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Abstract: Statistical inference describes how to infer about the true but 

unknown population from the measured sample and is a fundamental 

ingredient in scientific data analysis. Often one knows the probability 

model and wishes to estimate its parameters. The Bayesian approach 

provides a solution in terms of the posterior probability density function of 

the parameters of interest, given the model, the experimental result and our 

prior knowledge about the parameters. Number counting experiments are 

very often performed, in the assumption that the order in which results 

appear does not matter. Examples are the binomial model, arising when one 

investigates about the efficiency of a given selection process, and the 

Poisson model that describes how often a given outcome may show up. 

Here we provide analytic solutions for the Bayesian inference for both 

models, in case some or no prior information is available. 
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Introduction 

Statistical inference describes how to infer about the 

true but unknown population from the measured sample 

and is a fundamental ingredient in scientific data 

analysis. Often one knows the probability model and 

wishes to estimate its parameters. We consider here a 

couple of very important discrete probability models, the 

binomial and Poisson distributions. The model expresses 

the probability of each outcome, given the values of each 

parameter. When considered as a function of the 

parameters for a fixed outcome, the model is no more a 

probability distribution (as it is no more normalized to 

one) and is called the likelihood function. Many 

common methods address statistical inference by 

maximizing the likelihood function. This works well 

when the sample is large, because asymptotically the 

likelihood behaves as a (multi-dimensional) Gaussian 

distribution peaked at the true value of the parameters. 

On the other hand, often only small samples are realistic, 

for example because repeating the experiment is too 

expensive or takes too long time. But for small sample 

one can not rely on asymptotics. In these circumstances, 

the data do not “speak by themselves” and one has to 

face the problem posed by a small sample size. 

The Bayesian approach is very useful in this case, 

because it makes it explicit how the solution depends 

on the information available prior to performing the 

experiment, as detailed in the classical book by 

Bernardo and Smith (1994). This approach provides a 

solution in terms of the posterior probability density 

function of the parameters of interest, given the model, 

the experimental result and our prior knowledge about 

the parameters. The posterior is obtained by multiplying 

the likelihood function of the model parameters by their 

prior probability densities, encoding for example our 

best guess of their values and the uncertainty about such 

values. Furthermore, as not all parameters are interesting 

for the user, in the Bayesian approach one integrates 

over all other (nuisance) parameters, in order to obtain a 

lower-dimensional (marginal) probability density. 

Sometimes, the need for multidimensional integration is 

a formidable obstacle to address. On the other hand, here 

we focus on problems for which the analytic solution is 

known for the (marginal) posterior. 

Number counting experiments are very commonly 

performed in science and industrial production, in the 

assumption that the order in which results appear does 

not matter. A common example is counting how many 

products, among a sample with fixed size, show some 

defect. This is described by the binomial model, arising 

when one investigates about the efficiency of a given 

selection process. Another way of checking for defects is 

to count how many products are not acceptable in a 



Diego Casadei / American Journal of Engineering and Applied Sciences 2015, 8 (4): 730.735 

DOI: 10.3844/ajeassp.2015.730.735 

 

731 

certain amount of time. In this case one has the Poisson 

model, describing how often a given outcome may show 

up, in the assumption that each occurrence is 

independent from the others. 

Here we provide analytic solutions for the Bayesian 

inference for binomial and Poisson models, in case some 

or no prior information is available about the parameter 

of interest. The analytic solution is easy to find and only 

requires to encode the prior information into a density 

belonging to the class of conjugate priors to the 

considered model. In this case, the posterior also belongs 

to the same class and the posterior parameters are simple 

functions of the initial parameter values and of the 

measured data. With large samples, the posterior peak 

(i.e., the posterior mode) coincides with the maximum-

likelihood solution. However, with small samples the 

two methods give different estimators. 

The Binomial Model 

Let’s assume that we examine a set of n products and 

select k defective items among them. Our goal is to 

estimate the probability ε that the production process is 

imperfect. Alternatively, we can interpret ε as the 

selection efficiency. The probability model is given by 

the binomial distribution: 

 

( | ) (1 )k n k
n

P k ,n =
k

ε ε ε − 
− 

 
 (1)  

 

When both k and n are large and the observed 

frequency f = k/n is far from zero and one, the efficiency 

is well estimated by the frequency, which is also the 

Maximum Likelihood Estimator (MLE): ε ≃ k/n. In this 

case, the variance of the MLE is given by the Cramér-

Rao lower bound: V = ε(1 – ε)/n. However ε is unknown, 

hence one needs to replace it with its estimator f, 

obtaining V = k(n – k)/n
3
. The square root of this 

expression provides the very widely (ab)used value 

for the standard deviation of ε. One clear problem 

with this expression for the variance is that, when k = 

0 or k = n, one gets the same dispersion (zero) 

independently from the sample size. However, one 

intuitively expects that counting 0 defective items out 

of 10 products is not as “precise” as counting 0 

defective items out of 100 products. Anyway, this is 

not the only limitation of this approximation. 

We emphasize again that using the MLE and the 

approximate value of the Cramér-Rao lower bound to 

represent the efficiency and its variance is good only if 

the conditions stated above hold: Both k and n must be 

large and f must be far from zero and one, in the sense 

that f has to be several standard deviations away from 

the boundaries. The reason is that such approximation 

holds when the likelihood function, that is Equation 1 

when considered a function of ε for given k and n 

(instead of the probability of k for given ε and n), is 

Gaussian. On the other hand, a Gaussian is defined over 

the entire real line, whereas the likelihood is defined 

for ε in the range [0,1]. Hence it is clear that the 

Gaussian approximation only works well if it is very 

narrow (small variance), compared to the distance of 

the peak to the nearest boundary. 

When the probability ε is very small, which is 

hopefully the case when dealing with defective products, 

a precise measurement is hardly feasible, as it would 

require a very large sample size n. This may be a 

problem, for example when the inspection process 

prevents the item to be commercialized, or when the 

inspection itself is expensive. At the same time, if the 

sample is small we cannot pretend the data to “speak by 

themselves”, such that our inference will depend also on 

whatever additional source of information is available 

beyond the experimental outcome. The smaller is n, the 

larger is the importance of such auxiliary information. 

For example, at the limit of n = 0 the latter completely 

dominates. For this reason, it is fundamental to work 

within a framework that allows for a coherent treatment 

of all sources of information, including the experimental 

outcome and any prior knowledge, for example coming 

from a previous test or analysis. 

This motivates our choice of the Bayesian paradigm, 

in which the posterior probability density p(ε|k,n) is 

obtained from the Bayes’ theorem as follows: 

 

( | ) ( | ) ( )p k,n P k ,n πε ε ε∝  (2) 

 

where, π(ε) is the prior probability density of ε, the 

likelihood function is given by Equation 1 and the 

proportionality sign means that the normalization 

constant (the inverse of the integral of the r.h.s.) is not 

explicitly given by Equation 2. This is not a problem in 

general, because the posterior density can be normalized 

to one after having computed (possibly by numerical 

methods) the product on the r.h.s. of (2). 

Numerical methods are not required, if the prior 

density is chosen among the family of conjugate priors 

to the binomial model. This is the class of Beta 

distributions: 

 
1 1

Be( | ) (1 ) / ( )
a b

x a,b = x x B a,b
− −−  (3) 

 

where, the normalization factor is given by Euler’s Beta 

function: 

 

( ) ( ) ( ) / ( )B a,b = a b a + bΓ Γ Γ  (4) 

 

When the prior density belongs to the family of 

conjugate priors, also the posterior belongs to the same 
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family. For the binomial model, by choosing π(ε) = 

Be(ε|a,b) the posterior resulting from Equation 2 is: 
 

( ) ( )| ,  Be | , –p k n k a n k bε ε= + +  (5) 

 
In particular, the posterior expectation is: 

 

[ ] ( ) ( )E /k a n a bε = + + +  (6) 

 
and, when both k+a >1 and n–k +b >1, the posterior 
mode (i.e., the peak position) is: 
 

[ ] ( ) ( )m – 1 / – 2k a n a bε = + + +  (7)  

 
Finally, the posterior variance is: 

 

V[ε]=
(k +a)(n− k +b)

(n+a+b)
2
(n+a+b+1)

 (8) 

 
When the prior information about ε is summarized by 

its prior expectation E and variance V, the prior Beta 

parameters can be determined with the method of 

moments, by requiring that: 

 

2

/ ( )

( ) ( 1)

E = a a +b

ab
V =

a +b a +b +







 (9)  

 

and by solving for a and b.  

When there is no prior information beyond the 

knowledge of the binomial model itself, one should use 

the reference prior π(ε) = Be(ε|0.5,0.5), obtaining the 

reference posterior p(ε|k,n) = Be(ε|k+0.5,n–k+0.5) as 

described by Casadei (2012a). The reference posterior 

expectation, mode and variance are then: 

 

[ ] ( ) ( )E  0.5 / 1k nε = + +  (10) 

 

m ε = k –  0.5( ) / n –1( )   (only for k > 0 and n > k)  (11) 

 

2

( 0.5)( 0.5)
V[ ]

( 1) ( 2)

k + n k +
=

n + n +
ε

−
 (12) 

 

It is easy to notice that E[ε] and m[ε] given by 

Equation 10 and 11 “bracket” the MLE estimator k/n of 

ε, with a difference that goes to zero for increasing n. If 

one has to report a single “best” value for the efficiency, 

it is recommended to provide m[ε], the most probable 

value (unless it is not defined, in which case one should 

report E[ε] and comment about the absence of a peak). 

On the other hand, if the efficiency is needed for further 

computation, where the uncertainty is going to be 

computed following the classical recipe for the 

“propagation of errors”, then the best value is the 

expectation E[ε], together with the variance from 

Equation 12. One may notice that the latter is never 

zero and it decreases with increasing n, whatever is 

the value of k. Thus, it is more “natural” to use than 

the formula obtained in the Gaussian approximation, 

which is valid only in the asymptotic regime (in which 

the two expressions give the same numerical value). 

Additional details can be found in Casadei (2012a) 

and references therein. 

The Poisson Model 

Another way of investigating about production errors 

is to ask how often a defective item is produced. A 

measurement is performed by counting how many 

objects show problems in a given amount of time. 

Assuming that defects are not statistically correlated, the 

probability of counting m items when µ is the unknown 

expectation is given by the Poisson distribution: 

 

( ) – –| e / !µ mP m µ µ m=  (13) 

 

As E[m] = V[m] = µ, the most natural estimate of 

the unknown parameter µ is given by the observed 

number of events and its square root is typically used as 

its standard deviation. Indeed, this is the most common 

practice. However, there are subtleties here that should 

not be overlooked. The Poisson distribution is 

asymmetric, unless the value of the parameter µ is 

large, when it can be well approximated by a Gaussian 

distribution (already good when µ>30). However the 

latter is a continuous distribution defined over the 

whole real line, whereas the former is a discrete 

distribution defined on all non-negative integers. Even 

when Equation 13 is considered as a function of µ at 

fixed m, i.e., when it expresses the likelihood function, 

it is significantly asymmetric unless m is large. Indeed, 

µ is a non-negative real number, hence a Gaussian 

provides a good approximation only when its peak is 

several standard deviations away from zero. This 

condition is never met for low counts, hence again we 

need a paradigm in which the impact of prior 

information is explicitly taken into account. 

The Bayesian solution to the inference problem about 

µ is represented by the posterior density: 

 

( | ) ( | ) ( )p µ m P m µ π µ∝  (14) 

 

where, π(µ) is the prior probability density of µ and the 

likelihood function is given by Equation 13. Once again, 

we have left the normalization constant unspecified, as it 

can be computed once the product on the r.h.s. of 

Equation 14 is known, by requiring that the integral over 

the positive real line is equal to one. 
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By choosing a conjugate prior for µ, we obtain the 

posterior easily, without the need for numerical 

integration. For the Poisson model, the conjugate family 

contains all Gamma densities with shape parameter a >0 

and rate parameter b >0: 

 
1Ga( | ) / ( )a a bxx a,b = b x e a− − Γ  (15) 

 

When the number of items m is known from the 

measurement and the prior for µ is Ga(µ|a,b), the 

posterior in Equation 14 has the following explicit form: 

 

( ) ( )| Ga | ,1p µ m µ m a b= + +  (16) 

 

with posterior expectation and variance: 

 

[ ] ( ) ( )E / 1 µ m a b= + +  (17) 

 

[ ] ( ) ( )2
V / 1 µ m a b= + +  (18) 

 

The difference with the approximation mentioned 

earlier, E[m] = V[m] = µ, becomes negligible for very 

large values of m, but it is clear that for small counts the 

impact of the prior information is important. Such 

information may come from another test or analysis. 

In the simple but frequent case in which the prior 

knowledge about µ is summarized by its prior 

expectation E and variance V, the Gamma parameters 

are determined with the method of moments by 

imposing E = a/b and V = a/b
2
. This gives b = E/V and 

a = bE. Alternatively, one could start from the prior 

most probable value [the Gamma mode is at the point 

(a-1)/b for a >1] and variance, or from the knowledge 

of intervals covering given prior probabilities (e.g., 

68.3% or 95% probability; but this requires a 

numerical treatment to find a and b), or from any set 

of conditions which is sufficient to determine the 

shape and rate parameters. 

When there is no prior information beyond the 

knowledge of the Poisson model itself, one should use the 

reference prior π(µ) = Ga(µ|0.5,0), obtaining the reference 

posterior p(µ|m) = Ga(µ|m+0.5,1). The reference posterior 

expectation, mode and variance are then: 

 

[ ] ( )E 0.5µ m= +  (19) 

 

[ ] ( )m – 0.5  if  1µ m m= ≥  (20) 

 

[ ] ( )V 0.5µ m= +  (21) 

 
The variance is a bit larger than the approximation 

discussed above, which is thus a bit optimistic. However, 

the difference in the uncertainty (the square root of the 

variance) is not very significant, apart for very small 

counts m. At the same time, the variance from Equation 

21 is never zero, even when zero counts are observed. 

This makes sense, as counting no event brings real 

information and is not equivalent to performing no 

experiment. The approximated variance instead is zero if 

m = 0, implicitly stating that there is no expected rate (as 

E[µ] = 0 in this approximation) with perfect certainty, 

which clearly makes no sense. On the other hand, the 

small bias of the reference posterior expectation given by 

Equation 19 for the measurement m = 0 gives an 

estimate of µ = 0.5 with standard deviation 0.7 (please 

note that writing µ = 0.5±0.7 makes no sense here, as the 

Poisson distribution is very asymmetric for small µ and 

no negative value is allowed for µ), i.e., it points to a 

non-null expected rate even if no counts are observed, 

although with a very large uncertainty. 

Sometimes, the identification of defective objects is a 

procedure with some non-zero false-positive rate. 

Assuming no correlation between detection of false-

positive and truly defective items, the model is a Poisson 

process with parameter (µ + ν) given by the sum of the 

expected number µ of truly defective items and the 

expected number ν of false-positives. The joint posterior 

for µ and ν is then Equation 22: 
 

( )
( | ) ( ) ( )

!

n
µ µ+

p µ, n s π µ π
n

ν ν
ν ν− −∝  (22) 

  
where, π(µ) and π(ν) are the prior densities. 

As we are interested only into µ, we shall integrate 

over the nuisance parameter ν. This can be done on the 

r.h.s. of Equation 22 leaving π(µ) out of the integral. 

This reduces the inference problem to a 1-dimensional 

problem with (marginal) posterior: 
 

( )
( | ) ( ) ( ) d

!

n
µ µ+

p µ n π µ s π
n

ν ν
ν ν− −∝ ∫  (23) 

 
where, the integral defines the marginal model p(n|µ). 

Assuming some prior knowledge of the expected 

number ν of false-positives, encoded into a Gamma 

prior with the form π(µ) = Ga(µ|a,b), the integral in 

(23) can be computed analytically as shown by 

Casadei (2012b). The result is Equation 24: 

 

( | ) ( )
1

a

µb
p n µ = e f µ;n,a,b

+b

− 
 
 

 (24) 

 

where the polynomial: 

 

0

1
( )

( )!(1 )

[( 1) ] ( , 1,( 1) ) / !

n kn

k
k=

n a

a k µ
f µ;n,a,b

k n k + b

x b x U a a n b x n

−+ − 
=   − 

= + + + +

∑
 (25) 
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behaves as (µ+a/b)
n
 when both a and b are very large 

while their ratio a/b remains finite. The last equality is 

obtained by Wolfram’s Mathematica version 10.1 and 

features the confluent hypergeometric function of the 

second kind U(a,b;z). 

If there is prior information about µ encoded into a 

Gamma density of the form π(µ) = Ga(µ|A,B), the 

marginal posterior in Equation 23 can be computed 

analytically and has the form of a weighted average of 

n+1 Gamma densities. Its explicit form is provided in 

appendix B of Casadei (2014). 

When there is no prior information about µ beyond 

the knowledge of the probability model, the use of the 

reference prior for µ computed by Casadei (2012b) is 

encouraged. Although also in this case the analytic 

solution for the reference (marginal) posterior is known 

and at least one implementation is freely available in 

the Bayesian Analysis Toolkit (BAT; Caldwell et al., 

2009), the solution involves some numerical 

computation because it is not expressed in closed form in 

terms of known functions. On the other hand, Casadei 

(2014) has shown that an approximate reference prior can 

be used, which differs only a bit from the full reference 

prior and is very quick to compute. It corresponds to the 

limit of perfect prior knowledge about the nuisance 

parameter ν and has the form: 
 

0
0

0

( )µ
µ

ν
π

ν
=

+
 (26) 

 

where ν0 is the prior expectation for ν. In this case, the 

approximated reference posterior is a truncated 

Gamma density: 

 

0 0

1
( | ) Ga( | 0.5,1)p µ n µ n

C
ν= + +  (27) 

 

and the normalization constant C is expressed in terms of 

the regularized Gamma function (Casadei, 2014): 

 

( 0.5,1)
1

( 0.5)

n
C

n

γ +
= −

Γ +
 (28) 

 

although C may be also computed numerically from 

Equation 27. 

Discussion 

We have addressed two models that have wide 

applicability. The binomial model describes all selection 

processes without memory, that is with the assumption 

that different occurrences of the desired phenomenon are 

statistically uncorrelated. It also applies to any binary 

classification scheme, with the same assumption. Thus, it 

can describe the result of a screening process of a 

production chain, as well as the selection of particular 

physical processes happening in particle collisions. The 

other model is described by the Poisson distribution, 

which describes the probability of counting a certain 

number of events in an experiment in which the expected 

yield is given. Once again, this model holds when there 

is no memory, i.e., when each occurrence happens 

randomly. A typical example is the number of 

radioactive decays in a given observation time, when the 

decay rate is known. Here we considered an example in 

which the number of defective products is counted in a 

certain amount of time. 

A parametric probability model like the binomial or 

the Poisson distribution gives the probability of counting 

a certain number of events when the parameters are 

known. On the other hand, when performing an 

experiment one typically wants to infer about the values 

of the parameters, once the observed number of events is 

known. Often the asymptotic form of the likelihood 

function is exploited, in order to provide easy recipes to 

estimate the parameters. However, when the actual 

count of events is not very large, the departure of the 

likelihood from the Gaussian distribution becomes 

important. Furthermore, at very low (and possibly zero) 

counts such asymptotic approximation completely 

break apart, giving absurd results. We can overcome 

this problem by addressing statistical inference in the 

Bayesian framework, in which the auxiliary 

information available prior to performing the 

experiment is explicitly and quantitatively taken into 

account. The result of the inference is encoded into the 

posterior probability density of the parameters of 

interest, which is valid for any observed number of 

counts, even when observing no count at all. 

Historically, although the Bayesian approach was 

the first to be proposed in the attempt to solve 

“inverse probability” (i.e., statistical inference) 

problems, the need for multidimensional integration 

prevented the systematic application of these methods. 

In practice, they have been replaced by the maximum-

likelihood approach until recent times, because it 

requires to find (local) extrema of a multidimensional 

function, a much simpler computational problem than 

integration. Today we have powerful computers and 

sophisticated algorithms that allow for numerically 

solving complex multidimensional integrations. 

Despite from the availability of several software 

packages that are able to implement such numerical 

methods, it is still remarkable that analytic solutions 

exist for a number of widely applicable models. They 

require basically no CPU time in modern computers 

and can be implemented in different programming 

languages without much effort. This advantage also 
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characterizes the solutions that we have proposed for 

the binomial and Poisson models. 

When speaking about Bayesian methods, one cannot 

avoid to discuss the choice of the prior distribution. 

The first thing to notice is that classical methods 

based on maximum-likelihood or profile likelihood 

approaches are actually not free from “priors”: 

Although they are not called with this name, they still 

feature in such methods in the form of constraints on 

the model parameters that reflect our knowledge of 

their domain, “best” or “typical” value and 

uncertainty. Next, one should realize that the two 

most widely (ab)used priors, the (truncated) Gaussian 

and the flat distribution, are not always a good choice. 

The Gaussian is typically taken as “the” informative 

prior, also when its domain clearly does not match the 

domain of the parameter of interest (think for a moment 

about the efficiency ε of a binomial model, defined in 

[0,1]). When this happen, it is clear that it has to be 

truncated on one or both sides. Strictly speaking, this 

makes its peak different from the mean and its “sigma” 

parameter different from its standard deviation (although 

almost nobody seems to pay attention to this fact in 

practice). When the Gaussian is a good approximation 

(which does happen in many cases), it still requires 

numerical methods to compute the posterior density. 

Given that the analytic solution is readily available in the 

models considered here, it seems absurd to adopt a 

Gaussian in place of the conjugate prior (Beta density for 

the binomial model; Gamma for Poisson), even when the 

latter closely mimics a Gaussian. 

On the other hand, the flat prior is typically chosen as 

“non-informative” prior. The sole advantage of this 

choice is that the value of the posterior mode becomes 

identical to the maximum-likelihood estimator in this 

case (but their interpretation is different). However, one 

must be aware that, for the models considered here, the 

uniform prior is not well justified. For the binomial 

model, it is actually an informative prior (the non-

informative choice being the reference prior). Anyway, 

as the flat distribution is Be(x|1,1), the Beta posterior 

computed with the uniform prior has parameters that 

differ only by half unit from those of the reference 

posterior. In many cases, the difference is small and can 

be neglected for practical purposes. On the other hand, 

the situation is very different for the Poisson model. As 

its parameter is defined over the positive real line, its 

domain is unbounded on the right and the flat prior is not 

normalizable. Thus, it can not represent an informative 

prior. At the same time, it is not the same as the 

reference prior, which is allowed to be an improper 

density, because it is only a mathematical tool that 

allows to obtain the reference posterior, defined as the 

posterior that maximizes the amount of missing prior 

information. This means that there is no mathematical 

justification for the use of a flat prior in the Poisson 

model: strictly speaking, it is forbidden because it is 

mathematically ill-defined. 

Conclusion 

In conclusion, for both binomial and Poisson models, 

if we encode the prior information into a density 

belonging to the conjugate family, we obtain the analytic 

form of the posterior density for the parameter of 

interest. This is true both in case of prior information 

about such parameter and in case of no additional 

information beyond the knowledge of the probability 

model. In the latter case, the reference posterior should 

be used (or perhaps a good approximation to it, when 

this simplifies the problem significantly, without 

noticeably affecting the result). 
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