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Abstract: Modelling of flows around two cylinders in side by side 

arrangement using a simple overlapping grid system is carried out. The 

use of such grid system is intended to give a considerable reduction in 

terms of the CPU time, especially during the calculation of the vortex 

velocity. It has been shown that this method is not only time efficient, 

but also gives a better distribution of surface vorticity as the scattered 

vortices around the cylinder are now concentrated on grid point located 

at uniform distance from the cylinder. The engineering applications of 

this topic is to simulate the loading on structural elements due to the 

presence of anodes. The in-line and transverse force coefficients and the 

flow patterns obtained are presented in order to provide more detail 

description of the flow phenomena and interaction involved. The 

comparison of the results with both experimental and numerical 

evidence is also presented and the range within which the algorithm 

produces good results is identified. 
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Introduction 

During the last five decades, various authors have 

attempted to model the flow around cylinders.  

Stansby and Slaouti (1993) provided a numerical 

model using a vortex in cell and random walk 

technique to simulate the convection and diffusion 

process of the flow around two cylinders by solving 

the Poisson’s equation which relates vorticity ω to the 

stream function ψ through 2ψ ω∇ = − . Three types of 

overlapping mesh were adopted so that a very fine mesh 

was used to give definition in the boundary layers, an 

intermediate mesh size was used for computing vortex 

roll up in the near wake region and a coarse mesh was 

used to transport vortex structures downstream. 

Meneghini et al. (1997; Williamson and Govardhan, 

2004) applied similar method for predicting the flow 

around an oscillating circular cylinder. 

Recently, Kostecki (2014) used random vortex 

method for a single cylinder involving turbulent 

models for high Reynolds number while Laroussi 

(2015) investigated the flows around two cylinders in 

close proximity under the influence of initial 

conditions using a finite element based program, at 

low Reynolds Numbers. Gordo (2011) on the other 

side, applied the method to explore the flow around 

airfoils using meshless methodology called full cloud 

vortex method. 

In this study, a simple overlapping polar grid 

system in which the grid has ‘square’ elements which 

increase in area in the radial direction, is used for each 

individual cylinder to give good definition of the flow 

close to the cylinder surface. The grid node on the 

cylinder surface located at the center of the surface 

element provides the control points at which the 

Martensen equation is solved to give zero tangential 

velocity and so satisfy the Dirichlet boundary 

condition, Wardhana (1995). 

Basic Formulation 

As there is more than one cylinder in the flow 

domain, the complex potential w(z) can be written as 

follows: 
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Where: 

 Nb = The number of cylinder 
b

e
γ  = The strength of vortices at element e of cylinder b 

b

e
dS  = The length of element e of cylinder b 

b

e
z  = The position of element e of cylinder b 

Γb

v
 = The strength of a vortex ν shed by cylinder b 

b

v
z  = The position of a vortex ν shed by cylinder b 

 

The solution procedure for the induced velocity at an 

element Sn must include the influence of those two 

cylinders in the fluid domain. Mathematically, this can 

be expressed in the following Martensen equation: 
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The introduction of vortices with circulation 

satisfying the boundary condition of zero tangential 

velocity is carried out by releasing a ring of vortices on 

the second ring from the cylinder surface.  

 

 

  
 

Fig. 1. Flow chart of the algorithm 
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The identification of vortices shed from any given 

cylinder is maintained over the whole process. The 

implementation of the Biot-Savart velocity calculation over 

the polar grid nodes is done only among those vortices shed 

from the same cylinder. The area of proportions and the 

vortex strength distribution have to be calculated in either 

its own polar or rectangular grid system at every time step.  

Methodology 

The structure of the Discrete Vortex Algorithm is 

displayed in Fig. 1 above. The main calculations consist 

of the followings. 

Surface Velocity Calculation 

Equation 2 must satisfy the Dirichlet boundary 

condition at element m of cylinder p as follow: 
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By absorbing the first term into the second term of 

coupling coefficient pq

mn
k , the equation may be represented 

as follow: 
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In matrix from the two-cylinder problem can be 

written as: 
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The RHS means the right-hand side of Equation 5 for 

the first and second cylinder respectively. 

Segmentation of the Domain 

A simple overlapping grid system to represent the 

fluid domain in the case of two-cylinder problems can 

now be carried out. Each cylinder has its own polar 

grid system and forms a local domain. The center of 

one of the cylinders in chosen as the global reference 

of the domain in which the coordinate of the 

rectangular grid nodes are measured and stored. 

The size of grid segment in the polar grid system is 

expanding linearly from the surface of the cylinder. In 

the two-cylinder problem, there will be two 

overlapping polar grid systems expanding linearly 

from each cylinder surface. A rectangular grid system 

which overlaps the two polar grid systems is also 

incorporated into the system. This rectangular grid has 

a uniform square element through-out the whole 

domain. The structure of the grid system form two-

cylinder problem is displayed in Fig. 2 above. Any 

vortex that falls into a position where two grid 

elements of the polar and rectangular system overlap 

each other is located with reference to two base nodes 

for its relative position. 

 

 
 

Fig. 2. The overlapping grid system 
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Fig. 3. An overlapping grid element 

 
The node points of the rectangular coordinate system 

are measured from the center of the referenced cylinder. 

The coordinates of each node were defined starting from 

the top-left corner to right-bottom corner to form a 

rectangular domain. The distance is approximately equal 

to u∞ × t, where u∞ is the free stream speed and t is the 

total time used, plus k x diameter, in which the value of k 

is approximated from experiments. 

Distribution of Circulation to the Grid 

In this multi-cylinder problems, a vortex of strength 

Γv is not only distributed onto its four surrounding nodes 

in the polar grid, using the common bi-linear 

interpolation, but also onto nodes of the overlapping 

rectangular grid system. This means that each vortex has 

two base nodes i.e., the polar grid where it is shed from 

and the rectangular grid (Fig. 3). 

The rectangular grid is used in the calculation of a 

vortex velocity due to the contribution from all other 

vortices shed from cylinders other than the one from 

which it originated. This implies that in the same 

segment, only vortices shed from the originating 

cylinder will have their strengths are summed on the 

surrounding grid nodes will be stored in the same array. 

Contribution from vortices shed from other cylinders 

will be summed in different arrays. This can also mean 

that the same rectangular grid nodes could be active 

with reference to one cylinder but be inactive with 

reference to the other cylinders. 

Calculation of Velocity 

Since each cylinder has its own polar grid which 

overlap with each other and the rectangular grid, the 

calculation of the velocities of a vortex shed from one 

cylinder due to the other vortices shed from the same 

cylinder is carried out with reference to their own 

individual polar grid. In addition, there is a contribution 

from these shed from the other cylinder and this is 

computed with reference to the rectangular grid system: 
 

• Calculate the velocity upp(Nv) at the nodes 

surrounding a vortex zv, shed by the cylinder p and 

located at a polar grid segment with base node N'1, 

due to the other active nodes of the polar grid 

system of the same cylinder p using: 
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where, µ = 1-4. 

• Using the rectangular grid system, calculate the 

velocity upq(Nµ'), at the nodes surrounding a vortex 

at zv with base node N1', due to the other active 

nodes of the other cylinder q using: 
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where, p ≠ q. 

• Use bi-linear interpolations to find the vortex 

velocity due to both polar and rectangular active 

grid nodes by using the area of proportion Pµ(v) 

and Qµ(v) using: 
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• Calculate the total velocity: 

 

( ) ( ) ( )pp pqu z u z u zυ υ υ= +  

 

As implied in the above procedures, there is no direct 

interaction between the nodes of the polar grids 

associated with each cylinder. Instead, the cylinder to 

cylinder node interactions are computed using the 

overlapping rectangular grid nodes. This strategy is 

chosen in an attempt to achieve a more uniform 

distribution of vorticity in the area in which the wakes of 

the cylinders interact. 

Time Integration 

A first order accurate Euler scheme is used to find the 

new locations of the vortices, that is: 
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Since an overlapped grid system is used in the 

scheme, the new position of each vortex is then 

referenced to both polar and rectangular grid systems. 

In other words, each vortex has two base nodes from 

which its relative position at every time step is 

measured and renewed. 

Force and Pressure Calculations 

The force calculation can be carried out after the 

convection and diffusion processes by solving the 

following equation: 
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which is derived from the Navier-Stokes equation on the 

basis that at any point Sn in the cylinder surface, the 

velocity parallel to the surface is given by 
t nt

u γ=
�

. From 

that equation, a numerical expression for the change in 

surface pressure over the surface element n during the 

discrete time step ∆t can then be obtained as: 
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The difference of pressure ∆pn is measured from the 

stagnation pressure  21

2
sp uρ ∞=  at the stagnation point Ss. 

Hence, the pressure at element m will be: 
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The other force that contributes to drag and lift forces 

is the one due to the skin friction (viscous drag) on the 

surface of the cylinder. This force comes from the 

shearing stress at the surface: 
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where, µ is the dynamic viscosity. The form drag, lift and 

skin friction coefficients can be calculated as follows: 
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where, d is the diameter of the cylinder and β the 

tangent angle of the element. The basic procedure is 

based on the integration of the elemental pressure 

around a cylinder. The pressure around the cylinder 

can then be integrated numerically to get the value of 

the force coefficients. 

Method of Enhancements 

Correction for Close Proximity 

This method is for finding the influence coefficient of 

the elements located in close proximity. Similar 

technique can be adopted when two or more cylinders 

are close together. In these circumstances the influence 

coefficient can be written: 
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Vorticity Reduction Scheme 

The solution of the diffusive part of equation 

following Chorin (1978): 

 

2

t

ω
υ ω

∂
= ∇

∂
 

 

can be considered Gaussian in nature with standard 

deviation given by 4 tυ . The velocity field of a single 

diffusing vortex can therefore be written as: 

 

( ) 2

4
Γ 0

1
2

r

vt
r

u e
rπ

− 
= −  

 
 

 

which can be interpreted as the velocity field of a vortex 

whose strength decays with time because of the diffusion 

process. In order to model those effects in his discrete 

vortex analyses, Naylor (1982) used on an empirical 

reduction scheme for the individual vortex strengths 

similar to the above equation and given by: 

 

( )Γ Γ(0) ktt e−=  

 

with k is chosen around 22. 

The method used the reduction of vorticity as follow: 

 

( ) ( )ΓΓ Γ 0n nt C=  (11) 

 

where, Cr is a constant less than 1 and n is the number 

of iterations. With the time step ∆t = 0.15, the effect 

of variation of Cr on the vortex strength Γ(t) is 

displayed in Fig. 4 above. 
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Fig. 4. Vorticity reduction 

 

The implementation of the vortex reduction 

scheme produces some improvements in maintaining 

the symmetrical properties of the wake shed from both 

cylinders. Numerically, this is achieved because of the 

significant reduction in the interaction of the two 

vortex streets shed by both cylinders when they are 

close together. 

Curvature Corrections 

The correction for the curvature of the elements 

and the asymmetric enforcement when the 

arrangement of the cylinders produces a symmetrical 

flow pattern are also implemented in the present case 

study. This effect is a result of an increase in the local 

velocity in the gap region which convects the vortex 

sheets in this inner region more strongly than those 

located in the outer one. 

Results and Discussion 

At Re = 25,000, as the flow develops earlier at 
ˆ 1t = and ˆ 5t = , due to strong asymmetrical properties of 

the flow field Fig. 5, the rolling up of the vortices 

appears immediately while the formation region is 

building up behind the cylinders. 
By comparing with the case of an isolated cylinder 

Downie (1981; Wardhana, 1995), it is shown, Fig. 6 and 
7 above, that the blockage effect increase the length of 
the formation region by about 10-20% even though the 
width is relatively unchanged. This means that the 
influence of the increase in the local velocity in the gap 
region is quite significant. 

The comparison of the flow pattern simulated 
numerically with the experimental flow visualizations 
produced by Bearman and Wadcock (1973) at Re = 
25,000 as shown in Fig. 8 above shows good agreement 
between the two and suggest that the grid sizes and 
configuration used in the model are appropriate. 

 
 
Fig. 5. The flow pattern at G/D = 2, t = 1 and t = 5 

 

 
 
Fig. 6. The flow pattern at G/D = 2, Re = 25,000 

 

 
 
Fig. 7. The flow pattern for an isolated cylinder, Re = 25,000 

 

 
 
Fig. 8. The flow visualization, Bearman et al. (1973) 

 
Table 1. The CPU time percentage of each section of the 

algorithm 

Section number Purpose of action CPU time 

1 Input/output 0.03 

2 Define grid 0.00 

3 Calculate nodal velocity 87.0 

4 Calculate vortex velocity 0.33 

5 Vortex displacement 3.07 

6 Distribute circulation 0.37 

7 Calculate surface velocity 8.61 

8 Calculate forces 0.01 
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The percentage CPU time used in calculating each 

intermediate stage of the computation is displayed in 

Table 1. The table is based on a period of 400 time 

steps with around 570 active nodes for each cylinder 

polar grid and around 11,000 vortices shed by each 

cylinder. In other word, there are approximately 1,140 

active nodes and 22,000 vortices in the flow. 

The increase from the value of the isolated 

cylinder is close to the values deducted from the 

experiments at Reynolds number of 25,000. By using 

fast Fourier transform to evaluate the frequency f, the 

value of Strouhal Number can then be calculated and 

it settles to a value of around 0.2, similar to that of the 

isolated cylinder, as seen in Fig. 9 below. 

The general trend shows that the interaction 

between the two cylinder is weakened as the gap 

becomes wider. Each individual cylinder is behaving 

increasingly like an isolated cylinder. The drag 

coefficient also approaches the value of around 1.14 

or, in the other words, the interference drag 

coefficient becomes equal to zero Fig. 10. 

The result shown in this study have been obtained by 

implementing a vortex reduction scheme, similar to 

those of Naylor (1982), in which the strength of the 

vortices is reduced in such manner that the effect on the 

force coefficient and the flow pattern is as close as 

possible to that of the experimental results. 

The flow pattern created behind the cylinders are 

seen to be more regular compared to the same 

configuration in the convective flow shown in Fig. 11. 

This is due to the implementation of the vortex 

reduction scheme simulating turbulent dissipation and 

reducing the level of irregularity occurring in the group 

of vortices with high strengths created in the early 

stages of the calculation. 

 

 

 
Fig. 9. Strouhal number Vs. gap ratio G/D 

 

 
 

Fig. 10. Drag coefficients Vs. gap ratio G/D 
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Fig. 11. The flow pattern for G/D = 2 and the force coefficients for convective flow 

 

 
 

Fig. 12. Flow pattern for G/D = 2 and the force coefficients for Re = 25,000 

 

 
 

Fig. 13. Flow pattern for G/D = 1 and the force coefficients for Re = 61,000 
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Fig. 14. Flow pattern for G/D = 2 and the force coefficients for Re = 61,000 

 

The values of the Strouhal numbers and the drag 

and lift coefficients are plotted onto the original graph 

of the experimental results as displayed in Fig. 9 and 

10. The out-of-phase asymmetric Karman vortex 

street behind the cylinders can be achieved for the 

convection only cases in which neither the Random 

Walk, simulating the diffusion process, nor the vortex 

strength reduction scheme are yet included. This can 

be considered to model the flow at very high Reynolds 

number. After the incorporation of the Random Walk 

scheme, for computing intermediate Reynolds number 

flows, the asymmetry of the flow could not be 

maintained without the involvement of the Vortex 

Strength Reduction scheme. It appears that vortices 

with large strengths generated by each cylinder in the 

early stages of the flow interact to cause instabilities in 

its subsequent development, Fig. 12-14. 

The effect of the interaction of the two cylinders 

further apart than 0.5 D, can be reasonably well 

represented with the present model even though the 

magnitudes of the force coefficients are slightly on the 

low side. However, when two equal cylinders are 

closer than 0.5 D, the complicated effect of the 

boundary layer interactions could not be approached 

realistically using the present model. 

Conclusion 

One of the main difficulties in the flow around two 

cylinders in an infinite fluid implementing the present 

model has been in achieving results within practical 

time limits. As has been mentioned already, the 

algorithm does not include explicitly a turbulence 

model. Results resembling experimental results have 

been achieved over a wide range, but inevitably there 

are flow configurations for which turbulence effects 

will not allow representation of the flow in this manner. 

By using certain mathematical transformation, this 

method can also theoretically be developed further for 

predicting flows about any two-dimensional shapes. 
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List of Symbols 

N: Number of cylinder 

d: Cylinder diameter 

γ: Element vortex strength 

δt: Time step 

∆S: Element length 

P,Q: Area of proportion 

β: Element tangent angle 

u∞: Free stream speed 

∝∞: Free stream angle 

Γ: Shed vortex strength 

Z: Shed vortex position 

K: Coupling matrix 

ρ: Density 

υ: Kinematic viscosity 

ω: Vorticity 

D: Drag force 

L: Lift Force 


