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Abstract: This paper presents and treats (in an original way) the 

specific elements of the structures of robotic solid mobile 

anthropomorphic type. Are “placed on the wallpaper”, the geometry and 

kinematics of the anthropomorphic robotic solid systems, in an original 

vision of the authors. One presents the inverse kinematics of 

anthropomorphic systems, with mechanical elements and points: 

Geometry, cinematic, positions, displacements, velocities and 

accelerations. They will be presented further two methods (as the most 
representatives): First one the method trigonometric and second one the 

geometric method. 
 

Keywords: Anthropomorphic Robots, Direct Kinematic, Inverse 

Kinematic, 3R Systems, Velocities, Accelerations 
 

Introduction 

Today, anthropomorphic structures are used more 

and more in almost all the fields of industrial. Robotic 

structures have emerged from the need for automation 

and robotics of the industrial processes. The first 

industrial robots were called upon by the heavy industry 

and in particular by the automobiles industry. The 

automotive industry not only has requested the 

appearance of the industrial robots but even their 

subsequent development (Angeles, 1989; Atkenson et al., 

1986; Avallone and Baumeister, 1996; Baili, 2003; 

Baron and Angeles, 1998; Borrel and Liegeois, 1986; 

Burdick, 1988). 
The most used were and have remained, the robots 

anthropomorphic, because they are more easily 

designed, built, maintained, are easily to handle, more 

dynamics, robust, economic and in general they have 

a broadly working area. The structures of the solid 

anthropomorphic robots are made up of elements and 

the couples of rotation, to which can add on an 

occasional basis and one or more couplers with 

translational moving. The couplers of rotation have 

been proven their effectiveness by moving them 

easier, more dynamic, step by step and especially 

being the most reliable. In general the couplers of 

rotation are moving more easily and more continuous, 

are actuated better and easier, control is less 

expensive and more reliable and programming the 

movements of rotation is also much simpler and more 

efficient (Ceccarelli, 1996; Choi et al., 2004; Denavit, 
1964; Di Gregorio and Parenti-Castelli, 2002; 

Goldsmith, 2002; Grotjahn et al., 2004; Guegan and 

Khalil, 2002; Kim and Tsai, 2002; Lee and Sanderson, 

2001; Liu and Kim, 2002).  

All anthropomorphic structures are made up of a 

basic structure 3R (Fig. 1). Starting from the basic 

structure 3R may build then various robots 4R, 5R, 

6R, 7R..., by the addition of moving elements and the 

couplers. Regardless of how many degrees of mobility 

has a solid structure final mobile, the basis for the 

thing is always represented by the solid structure 3R 

shown in Fig. 1. For this reason, the calculations 
presented in this study will be developed for the basic 

structure 3R. The structure in Fig. 1 consists of three 

moving elements linked together by the couplers of 

rotation. It is a spatial structure, with a large area of 

movement (working). 
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Fig. 1. Schema geometry-cinematic of a structure 3R modern (anthropomorphic) 
 

The platform (system) as shown in Fig. 1 has three 

degree of mobility, carried out by three actuators 

(electric motors). The first electric motor drives the 

entire system in a rotating movement around a vertical 

shaft O0z0. The engine (actuator) number 1 is mounted 

on the fixed element (frame 0) and causes the mobile 

element 1 in a rotation movement around a vertical shaft 

O0O1. On the mobile element 1 are constructed then all 

the other elements (components) of the system. 

It follows a kinematic chain plan (vertical), composed 

of two elements in movement and two couplers 

cinematic engines. It is about the kinematic elements in 
movement 2 and 3, the assembly 2-3 being moved by the 

actuator of the second fitted in the coupler A, fixed on 

the element 1. Therefore the second electric motor 

attached to the component 1 will drive the element 2 in 

rotational motion relative to the item 1 and at the same 

time it will move the entire kinematic chain 2-3. The last 

actuator (electric motor) fixed by item 2, in B, will turn 

up the item 3 (relative in relation to the 2).  
The rotation of the φ10 carried out by the first 

actuator, is and relative (between items 1 and 0) and 
absolute (between items 1 and 0).  

The rotation of the φ20 carried out by the second 

actuator, is and relative rotation (between elements 2 and 

1) and absolute (between items 2 and 0) due to the 

arrangement of the system.  

The rotation of the θ = φ32 carried out by the third 

actuator, is only a relative rotation (between elements 

3 and 2) and the corresponding absolute rotation 

(between items 3 and 0) is a function of the θ = φ32 

and φ20 (Aversa et al., 2016a; 2016b; 2016c; 2016d; 
2016e; 2016f). 

The kinematic chain 2-3 (consisting of kinematic 

elements in movement 2 and 3) is a kinematic chain in plan, 

which fall within a single plan or in one composed of 

several plane parallel. It is a system kinematic special, 

which may be studied separately. Then the element 1 

(which it drives the kinematic chain 2-3) will be considered 

as coupler, kinematic couplers engines A(O2) and B(O3) 

becoming, the first fixed coupler and the second mobile 

coupler, both being kinematic couplers C5, of rotation. 

For the determination of the extent of mobility of the 

kinematic chain (in plane) 2-3, shall apply to the structural 

formula given by the relationship (1), where m is the total 
number of moving parts of the kinematic chain plan; in 

our case m = 2 (as we are talking about the two kinematic 

elements in movement noted with 2 and 3 respectively) 

and the C5 represents the number kinematic couplers of 

the fifth-class, in this case C5 = 2 (as we are talking about 

the couplers A and B or O2 and O3): 
 

3 5
3 2 3 2 2 2 6 4 2M m C= ⋅ − ⋅ = ⋅ − ⋅ = − =  (1) 

 
The kinematic chain 2-3 having to the degree of 

mobility 2, must be actuated by two motors. It is 
preferred that those two actuators to be two electric 

motors, direct current, or alternately.  

Alternatively the drive of motion may be done and 

with engines hydraulic, pneumatic, sonic, etc. Structural 

diagram of the plan kinematic chain 2-3 (Fig. 2) 

resembles with its kinematic schema. 

The driver element 2 is linked to the element 1 

considered fixed, through the drive coupler O2 and driver 

element 3 is linked to the mobile element 2 through the 

drive coupler O3. 
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Fig. 2. Structural diagram of the kinematic chain plan 2-3 

linked to item 1 considered fixed 
 

As a result there is the kinematic chain open with 
two degree of mobility, carried out by the two 
actuators, i.e., the two electric motors, mounted on the 
motor kinematic couplers A and B or O2 in question 
O3 (Lorell et al., 2003; Merlet, 2000; Miller, 2004; 
Petrescu et al., 2009; Tsai, 2000). 

Direct Kinematic of the Plan Chain 2-3 

In Fig. 3 can be tracked cinematic diagram of the 
chain plan 2-3 open. In direct cinematic are known 
cinematic parameters φ20 and φ30 and must be 
determined by the analytical calculation the parameters 
xM and yM, which represents the scalar coordinates of the 
point M (endeffector M).  

Are projected the vectors d2 and d3 on the Cartesian 
axis system considered fixed, xOy identical with the 
x2O2y2, to obtain the system of equations scaling (2): 
 

3

3

2 3

2 20 3 30

2 3

2 20 3 30

cos cos cos

sin sin sin

M M O M

M M O M

x x x x

d d d

y y y y

d d d

φ φ φ

φ φ φ

≡ = +

= ⋅ + ⋅ = ⋅


≡ = +
= ⋅ + ⋅ = ⋅

  (2) 

 
After shall be determined in the form of Cartesian 

coordinates of the M using the relations given by the 
system (2), may be obtained immediately and the φ angle 
parameters using the relations estab-lished in the 
framework of the system (3): 
 

2 2 2

2 2

2 2

2 2

cos

sin

(sin ) arccos(cos )

M M

M M

M M

M M

M M

M M

d x y

d x y

x x

d x y

y y

d x y

sign

φ

φ

φ φ φ




= +


= +
 = =

+

 = =
 +


= ⋅

 (3) 

 
 
Fig. 3. Kinematic diagram of the kinematic chain plan 2-3 

linked to item 1 considered fixed 

 

The system (2) is written in a more concise manner in 

the form (4) which is derived with time to become the 

velocities system (5), which being derived with time 

generates in turn the system of accelerations (6): 
 

2 20 3 30

2 20 3 20

2 20 3 30

2 20 3 20

cos cos

cos cos( )

sin sin

sin sin( )

M

M

x d d

d d

y d d

d d

φ φ

φ θ φ π

φ φ

φ θ φ π

= ⋅ + ⋅
= ⋅ + ⋅ + −


= ⋅ + ⋅
= ⋅ + ⋅ + −

 (4) 

 

2 20 20 3 30 30

2 20 20 3 30 20

2 20 20 3 30 30

2 20 20 3 30 20

sin sin

sin sin ( )

cos cos

cos cos ( )

x

M M

y

M M

v x d d

d d

v y d d

d d

φ ω φ ω

φ ω φ θ ω

φ ω φ ω

φ ω φ θ ω

 ≡ = − ⋅ ⋅ − ⋅ ⋅

= − ⋅ ⋅ − ⋅ ⋅ +


≡ = ⋅ ⋅ + ⋅ ⋅
= ⋅ ⋅ + ⋅ ⋅ +

ɺ

ɺ

ɺ

ɺ

 (5) 

 
2 2

2 20 20 3 30 30

2 2

2 20 20 3 30 20

2 2

2 20 20 3 30 30

2 2

2 20 20 3 30 20

cos cos

cos cos ( )

sin sin

sin sin ( )

x

M M

y

M M

a x d d

d d

a y d d

d d

φ ω φ ω

φ ω φ θ ω

φ ω φ ω

φ ω φ θ ω

 ≡ = − ⋅ ⋅ − ⋅ ⋅

= − ⋅ ⋅ − ⋅ ⋅ +


≡ = − ⋅ ⋅ − ⋅ ⋅
= − ⋅ ⋅ − ⋅ ⋅ +

ɺɺ

ɺ

ɺɺ

ɺ

 (6) 

 

Remark: The rotation speeds of the actuators were 

considered to be constant (relations 7): 

 

20 20 30

20 30

; .

0.

ct ct si ctφ ω θ ω

ε θ ε

= = = ⇒ =

= = =

ɺ ɺ

ɺɺ

 (7) 

 

The relations (3) shall be derived and they and get the 

velocities (8) and the accelerations (9): 
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2 2 2

2 2 2

cos

sin

cos sin | ( sin )

sin cos | (cos )

_____________________________

( sin ) (cos

M M

M M M M

M M M M

M M M M

M

M

M

M

M M

d x y

d d x x y y

d d x x y y

x x y y
d

d

d x
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φ

φ
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φ φ φ φ

φ φ
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=

⋅ =

⋅ =
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ɺ ɺ ɺ

ɺ ɺ ɺ
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cos sin
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y x

d

x x y y
d

d

φ

φ φ
φ




















 ⋅ − ⋅ =



 ⋅ + ⋅

=


ɺ ɺ
ɺ

ɺ ɺɺ

 (8) 

 

2 2 2

2 2 2

2 2 2

2 2 2
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sin

cos sin | ( sin )

sin cos | (cos )
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M M

M M M M

M M M M

M M M M M M

M M M M M M

M

M

M

M

d x y

d d x x y y

d d x x y y
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d

d
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d y
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φ

φ

φ φ φ φ

φ φ φ φ
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=

⋅ =

⋅ =
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ɺ ɺ ɺ

ɺ ɺ ɺ
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ɺɺ

ɺ ɺ ɺ
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sin cos

cos sin
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cos sin sin cos
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M M

M M

M M
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d d y y
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y x y x d

d

φ φ φ

φ φ φ φ φ
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φ
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⋅ + ⋅ = ⋅ − ⋅ ⋅

− ⋅ − ⋅ ⋅
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=

ɺ ɺ ɺ

ɺ ɺ ɺɺ ɺɺɺ ɺ

ɺɺɺ ɺ

ɺɺ

ɺɺ ɺ ɺɺɺ ɺɺ ɺ ɺ

2 2 2

_____

M M M M M Mx x x y y y d
d

d


































+ ⋅ + + ⋅ − =

ɺɺ ɺɺ ɺ ɺɺ
ɺɺ  (9) 

 

The following will determine the positions, speeds 

and accelerations, according to the positions of the scales 

point O3. It starts from the scalar coordinates of the point 

O3 (the relationships 10): 

 

3

3

2 20

2 20

cos

sin

O

O

x d

y d

φ

φ

= ⋅


= ⋅
 (10) 

Is then determined scaling speeds and 

accelerations of the point O3, by differentiation of the 

system (10), in which shall be replaced after 

derivation the products d.cos or d.sin with the 

respective positions, xO3 or yO3, which become (in this 

way) variables (see relations 11 and 12): 
 

3 3

3 3

2 20 20 20

2 20 20 20

sin

cos

O O

O O

x d y

y d x

φ ω ω

φ ω ω

= − ⋅ ⋅ = − ⋅


= ⋅ ⋅ = ⋅

ɺ

ɺ
 (11) 

 

3 3

3 3

2 2

2 20 20 20

2 2

2 20 20 20

cos

sin

O O

O O

x d x

y d y

φ ω ω

φ ω ω

 = − ⋅ ⋅ = − ⋅


= − ⋅ ⋅ = − ⋅

ɺɺ

ɺɺ
 (12) 

 

Had been put in evidence in this mode the scalar 

speeds and accelerations of point O3 according to their 

original positions (scaling) and absolute angular speed of 

the element 2.  

The angular speed was considered to be constant. The 

technique of the determination of the velocities and 
acceleration depending on the positions, is extremely 

useful in the study of the dynamics of the system, of the 

vibrations and noise caused by the respective system.  

This technique is common in the study of vibration 

system. Known the vibrations of scalar positions of 

point O3 and then easily determine the vibration 

velocities and accelerations that point and other points 

of the system all the functions of positions scaling 

known point O3.  

Also by this technique can calculate local noise levels 

at various points in the system and the overall level of 
noise generated, with a precision good enough, 

compared with experimental measurements obtained 

with adequate equipment.  

Absolute velocity of O3 point (speed module) is given 

by relation (13) and the acceleration of O3 can be written 

with expression (14): 

 

3 3 3

2 2

2 2 2 2 2 2

2 20 20 2 20 20

2 2

2 20 2 20

sin cos

O O O
v x y

d d

d d

ω φ ω φ

ω ω

 = +

= ⋅ ⋅ + ⋅ ⋅

= ⋅ = ⋅


ɺ ɺ

 (13) 

 

3 3 3

2 2

2 4 2 2 4 2

2 20 20 2 20 20

2 4 2

2 20 2 20

cos sin

O O O
a x y

d d

d d

ω φ ω φ

ω ω

 = +

= ⋅ ⋅ + ⋅ ⋅

= ⋅ = ⋅


ɺɺ ɺɺ

 (14) 

 

In the following will determine the cinematic scalar 

parameters of the point M, endeffector, depending and 
on the parameters of the position of points O3 and M (the 

systems of relations 15-17): 
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Inverse Kinematic of the Plan Chain 2-3 

In Fig. 3 can be tracked cinematic diagram of the 

chain plan 2-3 open. In inverse cinematic are known the 

parameters xM and yM (which represent the scalar 

coordinates of the point M, endeffector M), imposed 

parameters and must be determined by the analytical 

calculations the cinematic parameters φ20 and φ30. 

Determine first the intermediate parameters d and φ with 
relations (18): 

2 2 2 2 2

2 2

2 2

;

cos ;

sin

(sin ) arccos(cos )

M M M M

M M

M M

M M

M M

d x y d x y
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φ

φ

φ φ φ

 = + = +


= =
 +



= =
+

 = ⋅

 (18)

 

 

In triangle certain O2O3M know the lengths of the 

three sides, d2, d3 (constant) and d (variable) so that it 

can be determined depending on the lengths of the 

sides all other elements of the triangle, specifically its 

angles and trigonometric functions of their 

(particularly interest us sin and cos). You can use 

various methods and they will be presented further 

two (as the most representatives): Method 

trigonometric and geometric method. 

Trigonometric Method, Determining Positions 

Writing of positions scaling Equations 19: 

 

2 20 3 30

2 20 3 30

2 2

20 20

2 2

30 30

cos cos

sin sin

cos sin 1

cos sin 1

M

M

d d x

d d y

φ φ

φ φ

φ φ

φ φ

⋅ + ⋅ =
 ⋅ + ⋅ =


+ =
 + =

 (19)

 

 

 

The problem with these two equations scaling, 

trigonometric, with two unknowns (φ20 and φ30) is that 
they transcend (they are trigonometric equations, 

transcendental, where φ20 unknown does not appear 

directly but in the form cosφ20 and sinφ20, so in reality 

the two trigonometric equations no longer have only 

two unknowns but four: cosφ20, sinφ20, cosφ30 and 

sinφ30).  

To solve the system we need more two equations, so 

that in the system (19) were also added more two 

trigonometric equations, exactly the core “golden” as 

they are more say, for the angle φ20 and separate for the 

φ30 angle. In order to solve the first two equations of the 
system (19) are written in the form (20). 

 

2 20 3 30

2 20 3 30

cos cos

sin sin

M

M

d x d

d y d

φ φ

φ φ

⋅ − = − ⋅


⋅ − = − ⋅
 (20) 

 

Each equation of the system (20) are squared, then 

added together both equations (squared) to obtain the 

equation of the form (21): 

 
2 2 2 2 2

2 20 20

2 20

2 2 2

2 20 3 30 30

(cos sin )

2 cos

2 sin (cos sin )

M M

M

M

d x y

d x

d y d

φ φ

φ

φ φ φ

 ⋅ + + +

− ⋅ ⋅ ⋅
− ⋅ ⋅ ⋅ = ⋅ +

 (21) 
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Now is the time to use the two “equations gold” 

written at the end trigonometric system (2), with which 

Equation 21 becomes simplified expression (22): 

 
2 2 2

2 2 20

2

2 20 3

2 cos

2 sin

M M M

M

d x y d x

d y d

φ

φ

 + + − ⋅ ⋅ ⋅

− ⋅ ⋅ ⋅ =

 
(22) 

 

Arrange the terms of the Equation 22 in the most 

convenient form (23).  

 
2 2 2 2

2 3

2 20 20
2 ( cos sin )

M M

M M

d d x y

d x yφ φ

 − + +

= ⋅ ⋅ ⋅ + ⋅

 (23)
 

 
Divide the Equation 23 with 2.d2 and follows a new 

form (24): 

 
2 2 2 2

2 3
20 20

2

cos sin
2

M M
M M

d d x y
x y

d
φ φ

− + +
⋅ + ⋅ =

⋅
 (24) 

 
Observing Fig. 2, from system (18) may be explicit 

the relation (25): 

 
2 2 2

M M
x y d+ =  (25)

 
 

Insert (25) to (24) and amplified fraction the right to 

d so that the expression (24) takes the form (26) a more 

useful form: 

 
2 2 2

2 3
20 20

2

cos sin
2

M M

d d d
x y d

d d
φ φ

+ −
⋅ + ⋅ = ⋅

⋅ ⋅
 (26) 

 
Now, one can enter the expression cosine angle O2, 

according to some O2O3M triangle (27): 

 
2 2 2

2 3
2

2

ˆcos
2

d d d
O

d d

+ −
=

⋅ ⋅
 (27) 

 
Using the expression (27) Equation 26 becomes 

simplified (28): 

 

20 2 20
ˆcos cos sin

M M
x d O yφ φ⋅ − ⋅ = − ⋅  (28) 

 

Needs to remove sinφ20, for which we isolated the 

term in sin and rose squared Equation 28 for using the 

equation gold trigonometric angle φ20 to transform sin in 

cosine, equation becoming one of the second degree in 

cosφ20. After squaring (28) becomes (29): 

 
2 2 2 2

20 2

2 2

2 20 20

ˆcos cos

ˆ2 cos cos sin

M

M M

x d O

d x O y

φ

φ φ

 ⋅ + ⋅

− ⋅ ⋅ ⋅ ⋅ = ⋅

 (29) 

Use golden formula and expression (29) becomes 

(30) to be arranged conveniently by grouping terms of 

bringing to the form (31): 

 
2 2 2 2

20 2

2 2 2

2 20 20

ˆcos cos

ˆ2 cos cos cos

M

M M M

x d O

d x O y y

φ

φ φ

 ⋅ + ⋅

− ⋅ ⋅ ⋅ ⋅ = − ⋅

 (30)
 

 
2 2 2

20 2 20

2 2 2

2

ˆ( ) cos 2 cos cos

ˆ( cos ) 0

M M M

M

x y d x O

y d O

φ φ + ⋅ − ⋅ ⋅ ⋅ ⋅

− − ⋅ =

 (31)
 

 
Discriminant of Equation 31 in the second degree in 

cosine may be calculated by Equation 32: 

 
2 2 2 2 2 2 2

2 2

2 2 2 2 2 2

2 2

2 2 2 2

2

2 2 2 2 2 2

2 2

ˆ ˆcos ( cos )

ˆ ˆ( cos cos )

ˆ( cos )

ˆ ˆ(1 cos ) sin

M M

M M

M M

M M

d x O d y d O

d x O y d O

d y y O

d y O d y O

∆ = ⋅ ⋅ + ⋅ − ⋅

= ⋅ ⋅ + − ⋅

= ⋅ − ⋅

= ⋅ ⋅ − = ⋅ ⋅

 (32) 

 

Radical second order of discriminant is expressed 

as (33): 

 

2 2 2

2 2
ˆ ˆsin sin

M M
R d y O d y O= ∆ = ⋅ ⋅ = ⋅ ⋅  (33) 

 

Solutions to Equation 31 in the second degree in 

cosine are written in the form (34): 
 

1,2

2 2
20 2

2 2

2 2

ˆ ˆcos sin
cos

ˆ ˆcos sin

ˆ ˆcos sin

M M

M M

M M

d x O d y O

d

x O y O

d

x y
O O

d d

φ
 ⋅ ⋅ ⋅ ⋅

=

 ⋅ ⋅=


= ⋅ ⋅


∓

∓

∓

 (34)

 

 
Further, in solutions (34) are replaced reports with 

corresponding trigonometric functions of angle φ, 

expressions (34) gaining form (35): 
 

1,220 2 2

2 2

2

20 2

ˆ ˆcos cos sin

ˆ ˆcos cos sin sin

ˆcos( )

ˆcos cos( )

M M
x y

O O
d d

O O

O

O

φ

φ φ

φ

φ φ

 = ⋅ ⋅

= ⋅ ⋅
= ±

 = ±

∓

∓  (35)

 

 
One turns now to Equation 29 that it will be order in 

form (36) with a view to resolving them in sin. Equation 

36 rises to the square and using trigonometric equation 

golden of angle φ20, is obtained form (37): 

 

20 2 20
ˆcos cos sin

M M
x d O yφ φ⋅ = ⋅ − ⋅  (36) 
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2 2 2 2 2 2

20 2 20

2 20

2 2 2 2 2 2 2

20 2 20

2 20

2 2 2

20 2 20

2 2 2

2

2 2

20 2

ˆcos cos sin

ˆ2 cos sin

ˆsin cos sin

ˆ2 cos sin

ˆ( ) sin 2 cos sin

ˆ( cos ) 0

ˆsin 2 cos sin

M M

M

M M M

M

M M M

M

M

x d O y

y d O

x x d O y

y d O

x y y d O

x d O

d y d O

φ φ

φ

φ φ

φ

φ φ

φ φ

⋅ = ⋅ + ⋅

− ⋅ ⋅ ⋅ ⋅

− ⋅ = ⋅ + ⋅

− ⋅ ⋅ ⋅ ⋅

+ ⋅ − ⋅ ⋅ ⋅ ⋅

− − ⋅ =

⋅ − ⋅ ⋅ ⋅ ⋅
20

2 2 2

2
ˆ( cos ) 0Mx d O














− − ⋅ =

 (37)

 

 

Discriminant Equation 37 in the second degree in 

cosine takes the form (38): 

 
2 2 2 2 2 2 2

2 2

2 2 2 2 2 2 2 2

2 2 2

2 2 2 2 2 2 2

2 2

ˆ ˆcos ( cos )

ˆ ˆ ˆ( cos cos cos )

ˆ ˆ( cos ) sin

M M

M M M M

M M M

y d O d x d O

d x y O x O y O

d x x O d x O

∆ = ⋅ ⋅ + ⋅ − ⋅


⋅ + ⋅ − ⋅ − ⋅

= ⋅ − ⋅ = ⋅ ⋅

 (38) 

 

Solutions to Equation 36 are written now as (39): 

 

2 2
20 2

2 2

2 2

2 2 2

20 2

ˆ ˆcos sin
sin

ˆ ˆcos sin

ˆ ˆcos sin

ˆ ˆ ˆsin cos cos sin sin( )

ˆsin sin( )

M M

M M

M M

y d O x d O

d

y O x O

d

y x
O O

d d

O O O

O

φ

φ φ φ

φ φ

 ⋅ ⋅ ± ⋅ ⋅
=


 ⋅ ± ⋅
=


= ⋅ ± ⋅


= ⋅ ± ⋅ = ±


 = ±

 (39) 

 

From resulted relations (40) it can write the basic 

relationship (41): 

 

20 2

20 2

ˆcos cos( )

ˆsin sin( )

O

O

φ φ

φ φ

 = ±


= ±
 (40) 

 

20 2
Ôφ φ= ±  (41)

 
 

The procedure for determining the angle φ30, starting 

again from the system (19), where the first two 

transcendental equations are rewritten as (42) in order to 

eliminate φ20 angle this time: 

 

2 20 3 30

2 20 3 30

cos cos

sin sin

M

M

d x d

d y d

φ φ

φ φ

⋅ = − ⋅


⋅ = − ⋅
 (42)

 

 
Raises the two Equation 42 squared and added together, 

resulting in the equation of the form (43), which is arranged 

in the most convenient forms (44) and (45): 

2 2 2 2

2 3

3 30 3 30
2 cos 2 sin

M M

M M

d x y d

d x d yφ φ

 = + +

− ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅

 (43) 

 
2 2 2

3 2
30 30

3

cos sin
2

M M

d d d
x y d

d d
φ φ

+ −
⋅ + ⋅ = ⋅

⋅ ⋅
 (44) 

 

30 30
ˆcos sin cos

M M
x y d Mφ φ⋅ + ⋅ = ⋅  (45)

  
Need to determine first the cosine so that we isolate 

initially term in sin, Equation 45 with a special its form 

(46), which by squaring generates expression (47), an 

expression that arranges form (48): 
 

30 30
ˆcos cos sin

M M
x d M yφ φ⋅ − ⋅ = − ⋅  (46)

 
 

2 2 2 2

30

2 2 2

30 30

ˆcos cos

ˆ2 cos cos cos

M

M M M

x d M

d x M y y

φ

φ φ

 ⋅ + ⋅

− ⋅ ⋅ ⋅ ⋅ = − ⋅

 (47)
  

 
2 2

30 30

2 2 2

ˆcos 2 cos cos

ˆ( cos ) 0

M

M

d d x M

y d M

φ φ ⋅ − ⋅ ⋅ ⋅ ⋅

− − ⋅ =

 (48)
 

 
Equation 48 is a second degree equation in cosine 

with solutions given by expression (49): 

 
30

2 2 2 2 2 2 2

2

2 2 2

2

2

30

cos

ˆ ˆ ˆcos cos ( cos )

ˆ ˆcos (1 cos )

ˆ ˆcos sin

ˆ ˆcos sin

ˆ ˆ ˆcos cos sin sin cos( )

ˆcos cos( )

M M M

M M

M M

M M

d x M d x M d y d M

d

d x M d y M

d

d x M d y M

d

x y
M M

d d

M M M

M

φ

φ φ φ

φ φ

=


⋅ ⋅ ± ⋅ ⋅ + ⋅ − ⋅


 ⋅ ⋅ ± ⋅ ⋅ −
=

 ⋅ ⋅ ± ⋅ ⋅=


= ⋅ ± ⋅

= ⋅ ± ⋅ =



=

∓

∓

 (49) 

 
Further write Equation 45 as (50), which is isolated this 

time cosine to eliminate it and then to determine the term 

sin. The expression (52) is an equation of the second degree 

in sin, admitting the solutions given by (53): 
 

30 30
ˆcos cos sin

M M
x d M yφ φ⋅ = ⋅ − ⋅  (50)

 

 Equation 50 amounts to the square and obtain the 

equation of the form (51) suitable to be arranged in the 

form (52): 
 

2 2 2 2

30

2 2

30 30

ˆ(1 sin ) cos

ˆsin 2 cos sin

M

M M

x d M

y y d M

φ

φ φ

 ⋅ − = ⋅

+ ⋅ − ⋅ ⋅ ⋅ ⋅

 (51)
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2 2

30 30

2 2 2

ˆsin 2 cos sin

ˆ( cos ) 0

M

M

d y d M

x d M

φ φ ⋅ − ⋅ ⋅ ⋅ ⋅

− − ⋅ =

 (52)
 

 

30

2 2 2 2 2 2 2

2

2 2 2

2

2

30

sin

ˆ ˆ ˆcos cos ( cos )

ˆ ˆcos (1 cos )

ˆ ˆcos sin

ˆ ˆcos sin

ˆ ˆ ˆsin cos cos sin sin( )

ˆsin sin( )

M M M

M M

M M

M M

d y M d y M d x d M

d

d y M d x M

d

d y M d x M

d

y x
M M

d d

M M M

M

φ

φ φ φ

φ φ

=


⋅ ⋅ ⋅ ⋅ + ⋅ − ⋅


 ⋅ ⋅ ⋅ ⋅ −
=

 ⋅ ⋅ ⋅ ⋅=


= ⋅ ⋅

= ⋅ ⋅ =



=

∓

∓

∓

∓

∓ ∓

∓

 (53)  

 
Then, are qualified only the relations (54) and (55): 

 

30

30

ˆcos cos( )

ˆsin sin( )

M

M

φ φ

φ φ

 =


=

∓

∓

 (54) 

 

30
M̂φ φ= ∓  (55) 

 

Trigonometric Method, Determining 

Velocities 

Starting from relations (56) required in the study of 

velocities in inverse kinematics: 
 

cos sin
M M

M M M M

y x

d

x x y y
d

d

φ φ
φ

⋅ − ⋅ =


⋅ + ⋅ =


ɺ ɺ
ɺ

ɺ ɺ
ɺ

 (56) 

 
It starts from the relationship linking the cosine of the 

angle 
2

Ô  of the triangle sides, which derives in relation 

to time and thus obtains the value 
2

Ô
ɺ

 written simply 
2

Oɺ  

(relations 57): 
 

2 2 2

2 2 2 3

2 2 2 2 2

2 2
2

2 2

2 cos

2 cos 2 sin

cos
2

sin

d d O d d d

d d O d d O O

d d O d d
d d O

d d O

 ⋅ ⋅ ⋅ = − +



⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅


⋅ ⋅ − ⋅= ⋅ ⋅ ⇒ =

 ⋅ ⋅

ɺ ɺ

ɺ ɺ
ɺ ɺ

 (57) 

 
It derives the Equation 24 to give the angular velocity 

20 20
ω φ≡ ɺ  (relation 58): 

 

20 20 2
Oω φ φ≡ = ±ɺ ɺ ɺ  (58) 

To determine ω20 (relationship 58) we need φɺ  to be 

calculated from (56) and 
2

Oɺ  which is determined from 

(57). In turn 
2

Oɺ  requires for its calculation dɺ  that 

calculates all from system (56). Inlet velocities 
M M

x and yɺ ɺ  

are known, are required as input, or choose convenient, or 
can be calculated based on criteria imposed. Similarly, one 

determines and the angular velocity 
30 30

ω φ≡ ɺ (relation 59). 

It derives the equation (55) to obtain the angular velocity 

30 30
ω φ≡ ɺ  (expression 60). Then, φɺ  is calculated using the 

expression system known already (56) and Mɺ  is 
determined from the system (59) and by the help of the 

system (56) which it causes and dɺ : 

 

2 2 2

3 3 2

3 3

3

3

2 cos

2 cos 2 sin

cos
2

sin

d d M d d d

d d M d d M M

d d M d d
d d M

d d M


 ⋅ ⋅ ⋅ = − +
 ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅


⋅ ⋅ − ⋅= ⋅ ⋅ ⇒ =
 ⋅ ⋅

ɺ ɺ

ɺ ɺ
ɺ ɺ

 (59) 

 

30 30
Mω φ φ≡ =ɺ ɺ ɺ∓  (60) 

 

Trigonometric Method, Determining 

Accelerations 

It starts from the relationships (61) required in the 

study accelerations in inverse kinematics. The relation of 

the system (57) derived a second time to time, gives the 
system (62): 

 

2 2 2

cos sin

sin cos

M M

M M

M M M M M M

y x

d

y x d

d

x x x y y y d
d

d

φ φ
φ

φ φ φ φ φ

⋅ − ⋅ =


− ⋅ ⋅ − ⋅ ⋅ − ⋅
+

 + ⋅ + + ⋅ −

=


ɺɺ ɺɺ
ɺɺ

ɺɺ ɺ ɺɺ ɺ

ɺɺ ɺɺ ɺ ɺɺɺɺ

 (61) 

 
2 2 2

2 2 2 3

2 2 2 2 2

2 2 2 2 2

2 2

2 2 2 2 2 2 2 2
2

2 2

2 cos

2 cos 2 sin 2

sin cos

cos 2 sin cos

sin

d d O d d d

d d O d d O O d d

d d O O d d O d d

dd O dd dd O O dd O O d
O

d d O

 ⋅ ⋅ ⋅ = − +

⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅


⇒ ⋅ ⋅ ⋅ = ⋅ ⋅ − ⋅


− − ⋅ − ⋅ − = ⋅ ⋅

ɺ ɺɺ

ɺ ɺɺ

ɺɺ ɺɺ ɺ ɺɺ ɺ
ɺɺ

 (62) 

 

The following is derives the expression (58) to 

obtains expression (63), which generates angular 

acceleration absolute ε2 ≡ ε20, that is calculated with φɺɺ  

out of the system (61) and with 
2

Oɺɺ  out of the system 

(45) and for the determination of 
2

Oɺɺ  longer needed dɺɺ  

removed all from relations (61): 
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2 20 20 20 2
Oε ε ω φ φ≡ = ≡ = ±ɺɺ ɺɺ ɺɺɺ  (63) 

 

Now it derives a second time (59) and obtains the 
system (64): 

 
2 2 2

3 3 2

3 3

3 3

2 2

3 3 3

3

2 cos

2 cos 2 sin 2

sin cos

cos 2 sin cos

sin

d d M d d d

d d M d d M M d d

d d M M d d M d d

dd M dd dd M M dd M M d
M

d d M

 ⋅ ⋅ ⋅ = − +

⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅


⇒ ⋅ ⋅ ⋅ = ⋅ ⋅ − ⋅


− − ⋅ − ⋅ − = ⋅ ⋅

ɺ ɺɺ

ɺ ɺɺ

ɺɺ ɺɺ ɺ ɺɺ ɺ
ɺɺ

 (64) 

 

It derives again the time relation (60) and we obtain 

the expression (65) of the angular acceleration absolute 

ε3 ≡ ε30 which is determined with φɺɺ  and Mɺɺ : 

 

3 30 30 30
Mε ε ω φ φ≡ = ≡ =ɺɺ ɺɺ ɺɺɺ ∓  (65) 

 

Geometric Method, Determining Positions 

It starts by writing positions equations, geometric 

(geometro-analytical) (66). Scaling coordinates (xM, yM) of 

point M (endeffector) are known and must be determined 

and scaling coordinates of the point O3, which we denote by 

(x, y). The relationships of the system (66) are obtained by 

writing the geometro-analytical equations of the circles, the 
rays d3 and d2 respectively: 

 
2 2 2

3

2 2 2

2

( ) ( )
M M

x x y y d

x y d

 − + − =


+ =
 (66) 

 

Release binomials of the first equation of the system, 

enter the second equation into the first, is also used and 

expression 2 2 2

M M
d x y= + , of amplify fraction with the 

factor convenient 
2

d d⋅  and obtaining the final 

expression of system (67), which is written together with 

the equation of the second from system (66) in the new 

system (68) who needs to be addressed: 

 
2 2 2

2 3

2 2 2

2 3
2

2

2 2

2

2

cos

M M

M M

M M

d d d
x x y y

d d d
x x y y d d

d d

x x y y d d O

 + −
⋅ + ⋅ =


 + −

⋅ + ⋅ = ⋅ ⋅
⋅ ⋅

 ⋅ + ⋅ = ⋅ ⋅



 (67) 

 

2 2

2 2 2

2

cos
M M

x x y y d d O

x y d

⋅ + ⋅ = ⋅ ⋅


+ =
 (68) 

 
From the first equation of the system (68) explains 

the value of y, which rose and squared (69): 

2 2

2 2 2 2 2
2 2 2 2 2

2

cos

cos 2 cos

M

M

M M

M

d d O x x
y

y

d d O x x x d d O x
y

y

⋅ ⋅ − ⋅
=




⋅ ⋅ + ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ =


 (69) 

 

The phrase 'second (69) is introduced into a second 

relationship of (68) to give Equation 70, which are 

arranged conveniently in the form (71): 

 
2 2 2 2 2 2 2

2 2

2 2

2 2 2

cos

2 cos 0

M M

M M

y x d d O x x

x d d O x y d

 ⋅ + ⋅ ⋅ + ⋅

− ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ =

 (70) 

 
2 2

2 2

2 2 2 2

2 2

2 cos

( cos ) 0

M

M

d x x d d O x

d y d O

 ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅

− ⋅ − ⋅ =

 (71) 

 

Equation 71 is an equation of the second degree in x, 

which allows real solutions (72): 

 

( )

2 2

2

2 2 2 2 2 2 2 2

2 2 2 2

2

2

2 2 2 2

2

2

2 2 2 2

2 2 2 2

2 2 2

2 2 2

2

cos

cos ( cos )

cos 1 cos

cos sin

cos sin

cos sin

cos cos sin sin

M

M M

M M

M M

M M

M M

x d d O
x

d

x d d O d d y d O

d

x d d O d d y O

d

x d O d y O

d

x d O d y O

d

x y
d O O

d d

d O O

d

φ φ

⋅ ⋅ ⋅
=

⋅ ⋅ ⋅ + ⋅ ⋅ − ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −
=

⋅ ⋅ ⋅ ⋅
=

⋅ ⋅ ⋅ ⋅
=

 = ⋅ ⋅ ⋅ 
 

= ⋅ ⋅ ⋅

=

∓

∓

∓

∓

∓

∓

( )

( )

2

2 2

cos

cos

O

x d O

φ

φ





















 ⋅ ±



= ⋅ ±

 (72) 

 

It further determines the unknown y by introducing 

value x obtained from (72) in the first relationship of the 

system (69). One obtains the expression (73): 

 

( )

( ) ( )

2 2 2 2 2

2 2 2

2 2 2 2

2 2 2

2 2 2 2 2

cos cos sin

( ) cos cos sin

cos sin

sin cos cos sin sin

M M
M

M

M M M M M

M

M M

x y
d d O x d O O

d d
y

y

d x y O x O x y O

d y

y x
d O O

d d

d O O d Oφ φ φ

  ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅    =



⋅ + ⋅ − ⋅ ± ⋅ ⋅
=

⋅
  = ⋅ ⋅ ± ⋅ 

 
= ⋅ ⋅ ± ⋅ = ⋅ ±

∓

 (73) 
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From (72) and (73) retain only the latest expression 

concentrated both in system (74): 

 

( )
( )

2 2

2 2

cos

sin

x d O

y d O

φ

φ

 = ⋅ ±


= ⋅ ±
 (74) 

 

From Fig. 3 may write Equation 75: 

 

2 20

2 20

cos

sin

x d

y d

φ

φ

= ⋅


= ⋅
 (75) 

 

Comparing systems (74) and (75) the resulting 

system (76), from that is deducting direct relation (77): 

 

( )
( )

20 2

20 2

cos cos

sin sin

O

O

φ φ

φ φ

 = ±


= ±
 (76) 

 

20 2
Oφ φ= ±  (77) 

 

Geometric Method, Determining Velocities 

Starting from the positions system (66), which is derived 

a function of time and obtains the velocities system (78). 

The system (78) is rewritten in simplified form (79): 

 

2 ( ) ( ) 2 ( ) ( ) 0

2 2 0

M M M M
x x x x y y y y

x x y y

⋅ − ⋅ − + ⋅ − ⋅ − =

⋅ ⋅ + ⋅ ⋅ =

ɺ ɺ ɺ ɺ

ɺ ɺ
 (78) 

 

( ) ( )

( ) ( )

0

M M

M M M M

x x x y y y

x x x y y y

x x y y

− ⋅ + − ⋅

= − ⋅ + − ⋅
 ⋅ + ⋅ =

ɺ ɺ

ɺ ɺ

ɺ ɺ

 (79) 

 
In (79) break out the brackets and get the system (80): 

 

( )

( ) ( )

0

M M

M M M M

x x y y x x y y

x x x y y y

x x y y

⋅ + ⋅ − ⋅ + ⋅

= − ⋅ + − ⋅
 ⋅ + ⋅ =

ɺ ɺ ɺ ɺ

ɺ ɺ

ɺ ɺ

 (80) 

 

The second relationship of system (80) is inserted in 

the first, then the first expression is multiplied by (-1), so 

the system is simplified, receiving the form (81): 

 

( ) ( )

0

M M M M M M
x x y y x x x y y y

x x y y

⋅ + ⋅ = − ⋅ + − ⋅

⋅ + ⋅ =

ɺ ɺ ɺ ɺ

ɺ ɺ
 (81) 

 

The system (81) is solved in two steps.  
In the first step is multiplied the first relation of 

the system (81) by (y) and the second by (-yM), after 

which the result expressions are gathered member by 

member to provide the following relation (82) in 

which it is explained xɺ : 

[ ]( ) ( )M M M M

M M

y x x x y y y
x

x y y x

⋅ − ⋅ + − ⋅
=

⋅ − ⋅

ɺ ɺ
ɺ  (82) 

 
In step two we want to achieve yɺ  for which multiplies 

the first relationship of the system (81) by (x) and the 

second with (-xM), gather relations obtained member with 

member and explains yɺ  resulting relationship (83): 

 

[ ]( ) ( )M M M M

M M

x x x x y y y
y

x y y x

− ⋅ − ⋅ + − ⋅
=

⋅ − ⋅

ɺ ɺ
ɺ  (83) 

 
Relationships (82) and (83) are written confined 

within the system (84): 

 

( ) ( )
M M M M

M M

x y h

y x h

x x x y y y
h

x y y x

= ⋅
 = − ⋅

 − ⋅ + − ⋅ =

⋅ − ⋅

ɺ

ɺ

ɺ ɺ

 (84) 

 

Geometric Method, Determining 

Accelerations 

Starting from the velocities system (84), which is 

derived a function of time and obtains acceleration 

system (85). The system (85) is rewritten as (86): 
 

2

2

( )

( ) ( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

M M

M M M M

M M

M M M M

M M M M

M M M M

M M M

x y h y h x h y h

y x h x h y h x h

h x y y x

x x x y y y

h x y y x

h x y x y y x y x

x x x x x x

y y y y y y

x x x x x
h

= ⋅ + ⋅ = − ⋅ + ⋅

= − ⋅ − ⋅ = − ⋅ − ⋅

⋅ ⋅ − ⋅

= − ⋅ + − ⋅

⋅ ⋅ − ⋅

+ ⋅ ⋅ + ⋅ − ⋅ − ⋅

= − ⋅ + − ⋅

+ − ⋅ + − ⋅

− ⋅ + − ⋅
=

ɺ ɺɺɺ ɺ

ɺ ɺɺɺ ɺ

ɺ ɺ

ɺ

ɺ ɺ ɺ ɺ

ɺ ɺ ɺ ɺɺ

ɺ ɺ ɺ ɺɺ

ɺ ɺ ɺ ɺ
ɺ

( ) ( )

M

M M

M M M M

M M

M M M M

M M

x

x y y x

y y y y y y

x y y x

x y x y y x y x
h

x y y x



















⋅ − ⋅
 − ⋅ + − ⋅+
 ⋅ − ⋅


⋅ + ⋅ − ⋅ − ⋅− ⋅
 ⋅ − ⋅

ɺ

ɺ ɺ ɺ ɺɺ

ɺ ɺ ɺ ɺ

 (85) 

 
2

2

( ) ( )

( ) ( )

M M M M

M M

M M M M M M

M M

x y h y h x h y h

y x h x h y h x h

x x y h x y y x h y
h

x y y x

x x x y y y y x h x y h

x y y x

 = ⋅ + ⋅ = − ⋅ + ⋅


= − ⋅ − ⋅ = − ⋅ − ⋅
 − − ⋅ ⋅ + − + ⋅ ⋅

=
⋅ − ⋅

 − ⋅ + − ⋅ + ⋅ ⋅ − ⋅ ⋅
+

⋅ − ⋅

ɺ ɺɺɺ ɺ

ɺ ɺɺɺ ɺ

ɺ ɺ ɺ ɺ ɺ ɺɺ

ɺɺ ɺɺ ɺ ɺ

 (86) 
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Geometric Method, Determining Angular 

Velocities and Accelerations 

Once determined velocities and accelerations O3 

point, we can move on to determining the absolute 

angular velocities and angular accelerations of the 

system. It starts from the system (75), which is derived a 

function of time and get the system (87): 

 

2 20 20

2 20 20

sin

cos

x d

y d

φ φ

φ φ

 = − ⋅ ⋅


= ⋅ ⋅

ɺɺ

ɺɺ
 (87) 

 
For correct solution of the system (87) mounts the 

first relationship to the (-sinϕ20) and the second with 

(cosϕ20), then collect both relationships obtained 

(member by member) and the explanation of the 
20
φɺ , 

obtained searched expression (88): 
 

20 20
2 20 20

2

cos siny x

d

φ φ
ω ω φ

⋅ − ⋅
≡ ≡ =

ɺ ɺ
ɺ  (88) 

 

The velocities system (87) is again derived the time and 

to obtain the absolute angular accelerations system (89): 

 
2

2 20 20 2 20 20

2

2 20 20 2 20 20

cos sin

sin cos

x d d

y d d

φ φ φ φ

φ φ φ φ

 = − ⋅ ⋅ − ⋅ ⋅


= − ⋅ ⋅ + ⋅ ⋅

ɺ ɺɺɺɺ

ɺ ɺɺɺɺ
 (89) 

 

For correct solution of the system (89) amplify the first 

its relationship to the (-sinϕ20) and the second with (cosϕ20) 
(see equations from system 90), then collect both 

relationships obtained (member by member) and the 

explanation of the 
20
φɺ , obtained searched expression (91): 

 

2

2 20 20 2 20 20 20

2

2 20 20 2 20 20 20

cos sin | ( sin )

sin cos | (cos )

x d d

y d d

φ φ φ φ φ

φ φ φ φ φ

 = − ⋅ ⋅ − ⋅ ⋅ ⋅ −

 = − ⋅ ⋅ + ⋅ ⋅ ⋅

ɺ ɺɺɺɺ

ɺ ɺɺɺɺ

 (90) 

 

20 20
2 20 20 20

2

cos siny x

d

φ φ
ε ε ω φ

⋅ − ⋅
≡ ≡ ≡ =

ɺɺ ɺɺ
ɺɺɺ  (91) 

 

Remember the two relationships in the system (92): 

 

20 20
2 20 20

2

20 20
2 20 20 20

2

cos sin

cos sin

y x

d

y x

d

φ φ
ω ω φ

φ φ
ε ε ω φ

⋅ − ⋅ ≡ ≡ =



⋅ − ⋅ ≡ ≡ ≡ =


ɺ ɺ
ɺ

ɺɺ ɺɺ
ɺɺɺ

 (92) 

 

Still express Equation 93, (Fig. 3): 

 

3 30

3 30

cos

sin

M

M

x x d

y y d

φ

φ

− = ⋅


− = ⋅
 (93) 

The relationships of the system (93) further are 

derived with the time and obtained the velocities 

equations, system (94): 

 

3 30 30

3 30 30

sin

cos

M

M

x x d

y y d

φ φ

φ φ

 − = − ⋅ ⋅


− = ⋅ ⋅

ɺɺ ɺ

ɺɺ ɺ
 (94) 

 

For correct solution of the system (94) amplify the 

first its relationship to the (-sinϕ30) and the second with 

(cosϕ30), then collect both relationships obtained 

(member by member) and the explanation of the 
30
φɺ , 

obtained wanted expression (95): 

 

30 30
3 30 30

3

( ) cos ( ) sinM My y x x

d

φ φ
ω ω φ

− ⋅ − − ⋅
≡ ≡ =

ɺ ɺ ɺ ɺ
ɺ  (95) 

 

It derives the then with the time, the velocities system 

(94) and the absolute angular accelerations Obtain 

system (96): 

 
2

3 30 30 3 30 30

2

3 30 30 3 30 30

cos sin

sin cos

M

M

x x d d

y y d d

φ φ φ φ

φ φ φ φ

 − = − ⋅ ⋅ − ⋅ ⋅


− = − ⋅ ⋅ + ⋅ ⋅

ɺ ɺɺɺɺ ɺɺ

ɺ ɺɺɺɺ ɺɺ
 (96) 

 

For correct solution of the system (96) amplify the 

first its relationship to the (-sinϕ30) and the second 

with (cosϕ30), then collect both relationships obtained 
(member by member) and by the explanation of the 

30
φɺɺ , obtained wanted expression (97): 

 

30 30
3 30 30 30

3

( ) cos ( ) sinM My y x x

d

φ φ
ε ε ω φ

− ⋅ − − ⋅
≡ ≡ ≡ =

ɺɺ ɺɺ ɺɺ ɺɺ
ɺɺɺ  (97) 

 

Keep in the system (98) found the two solutions and 
in system (99) centralize all four of them: 

 

30 30
3 30 30

3

30 30
3 30 30 30

3

( ) cos ( ) sin

( ) cos ( ) sin

M M

M M

y y x x

d

y y x x

d

φ φ
ω ω φ

φ φ
ε ε ω φ

− ⋅ − − ⋅
≡ ≡ =




− ⋅ − − ⋅ ≡ ≡ ≡ =


ɺ ɺ ɺ ɺ
ɺ

ɺɺ ɺɺ ɺɺ ɺɺ
ɺɺɺ

 (98) 

 

20 20
2 20 20

2

30 30
3 30 30

3

20 20
2 20 20 20

2

30 30
3 30 30 30

3

cos sin

( ) cos ( ) sin

cos sin

( ) cos ( ) sin

M M

M M

y x

d

y y x x

d

y x

d

y y x x

d

φ φ
ω ω φ

φ φ
ω ω φ

φ φ
ε ε ω φ

φ φ
ε ε ω φ

⋅ − ⋅ ≡ ≡ =

 − ⋅ − − ⋅

≡ ≡ =



⋅ − ⋅ ≡ ≡ ≡ =



− ⋅ − − ⋅ ≡ ≡ ≡ =

ɺ ɺ
ɺ

ɺ ɺ ɺ ɺ
ɺ

ɺɺ ɺɺ
ɺɺɺ

ɺɺ ɺɺ ɺɺ ɺɺ
ɺɺɺ

 (99) 
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Conclusion 

Today, anthropomorphic structures are used more 

and more in almost all the fields of industrial. Robotic 

structures have emerged from the need for automation 

and robotics of the industrial processes. The first 

industrial robots were called upon by the heavy industry 

and in particular by the automobiles industry. The 

automotive industry not only has requested the 

appearance of the industrial robots but even their 

subsequent development.  

The most used were and have remained, the robots 

anthropomorphic, because they are more easily 
designed, built, maintained, are easily to handle, more 

dynamics, robust, economic and in general they have a 

broadly working area. The structures of the solid 

anthropomorphic robots are made up of elements and 

the couples of rotation, to which can add on an 

occasional basis and one or more couplers with 

translational moving. The couplers of rotation have 

been proven their effectiveness by moving them easier, 

more dynamic, step by step and especially being the 

most reliable. In general the couplers of rotation are 

moving more easily and more continuous, are actuated 

better and easier, control is less expensive and more 
reliable and programming the movements of rotation is 

also much simpler and more efficient. 

This paper presents and treats (in an original way) the 

specific elements of the structures of robotic solid mobile 

anthropomorphic type. Are “placed on the wallpaper”, the 

geometry, kinematics and dynamics of the anthropomorphic 

robotic solid systems, in an original vision of the authors. 

Last part presents the inverse kinematics of 

anthropomorphic systems, with mechanical elements and 

points: Geometry, cinematic, positions, displacements, 

velocities and accelerations, by two methods (as the most 
representatives): First one the method trigonometric and 

second one the geometric method. 
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