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Introduction 

In recent times, several researchers have carried out 
studies on differential inclusions with lots of emerging 
results such as semilinear evolution inclusions with 
nonlocal conditions and upper semicontinuous 

multivalued maps. See (Aitalioubrahim, 2011; 
Boucherif, 2009; Gatsori et al., 2004; Zhu and Li, 
2008). (Cardinali et al., 2008; Cardinali and Rubbioni, 
2012), established some results on local mild 
solutions and impulsive mild solutions for semilinear 
inclusions. Aitalioubrahim (2011) established some 

new results on mild solution of semilinear noncovex 
differential inclusion. The following were considered: 
the case when the set-valued map is a non-open 
multifunction with measurability and Lipschitz 
continuity conditions imposed on the first and second 
variables respectively. These recent studies have 

shown that differential inclusions and problems with 
nonlocal conditions are of more practical applications 
in real life when compared to problems with local 
conditions (Antosiewicz and Cellina, 1975; Bishop et al., 
2016; Cellina, 1988). 

Within the setting of quantum stochastic calculus 

Ekhaguere (1992), not much has been done. However, 

Ayoola (2008), Bishop and Ayoola (2015), studied the 

topological properties of solution sets for Lipschitz 

and non Lipschitz Quantum Stochastic Differential 

Inclusions (QSDIs) under the local conditions with the 

multivalued stochastic processes been continuous. 

Ogundiran and Payne (2014) considered a unified 

treatment of existence of solution of both upper and 

lower semicontinuous quantum stochastic differential 

inclusions under the local condition. Bishop et al. 
(2016) established some new results on impulsive 

nonclassical ordinary differential equations. The 

initial conditions are not necessarily local and the 

multivalued stochastic processes are lower 

semicontinuous. Problems with lower semicontinuous 

maps have more application especially when dealing 

with dynamical systems. 

In this study, we present new results on QSDIs with 

nonlocal conditions where the multivalued stochastic 

processes are lower semicontinuous.  

This problem will have practical applications in the 

theory of quantum dynamical systems. 

The result of this paper generalizes some of the 

results of Bishop et al. (2016) and also extends the work 

of Aitalioubrahim (2011) to the class of noncummutative 

quantum setting. 

We consider the following lower semicontinuous 

quantum stochastic evolution inclusion: 

 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )
( )( ) ( ) ( )( )

( ) ( )( ) [ ]

π
( , Λ ,

, , ),

0 . , 0,

g

f

dx t A t x t E t x t d t F t x t dA t

G t x t dA t H t x t dt

x g x t T

+

+

∈ + +

+ +

= ∈ ⊆ R

 (1)  

 
The term in the bracket on the right hand of Inclusion 

1 is the formulation of Hudson and Parthasarathy (1984) 

Boson quantum stochastic calculus. E, F, G, H are 
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coefficients that lie in the space 2 ([0, ] )loc mvsL T × ɶA , the 

space ɶA  is necessarily locally convex, 

[ ]( ): 0, ,g C T →ɶ ɶA A , A is a family of densely defined 

linear operator. However, it has been shown by Ekhaguere 

(2007) that the following evolution inclusion:  
 

 
( ) ( ) ( )

( ) ( )( ) [ ]

, ( ) , ( , )

0 . , 0,

d
x t A t x t P t x

dt

x g x t T

η ξ η ξ∈ +

= ∈
 (2) 

 
is equivalent to Inclusion 1, where the map 

(t,x)→P(t,x)(η,ξ) in Inclusion 2 is a multivalued 

sesquilinear form on 2
( )⊗D E  with its explicit form 

defined by Ekhaguere (2007). We organize the rest of this 

paper as follows: Section 2, will consist of preliminaries 

while in Section 3, the main result will be considered. 

Notations and Preliminary Results 

In this section we shall adopt the fundamental 

concepts and structures as in the references (Ayoola, 

2004; Ekhaguere, 2007). We employ the space Aɶ  of 

noncommutative stochastic processes whose topology 

τw is generated by the family of seminorms 

{ }|| | , |, , (| ,| )x x x Aηξ η ξ η ξ= ∈ ∈ ⊗ɶ D E . The elements of Aɶ  

consists of linear maps from ⊗D E  into 

( )( )2

γΓ L +⊗ RR  having domains of their adjoints 

containing ∞⊗D E . In what follows, as in (Bishop and 

Ayoola, 2015; Ekhaguere, 1992; 2007; Ogundiran and 

Payne 2014) we employ the definitions and notations 

of the spaces ( ) ( ), ,
P

loc locAL Lγ
∞

+
ɶ R , ( )2 [0, ] , .loc mvs

L T A γ× ɶ D is 

some pre-Hilbert space with ℜ as its completion. Let 

S be a topological space, then clos(S), denotes the 

collection of all nonempty closed subsets of S while 

Comp(S) denotes the collection of all nonempty 

compact subsets of S. We shall employ the Hausdorff 

topology on clos ( )Aɶ . By Theorem V.5 of Reed and 

Simon (1980), the σ-weak topology τσw is metrizable 

since ∞⊗D E has a countable base, hence Aɶ  is 

metrizable. For more on Banach space, metrizable 

spaces, etc., see Krein (1971). 

Definitions 1: 

• A multivalued stochastic process Φ with values in 

clos ( )Aɶ , with I +⊆ R as its basis, is a multivalued 

function on the interval I 
• If the above holds, then a selection of Φ is a 

stochastic process :x I A→ ɶ  such that x(t)∈Φ(t) for 

almost all t∈I 

Note: All through the remaining part of this paper, 
Φ is multivalued stochastic process except stated 
otherwise. 

• Φ is adapted if Φ(t) t⊆ ɶA , t +∈R   

• Φ is computable if t→dηξ(x,Φ(t)) is computable, 

( ),η ξ ∈ ⊗D E , x A∈ ɶ   

• Φ is locally absolutely p-integrable if Φ( )t t ηξ→  ∈ 

( )P
locL I , t +∈R  ( ),η ξ ∈ ⊗D E . This will be denoted 

by ( )P
loc mvs

L Aɶ   

 

Notations 1: 
 
• ( )P

loc mvsL I A× ɶ  is the set of maps : I A AΦ × →ɶ ɶ  such 

that t→Φ(t, x(t)) ∈ ( )P
loc mvs

L Aɶ ∀ ( )P
loc mvs

x L A∈ ɶ , 

( )0, ,P I +∈ ∞ ⊆ R  

• For the purpose of this work, 

( ) ( )( ), , Bf g L Lγ γπ∞ ∞
+ +∈ ∈R R , while Λπ, Af and gA+  are 

stochastic processes 
 

Definition 2: 
 

• Let ( ),C I Aɶ , denote the space of all stochastic 

processes that are continuous and ( )1
,L I Aɶ  denotes 

the space of all stochastic processes that are L1
-

measurable or L1
-computable. We define the 

sesquilinear equivalent form ( )( ),C I sesq ⊗D E , L1
(I, 

sesq(D × E)), in the same manner with 

( ):x I sesq→ ⊗D E . The Banach space 

( )( ),C I sesq ⊗D E  is equipped with the norm 

( )( ){ },|| || sup , ,cx x t t Iηξ η ξ= ∈  

•  E ⊂ ( )1
,L I Aɶ  is decomposable if for all measurable 

(computable) u(.), v(.) ∈E, the function u(.)χI(.)χ + 

v(.)χI(.)χ∈E, I⊆[0,T], where χI(.) denotes the 

characteristic function 

• A multivalued stochastic process : 2IΦ × →
ɶ

ɶ A
A  is 

lower semicontinuous (l.s.c.) if ∀ open set V A⊂ ɶ , 

Φ−
(V) is open 

• Φ is completely continuous if Φ(E) is relatively 

compact for every E bounded set of D, where D is a 

non empty subset of Aɶ  

• Assume that the multivalued map : [0, ] 2AP T A× →
ɶ

ɶ  

has nonempty compact values and F  is the 

Niemytzki operator. Define the operator 

[ ]( ) [ ]( )1 0, ,
: 0, , 2

AL T
AC T →

ɶ

ɶF  by F (x(.)(η,ξ)) = {y(.) ∈ 

L1
([0,T]),Ã): yηξ(t) ∈ P(t, x(t))(η,ξ), t∈[0,T]} 
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The following result established by Ayoola (2008) 

will be useful in establishing the main result. The 

proofs are simple adaptation of arguments employed 

in the reference. 

Lemma 1 

Let Ã be a metrizable space and let 
[ ]( )1 0, ,

2:
L T A

I AΦ × →
ɶ

ɶ be a multivalued operator which is 

lower semicontinuous (l.s.c) and has nonempty closed 

and decomposable values. Then Φ has a continuous 

selection. That is there exists a continuous function P: 
Ã→L1

([0,T], Ã) such that P(y)∈Φ(y) ∀ y∈ Ã.  

Main Results 

Here, we examine the existence of mild solution of an 

evolution inclusion where the multivalued map is lower 

semicontinuous. We consider the nonlocal QSDI with 

nonlocal conditions: 

 

( ) ( ) ( )( )

( ) ( )( ) [ ]

, ( ) , ,

0 . , 0,

d
x t A t x t P t x

dt

x g x t T

η ξ η ξ∈ +

= ∈
 (3) 

 

Let {A(t):t∈[0,T]} be defined on Ã and g:C([0,T], Ã) 

→Ã. Define an evolution operator T(.,.) by T:∆ = {(t,s): 

0≤s≤t≤T} → Ã, A(t) generates T(.,.). As outlined by 

Aitalioubrahim (2011) the operators T(t, s) are strongly 

differentiable such that T(t,r)T(r,s) = T(t,s) ∀ 0 ≤ s ≤ r ≤ 

b, while ( )( , )
( , )

T t s
A t T t s

t

∂
=

∂
 and ( )( , )

( , )
T t s

A t T t s
s

∂
= −

∂
∀ 

(t,s) ∈∆. For more on the operators T(t, s) see 

Aitalioubrahim (2011) and the references therein.  

Definition 3  

Assume that E, F, G, H∈ 2 ( )loc mvsL I × ɶA , (t0, x0) a fixed 

point of I × Ã. Then the following Equation: 

 

( ) ( )( )( )
0

, ( ) , ( , ) ( ) , , ,
t

t T t s g T t s P s s dsη ϕ ξ η ϕ ξ ϕ η ξ= + ∫  (4) 

 

will be called a solution of Equation 1 respectively 

Equation 2 for arbitrary ( ),η ξ ∈ ⊗D E . 

Theorem 1 

Assume that the function g: Ã→C([0,T],Ã) is 

continuous and the map P:I×Ã→LÃ
 has non-empty 

compact values. Then: 

 

• (Si) (t,s)→P(t,x)(η,ξ) is L
1
-measurable 

• (Sii) t→P(t,x)(η,ξ) is l.s.c for almost all t∈[0,T] 

• (Siii) [ ]( )1(.) 0, ,M L T +∈ R  is a function such that: 

( )( ) ( ){ } ( ), , : sup || || : , ,P t x y y P t x M tηξη ξ η ξ= ∈ ≤  

 

for almost all t∈[0,T], x∈Ã. 
• (Siv) Let N > 0 and |T(t,s)|≤N for each (t,s)∈∆ 

• (Sv) Let m and l be non-negative constants, then 
 

( ) [ ]( )|| ( ) || || (.) || 0, ,g x m x l x t C tηξ ηξ≤ + ∀ ∈ ɶA  

 

• (Svi) Let B⊆C(I,Ã), t∈I and supt∈I||x(t)||ηξ<∞, then, 

the set: 
 

( ) ( )( ) ( ) ( )( )( ){ }0
,0 . , . ,

t
T t g y T t s y s ds y B+ ∈∫ P  

 

is relatively compact in Ã. P: C([0, t], Ã) → L1
([0, t], 

Ã) is such that P(y(.))∈ F(y(.)) ∀ y∈C([0, t], Ã). 

Then if Nm<1, Inclusion 1 equivalently Inclusion 2 

has at least one mild solution on the given interval. 
 

Proof 

From (Sii), P is l.s.c and by Lemma 1, P(y(.))∈F(y(.)) 

∀ y∈C([0,t],Ã). Considering the problem: 
 

( ) ( ) ( )

( ) ( )( ) [ ]

, ( ) (.) ( , )

0 . , 0,

d
y t A t y t y

dt

y g y t T

η ξ η ξ∈ +

= ∈

P
 (5) 

 

By implication, if y(.)∈C([0,t],Ã) is a solution of 

Inclusion 5, then y(.) is also a solution of Inclusion 2. 

Next, we transform Inclusion 5 into a fixed point form: 

∀ y(.)∈C([0,t],Ã), again define 

( )( ) ( )( ): [0, ], [0, ],C T sesq C T sesq⊗ → ⊗P D E D E  by: 

 

( )( )( )( ) ( ) ( )( )( )

( ) ( )( )( )( )
0

. , ,0 . ,

, . ,
t

y t T t g y

T t s y s ds

γ η ξ η ξ

η ξ

=

+∫ P

 

 
The proof is presented as follows: 

 

• Show that γ is continuous 

• Show that γ is bounded on bounded sets of 

[ ] ( )( )0, ,C T sesq ⊗D E . We do this by showing that 

γ(Br) is bounded ∀ r≥0, Br = {yηξ(.) ∈ 

[ ] ( )( ) ( )0, , :|| . || }C T sesq y rηξ⊗ ≤D E  

• Show that γ maps bounded sets into sets that are 

equicontinuous 

• Lastly we show that for some 0<γ<1 the set 

( ) ( ) [ ] ( )( ) ( ) ( )( ){ }. 0, , : . .R y y C T sesq y yγ γ= ∈ ⊗ =D E  

is bounded 
 

Let (yηξ,k)k≥0 converge to yηξ in [ ] ( )( )0, ,C T sesq ⊗D E . 



Sheila Amina Bishop et al. / American Journal of Engineering and Applied Sciences 2017, 10 (2): 506.510 

DOI: 10.3844/ajeassp.2017.506.510 

 

509 

Then ∀ t∈[0,T]: 

 

( )( ) ( )( ) ( ) ( )( ) ( )( )

( ) ( )( )( )( ) ( )( )( )( )

( )( ) ( )( )

( ) ( )( )( )( ) ( )( )( )( )

0

0

Φ . ( ) Φ . ( ) | , | g . g .

| , || . , . , |

g . g .

| , || . , . , |

k k

t

k

k

t

k

y t y t T t s y y

T t s y s y s ds

N y y

N T t s y s y s ds

ηξ ηξ

ηξ

η ξ η ξ

η ξ η ξ

− ≤ −

+ −

≤ −

+ −

∫

∫

P P

P P

 

 

Since g(yk(.))→g(y(.)) as k→∞ and P is continuous, 

we deduce that Φ is continuous. 

Let hηξ ∈Φ(Br), we have ∀ t∈[0,T]: 

 

( ) ( ) ( )( ) ( ) ( )( )( )( )

( ) ( )

( ) ( )

0

0

0

| | ,0 . | , || . , |

.

t

T

T

h t T t g y T t s y s ds

N m y l M s ds

N mr l M s ds N

ηξ ηξ

ηξ

η ξ

λ

≤ +

 ≤ +  

 ≤ + + ≤  

∫

∫

∫

P

 

 

Therefore, Φ(Br)⊂BNλ, where ( ) ( )
0

T
mr l M s ds λ + + =  ∫ . 

Since hηξ ∈ Φ(Br) and y(.)∈Br, then hηξ ∈ Φ(yηξ(.)) 
and we have for t < s, t∈[0,T]: 

 

( ) ( ) ( ) ( )( )

( ) ( )( )( )( )

( ) ( ) ( )( )( )( )

( ) ( ) ( ) ( )

( ) ( ) ( )( )

0

| | ,0 ,0 .

, || . , |

| , , || . , |

,0 ,0

,0 ,0 0

s

t

t

s

t

T

t

h t T s T t g y

T s y d

T t T s y d

N mr l T s T t M d

N T s T t M d

ηξ ηξ

τ τ η ξ τ

τ τ τ η ξ τ

τ τ

τ τ

≤ −

+

+ −

≤ + − +

+ + − →

∫

∫

∫

∫

P

P  

 

as s→t.  
By the property of T(t, s), t > s and the fact that it 

is a strongly continuous operator, we have by Arzela 

Ascoli theorem the convergence in the uniform 

operator topology. 

Let y(.)∈R(y), then we have: 

 

( )( ) ( ) ( )( )( )

( )( )( )( )

( )( ) ( )
0

0

. , [ ,0 . ,

( , ) . , ]

.

t

T

y T t g y

T t s y ds

N m y l N M s ds
ηξ

η ξ γ η ξ

τ η ξ

γ γ
∞

=

+

≤ + +

∫

∫

P  

 
and: 

 

( ) ( )

( )( )0

(.) (.) . 1

T

y Nm y y Nm

N l M s ds

ηξ ηξ ηξ
γ γ

γ

− = −

≤ + ∫
 

Since 1-γNm>1-Nm, hence, we get 

( )
( )

0
( )

.
1

T
N l M s ds

y
Nmηξ

γ

γ
∞ +
≤

−
∫

. 

This shows that R(y) is bounded. Consequently 

( ).y
ηξ

ν
∞
≤  for some constant v and by Arzela Ascoli 

theorem, Φ is completely continuous. 

Hence by Schaefer's theorem, the conclusion is that 

Φ has a fixed point and this fixed point is a mild solution 

of Equation 5. 

Conclusion 

Results obtained here generalize analogous results due 

to the references (Aitalioubrahim, 2011; Cardinali et al., 
2008; Cardinali and Rubbioni, 2012) which concern 

classical ordinary differential equations and some of the 

results of Bishop et al. (2016). Hence this will be an 

extension of the results on Quantum Stochastic 

Differential Inclusion (QSDI) in the literature.  
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