids 
through the pipes... ranging from 0.2 to 0, 5 s. 

Time t2 is the time elapsed from the moment when 
the braking force starts to reach its maximum value. It 
varies between 0.1 and 1 sec, depending on the type of 
braking control. 

Time t3 is the actual braking time at normal 
parameters, from the bus speed from the beginning of the 
braking v1 to the braking end v2 (which may be 0 in the 
event of braking until stopping). 

Time t4 is the time elapsed between canceling the 
pedal and canceling the braking force. It is between 0.2 
and 2 sec but does not directly influence the previous 
braking area (from actual braking), but only indirectly 
when braking has only slowed the bus and a new slowdown 
is needed (a new brake), or even stopping it, its influence 
being only on the next possible braking. 

The additional space sf0 traveled by the bus due to 
delays specific to the braking is given by the relation 
(52) with the speed v1 given in m/s and is expressed by 
the relation (53) if the speed V1 is introduced in km/h: 
 

( )0 1 1 1 2fs v t t t= ⋅ + ∆ +  (52) 

 

( )1
0 1 1 23,6f

V
s t t t= ⋅ + ∆ +  (53) 

 
Obviously, braking and using the engine brake is 

accomplished in a much shorter time and realizes increased 
braking security when necessary, being more efficient as 
the experience, skill and physiological state of the bus 
driver are better. Gradual or direct passage from the top 
to the bottom of the transaxle helps to effectively brake 
by the engine brake, usually passing to the third (from a 
higher stage) and eventually, then, even in step a two, if 
necessary. At the slope, especially at the descent, at high 
starting speeds for braking and when the road is slippery, 
the use of the engine brake is imperative. 

Conclusion 

 The present paper aims to present the study of the 
dynamics of the vehicles, with particularization on the 
buses. Here are the main elements of the bus dynamics, 
taking into account all the elements that influence the 
dynamic operation of a bus, in general and in particular 
situations, with emphasis on the main systems and 
elements that act on the actual, dynamic, on a normal path 

or on an inclined with an alpha angle path. The paper 
presents the third part of the bus dynamics. 
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