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Abstract: This paper describes an application of industrial robots that gain 

ground mainly in the aerospace industry. It is a TTT manipulator whose 

task is to automatically position the end-effector, in this case a complex 

sensor system and a eddy-current probe in the position set by the software 

application for testing by non-destructive ultrasound control of tickets and 

bars of titanium, both round and square, or any other transparent ultrasound 

metal (obviously in a certain range of sizes). For surface control, the 

effector also includes a Eddy current (Eddy current control system). The 

installation performs ultrasonic control by the echo boost method in total 

immersion using as a water coupling medium. This method provides the 

best coupling for automated control systems. This plant was specially 

produced for ZIROM S.A. A unique producer of titanium ingots in 

Romania by the reputed German company Karl Deutch (leader in this 

field), the founder of the company being also one of the inventors of the 

non-destructive ultrasonic control method, the part of Eddy current being 

produced by the German company Prüftechnik. This paper aims to explore 

the state of the art of non-destructive automatic ultrasonic control 

techniques according to the possible methods to be adopted, by the 

applications that demand such methods, by reviewing a series of 

installations more or less similar to those of Zirom s.a. It is thus found that 

there are a multitude of pine technical solutions that can be done with an 

ultrasonic automatic control and precision. In this context, the last chapter 

of the paper that attempts to probe the possible evolution of the future of 

US control in this field is of great importance because in the current pace of 

innovations in all fields, but especially in IT and electronics, the future 

holds many surprises.  
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Introduction 

The development and diversification of machines and 

mechanisms with applications in all fields requires new 

scientific researches for the systematization and 

improvement of existing mechanical systems by creating 

new mechanisms adapted to modern requirements, which 

involve increasingly complex topological structures. 
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The modern industry, the practice of designing and 

building machinery is increasingly based on the results 

of scientific and applied research. 

Each industrial achievement has backed theoretical and 

experimental computer-assisted research, which solves 
increasingly complex problems with advanced computing 

programs using increasingly specialized software   

(Aversa et al., 2016a; 2016b; 2016c; 2016d; 2017a; 2017b; 

2017c; 2017d). 

The robotization of technological processes 

determines and influences the emergence of new 

industries, applications under special environmental 

conditions, the approach of new types of technological 

operations, manipulation of objects in the alien space, 

teleoperators in the top disciplines like medicine, robots 

covering a whole field greater service provision in our 
modern, computerized society. 

 In this context, the present paper attempts to make a 

scientific and technical contribution by describing an 

application of industrial robots that gain ground mainly 

in the aerospace industry.  

It is a TTT manipulator whose task is to 

automatically position the end-effector, in this case a 

complex sensor system and a eddy-current probe in 

the position set by the software application for testing 

by non-destructive ultrasound control of tickets and 

bars of titanium, both round and square, or any other 

transparent ultrasound metal (obviously in a certain 
range of sizes).  

For surface control, the effector also includes a Eddy 

current (Eddy current control system).  

The installation performs ultrasonic control by the 

echo boost method in total immersion using as a water 

coupling medium.  

This method provides the best coupling for 

automated control systems.  

This plant was specially produced for ZIROM S.A. A 
unique producer of titanium ingots in Romania by the 
reputed German company Karl Deutch (leader in this 
field), the founder of the company being also one of the 
inventors of the non-destructive ultrasonic control 
method, the part of Eddy current being produced by the 
German company Prüftechnik.  

This paper aims to explore the state of the art of 
non-destructive automatic ultrasonic control 
techniques according to the possible methods to be 
adopted, by the applications that demand such 
methods, by reviewing a series of installations more 
or less similar to those of Zirom s.a. 

It is thus found that there are a multitude of pine 

technical solutions that can be done with an ultrasonic 

automatic control and precision. In this context, the 

last chapter of the paper that attempts to probe the 

possible evolution of the future of US control in this 

field is of great importance because in the current 

pace of innovations in all fields, but especially in IT 

and electronics, the future holds many surprises 

(Mirsayar et al., 2017). 

Materials and Methods 

About the Method of Non-Destructive Control with 

Ultrasunete 

The method is based on the phenomenon of 

producing ultrasonic waves in materials, called generic 
crystals, under the influence of an electric wire, by 

passing the wave into the material and receiving it by the 

same crystal or by another (called receptor). 

Waves involved in ultrasonic control are: 

 

 Longitudinal waves-where oscillation direction 

coincides with the transmission direction (Fig. 1) 

 Transversal waves-Where the direction of 

transmission is perpendicular to the oscillation 

direction (Fig. 2) 

 Waves of surface-acts on the surface of the 
materials (Fig. 3) 

 Waves Lamb-are produced only in thin plates (Fig. 4) 

 

The procedures used in US control are: 

 

 By transmission 

 Pulse-echo 

 

The most common is the echo pulse presented 

schematically in the following picture where it can be 

observed and the working mode of a apparatus for 
determining defects - producing device receives and 

processes the received wave and the result of penetration 

of the material is seen on the oscilloscope of the 

apparatus for determining defects (Fig. 5). 

The principle of control with echo impulse is also 

clearly presented in the following picture where the two 

echoes of the bottom and the emission are distinguished, 

i.e., from the output of the probe from the touch probe 

and from the reflection of the wave on the bottom of the 

material (Fig. 6). 
There is a smaller echo in the center of the diagram. 

This is the echo of the internal flaw and it is more of a 
concern to us. It is noted that there is also a direct link 
between the distance of the fault echo and the emission 
time-base from the diagram and the depth at which the 
defect in the piece material is found. 

There is also a function between the defect size and 
the fault echo on the diagram. 

A great importance is also the threshold-

amplification, because overcoming it depends on the 

acceptance or rejection of the piece to be controlled. Just 

as important is the gate because for example we will 

have information about the defects of the piece only in 

the volume inside the gate. 
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Fig. 1. Longitudinal waves-where oscillation direction coincides with the transmission direction 

 

 

 
Fig. 2. Transversal waves-Where the direction of transmission is perpendicular to the oscillation direction 



Relly Victoria Virgil Petrescu et al. / American Journal of Engineering and Applied Sciences 2017, 10 (2): 568.583 

DOI: 10.3844/ajeassp.2017.568.583 

 

571 

 

 
Fig. 3. Waves of surface - acts on the surface of the materials 

 

 

 
Fig. 4. Waves Lamb - are produced only in thin plates 
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Fig. 5. An echo pulse 

 

 
 

Fig. 6. The control with echo impulse 
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Fig. 7. Non destructive control with ultrasounds in immersion 

 

About the Method of Non Destructive Control with 

Ultrasounds in Immersion 

Air is the bad conductor of ultrasound. Therefore, the 

best ultrasonic coupling medium with the control piece is 

water. Normally, the control can only be done with a 

track piece. Figure 7 shows two applications of the 

immersion method for various axes as well as the control 

of the railway tracks. Both installations were produced 

by Karl Deutch. 

In principle, ultrasound is reflected by any surface 

and any internal defect. In most cases the same 

transducer emits and receives ultrasounds. Ultrasonic 

pulses are converted into electrical signals displayed on 

the screen. The amplitude of the reflected signal is 

somewhat proportional to the magnitude of the fault. 

Sonic track time gives us information on the location of 

the fault. The front and bottom surfaces give great 

echoes. The control area is framed into an electronic gate 
within which only failures will be evaluated. A threshold 

is set which determines whether the defect found is 

critical. The size of this threshold is usually determined 

using either the echo amplitude of a known reflector, 

such as the bottom echo, or the echo resulting from an 

artificial defect (Cao et al., 2013; Dong et al., 2013; De 

Melo et al., 2012; Garcia et al., 2007; Garcia-Murillo et al., 

2013; He et al., 2013; Lee, 2013; Lin et al., 2013; Liu et al., 

2013; Padula and Perdereau, 2013; Perumaal and 

Jawahar, 2013; Petrescu and Petrescu, 1995a; 1995b; 

1997a; 1997b; 1997c; 2000a; 2000b; 2002a; 2002b; 
2003; 2005a; 2005b; 2005c; 2005d; 2005e, 2016a; 

2016b; 2016c; 2016d; 2016e; 2013; 2012a; 2012b; 2011; 

Petrescu et al., 2009; 2016a; 2016b; 2016c; 2016d; 

2016e; Petrescu and Calautit, 2016a; 2016b; Reddy et al., 

2012; Tabaković et al., 2013; Tang et al., 2013;        

Tong et al., 2013; Wang et al., 2013; Wen et al., 2012; 
Antonescu and Petrescu, 1985; 1989; Antonescu et al., 

1985a; 1985b; 1986; 1987; 1988; 1994; 1997; 2000a; 

2000b; 2001; Mirsayar et al., 2017). 

Total Immersion Control 

Air is the bad conductor of ultrasound. Therefore, the 

best ultrasonic coupling medium with the part to be 

controlled is water. Normally control can only be done 

with track piece (Fig. 7). 

Partial Immersion Control 

Automatic ultrasonic control can often be performed 

in the case of a partial immersion of the parts to be 

controlled. Only a small portion of the piece is 

immersed. The round pieces are spinning until the entire 

surface of the piece is explored (Fig. 8). 

HRP Control System 

Partial immersion control and high speed control. 

Rods or bars have axial movement through the 

immersion chamber (Fig. 9). 

Interstitial Coupling with Water 

Another method of ultrasonic coupling with 

controlled parts uses supports for transducer guides. The 

ultrasound spreads to the control piece through a full of 

water (Fig. 10). 
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Fig. 8. Partial immersion control 

 

 
 
Fig. 9. HRP control system 

 

 
 
Fig. 10. Interstitial coupling with water 

 

Directional Water Jet Coupling 

For this type of coupling the volume of mechanical 

components is higher. The transducer support 

provided with the water jet guidance system is guided 

to the surface of the work piece by means of soles or 

rollers. This method reduces wear and shortens 

calibration times (Fig. 11). 

 
 
Fig. 11. Directional water jet coupling 
 

 
 
Fig. 12. Water jet coupling, free 
 

 
 
Fig. 13. STPS-bar control system 
 

Water Jet Coupling, Free 

For complicated profiles, such as rail rails, very good 

calibration times are obtained using slightly more 

complicated transducer struts. A free, water jet, a few 

centrifuges, between the rubber tube and the control 
piece, ensures the transmission of ultrasounds (Fig. 12). 

STPS - Bar Control System 

Characteristic for this system is the high speed of 

control correlated with a special mechanical robustness. 

Nine transducers provide a wide control coverage. 

Defects are detected in the central area and immediately 
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below the surface. Round or hexagonal profiles can be 

controlled with the same settings. You can also control 

square or flat profiles (Fig. 13). 

KNPS-Control System for Billets 

Large deviations from the repeatability of the parts 

to be controlled require a great flexibility in the 

positioning of the US transducers. The supports of 

these transducers are guided, on the surfaces of the 

parts, with soles or rollers. As with the STPS system, 

water jet coupling is used (Fig. 14). 

RPS/RPT-Pipe Control 

Pipe control requires many directions of incidence. 

Pipes typically rotate. Longitudinal defects are detected 

by transmitting ultrasounds in circumferential directions. 

The transverse defects are detected by the proper 

inclination of the transducers relative to the pipe axis. 

The large number of transducer mounts required the 

design of a compact control system. Controls for the 

control of pipes or cylinders differ very little (Fig. 15). 

HRP Pipe and Bar Control System 

A high control speed can be achieved if the parts to 

be controlled do not rotate. Neither the control tanks 

rotate. The immersion control boxes contain the 
transducer bearing boxes. The entire control area is 

covered by transducers with curved surfaces (Fig. 16). 

SCHN Rail Control System 

Almost all rail profile is covered with US freely 

positionable transducers. Water jet coupling leads to short 

adjustment times and low mechanical wear (Fig. 17). 

Welding Control System 

Welded pipes can also be controlled automatically. 

Small diameter pipes are ERW type. Large diameter pipes 

of the SAW type can be welded longitudinally or spirally. 

Use solenoid and/or water jet coupling (Fig. 18). 
 

 
 
Fig. 14. KNPS-control system for billets 

 
 
Fig. 15. RPS/RPT-pipe control 

 

 
 
Fig. 16. HRP pipe and bar control system 

 

 
 
Fig. 17. SCHN rail control system 

 

 
 
Fig. 18. Welding control system 
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Fig. 19. A normal transducer composing 
 

 
 

Fig. 20. ECHOGRAPH-ultrasonic electronics 
 

Composing a Normal Transducer of Longitudinal 

Waves 

In principle, a fingerprint transducer (Fig. 19) consists of 
an oscillator (a crystal of a special material that has the 
property as the variation of the electric current that crosses 
it changes its size by emitting ultrasonic waves and vice 
versa under the effect of the sonic pressure modifying its 
size emitting a current electric - piezoelectric effect). 

In Fig. 20 one can see an ECHOGRAPH - ultrasonic 
electronics.  

Modern digital electronics can command a multi-
channel control system. 

The current version of the electronic digital system 
ECHOGRAPH offers a wide variety of freely 
programmable parameters.  

 
 
Fig. 21. The control coil 
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It is important for the beneficiaries to use up to four 

control gates.  

Each control gate can evaluate the echoes after three 

different thresholds.  

The weakest signals may be amplified by more than 
100 dB.  

High repetition frequency and frequency bandwidth 

are two common things for this system. In addition, he 

uses a noise suppression algorithm (Cao et al., 2013; 

Dong et al., 2013; De Melo et al., 2012; Garcia et al., 2007; 

Garcia-Murillo et al., 2013; He et al., 2013; Lee, 2013;   

Lin et al., 2013; Liu et al., 2013; Padula and Perdereau, 

2013; Perumaal and Jawahar, 2013; Petrescu and Petrescu, 

1995a; 1995b; 1997a; 1997b; 1997c; 2000a; 2000b; 2002a; 

2002b; 2003; 2005a; 2005b; 2005c; 2005d; 2005e, 2016a; 

2016b; 2016c; 2013; 2012a; 2012b; 2011; Petrescu et al., 

2016; 2009; Reddy et al., 2012; Tabaković et al., 2013; 

Tang et al., 2013; Tong et al., 2013; Wang et al., 2013; 

Wen et al., 2012; Antonescu and Petrescu, 1985; 1989; 

Antonescu et al., 1985a; 1985b; 1986; 1987; 1988; 1994; 

1997; 2000a; 2000b; 2001; Mirsayar et al., 2017). 

The Non-Destructive Control Method with Swirling 

Currents 

Electromagnetic Method 

The control coil (primary winding; Fig. 21) generates an 

alternating magnetic field that induces an electric current, 

the so-called "eddy current," in the control-piece. 

The presence of a defect on the surface of the piece 

produces a 'disturbance' in the electric circuit detected by 

the coil and transmitted to the oscilloscope where it can 

be evaluated according to the threshold. 

Pipe, bar and wire producers, in order to meet the 

continuous demands of the beneficiaries to increase the 

quality of their products, require and use quality 

assurance systems that can meet these requirements. In 

order to stay at the top of these conditions, metallurgy 

manufacturers use fully automated non-destructive 

control methods, which, based on reliable resolutions, 

certify the quality of the controlled products.  

The overriding concern of manufacturers is to 

optimize the production process to reduce stops and 

scrapes during manufacture.  

Eddy current control is one of the most important 

control methods for the semi-finished industry.  

Regardless of the control speed, cool or hot materials 

can be fully integrated into the control line. Immediate 

reporting on product quality, ensures immediate 

recognition of worsening production and remedial action. 

Eddy current control installs quickly, is easy to serve 

and provides information that you can rely on at any time.  
Circumferential control and segmented coil welding 

and magnetization unit. 

Results 

It displays the defect during calibration with a square 

standard (Fig. 22). 

At the end of the test, the installation computer issues 

a noticeable B (B-scan) control bulletin for round and 

square bars in which the defect acceptance thresholds 

(line to the limit of the two colors) are visible, as well as 

their position along the length and in depth reported by 

each touch probe (Fig. 23). 

A robotic system usually consists of a mechanical 

manipulator, a final effector, a microprocessor based on 
a controller, a computer and other devices. 

Six-axis robots have traditionally been used on 

production lines to move the end effector between two 

points where the path was not very important. 

Generally, the end effector was moved manually until 

the robot taught it. Then repeat the movement in that 

position and orientation whenever the application 

requested it. More recently, the technical capabilities 

of the present (couples, motors, software) have made 

the robots more flexible and smarter and can perform 

more complex tasks. 

The use of Ultrasonic Testing (UT) robots offers 
great flexibility for US inspections, with fast control 

and efficiency, especially for controlling large 

geometry complexity pieces. However, it was 

necessary to develop appropriate software to integrate 

the robots with the latest generation control tools. 

Trajectory planning (trajectory or path generation) for 

NDT control, is a very specific task. Commercial 

software for off-line robot programming stems from the 

need to flexibly handle manipulators to perform various 

traditional machining operations (turning, welding, 

drilling, etc.). As a result, many commercial software 
applications for off-line programming of robots are 

expensive tools that incorporate a lot of CAD/CAM 

functions with unnecessary purposes and features. 

Despite the abundance of features, a software trace-

generating program of commercial software should 

usually be subject to change before all the necessary 

NDT inspection requirements are met. A number of 

problems are often present in the original trajectory 

being generated by software functions specifically 

generated for processing and production operations, 

rather than for ND tasks. 

There are significant complications when it takes two 
or more robotic arms to be synchronized in order to 
perform a certain NDT inspection. Ultrasonic 
Transmission Technology (UTT), for example, uses two 
transducers: One transmitter and one receiver; The 
receiver being placed on the opposite side of the 
component and faced by the transmission probe. 
Currently, many commercial software (such as Del 
Cam and Master Cam) do not support robots working 
in tandem. Fast Surf allows partial synchronization of 



Relly Victoria Virgil Petrescu et al. / American Journal of Engineering and Applied Sciences 2017, 10 (2): 568.583 

DOI: 10.3844/ajeassp.2017.568.583 

 

578 

robotic movements (for example, at the beginning or 
end of complex trajectory points) using I digital/O 
signals, but synchronization is not complete over the 
full path required for the UTT technique. Ultrasounds 
have the advantage of good penetration of materials 

and the fact that they are not a polluting method. 
Robots have the advantage of very good flexibility, so 
they can use both the advantage of robots and 
ultrasound control for applications of this type in 
aviation and beyond (Fig. 24). 

 

 
 

Fig. 22. Scanning a defect during calibration with a square standard 
 

 
 

Fig. 23. At the end of the test, the installation computer issues a noticeable B (B-scan) control bulletin 
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Fig. 24. Robots in ultrasonic testing of aircraft turbine blades 

 

Discussion 

The development and diversification of machines 

and mechanisms with applications in all fields 

requires new scientific researches for the 

systematization and improvement of existing 
mechanical systems by creating new mechanisms 

adapted to modern requirements, which involve 

increasingly complex topological structures. 

Although not applicable in any situation, there may 

be advantages in using industrial robots in ultrasound 

systems, instead of traditional Cartesian scanners 

based on Robot Gantry type. Robots have excellent 

stiffness and repeatability-they are also available for 

short delivery and at an economical cost because they 

are widely used. 

In the past, there have been limitations in the use of 

industrial robots in the field of ultrasonic testing due to 

low positioning feedback and the generation of 

disturbing "noise" by the servo drive systems of the 

engines. Currently, these limitations have been exceeded 

with a unique single control system of movement. 

Conclusion 

This paper describes an application of industrial robots 

that gain ground mainly in the aerospace industry. It is a 

TTT manipulator whose task is to automatically position 

the end-effector, in this case a complex sensor system and a 

eddy-current probe in the position set by the software 

application for testing by non-destructive ultrasound control 

of tickets and bars of titanium, both round and square, or 

any other transparent ultrasound metal (obviously in a 

certain range of sizes). For surface control, the effector also 

includes a Eddy current (Eddy current control system). The 

installation performs ultrasonic control by the echo boost 

method in total immersion using as a water coupling 

medium. This method provides the best coupling for 

automated control systems. This plant was specially 

produced for ZIROM S.A. A unique producer of titanium 

ingots in Romania by the reputed German company Karl 

Deutch (leader in this field), the founder of the company 

being also one of the inventors of the non-destructive 

ultrasonic control method, the part of Eddy current being 

produced by the German company Prüftechnik. This paper 
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aims to explore the state of the art of non-destructive 

automatic ultrasonic control techniques according to the 

possible methods to be adopted, by the applications that 

demand such methods, by reviewing a series of installations 

more or less similar to those of Zirom s.a. It is thus found 

that there are a multitude of pine technical solutions that can 

be done with an ultrasonic automatic control and precision. 

In this context, the last chapter of the paper that attempts to 

probe the possible evolution of the future of US control in 

this field is of great importance because in the current pace 

of innovations in all fields, but especially in IT and 

electronics, the future holds many surprises. 
There are significant complications when it takes two or 

more robotic arms to be synchronized in order to perform a 
certain NDT inspection. Ultrasonic Transmission 
Technology (UTT), for example, uses two transducers: One 
transmitter and one receiver; The receiver being placed on 
the opposite side of the component and faced by the 
transmission probe. Currently, many commercial software 
(such as Del Cam and Master Cam) do not support robots 
working in tandem. Fast Surf allows partial synchronization 
of robotic movements (for example, at the beginning or 
end of complex trajectory points) using I digital/O 
signals, but synchronization is not complete over the full 
path required for the UTT technique. Ultrasounds have 
the advantage of good penetration of materials and the 
fact that they are not a polluting method. Robots have 
the advantage of very good flexibility, so they can use 
both the advantage of robots and ultrasound control for 
applications of this type in aviation and beyond. 

Although not applicable in any situation, there may be 

advantages in using industrial robots in ultrasound 

systems, instead of traditional Cartesian scanners based on 

Robot Gantry type. Robots have excellent stiffness and 

repeatability-they are also available for short delivery and 
at an economical cost because they are widely used. 

In the past, there have been limitations in the use of 

industrial robots in the field of ultrasonic testing due to 

low positioning feedback and the generation of 

disturbing "noise" by the servo drive systems of the 

engines. Currently, these limitations have been exceeded 

with a unique single control system of movement. 
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