
 

 
 © 2015 De Z. Li, Wilson Wang and Fathy Ismail. This open access article is distributed under a Creative Commons 

Attribution (CC-BY) 3.0 license. 

 American Journal of Engineering and Applied Sciences  

 

 

Original Research Paper 

An Evolving Autoregressive Predictor for Time Series 

Forecasting 
 

1
De Z. Li, 

2
Wilson Wang and 

1
Fathy Ismail

 

 
1Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Canada 
2Department of Mechanical Engineering, Lakehead University, Thunder Bay, Canada 

 
Article history 

Received: 02-09-2014  
Revised: 03-09-2014 
Accepted: 21-02-2015 
 
Corresponding Author: 
De Z. Li 
Department of Mechanical 
Engineering, Lakehead University, 
Thunder Bay, Canada  
Email: d45li@uwaterloo.ca 

Abstract: Autoregressive (AR) model is a common predictor that 

has been extensively used for time series forecasting. Many training 

methods can used to update AR model parameters, for instance, least 

square estimate and maximum likelihood estimate; however, both 

techniques are sensitive to noisy samples and outliers. To deal with 

the problems, an evolving AR predictor, EAR, is developed in this 

study to enhance prediction accuracy and mitigate the effect of noisy 

samples and outliers. The model parameters of EAR are trained with 

an Adaptive Least Square Estimate (ALSE) method, which can learn 

samples characteristics more effectively. In each training epoch, the 

ALSE weights the samples by their fitting accuracy. The samples 

with larger fitting errors will be given a larger penalty value in the 

cost function; however the penalties of difficult-to-predict samples 

will be adaptively reduced to enhance the prediction accuracy. The 

effectiveness of the developed EAR predictor is verified by 

simulation tests. Test results show that the proposed EAR predictor 

can capture the dynamics of the time series effectively and predict 

the future trend accurately. 

 

Keywords: Autoregressive Model, Boosting, Adaptive Least Square 

Estimate, Time Series Forecasting 

 

Introduction  

Time series forecasting is a process to extract features 

from available data that rule the trend of the data and 

forecast future data based on the extracted features. It has 

enormous real world applications, such as electric load 

prediction (Quan et al., 2013; Goude et al., 2014), financial 

indices forecast (Li et al., 2013a; Yu et al., 2009) and 

machine health condition monitoring (Wang, 2013). 

Some commonly used prediction tools are 

Autoregressive (AR) models, Autoregressive-Moving-

Average (ARMA) models (Brockwell and Davis, 2009), 

Neural Networks (NNs) (Li et al., 2014a; 2013b; 2014b) 

and particle filtering (Li et al., 2014c). The NNs can 

capture data features through a training stage and 

conduct time series prediction based on the extracted 

features; however, they suffer from opaque modeling 

mechanism. AR is more compact than ARMA and it 

does not have estimation errors that result from the 

moving average part in ARMA. 

The boosting technique is an ensemble learning 

method, which combines weak learners to improve the 

training accuracy whereby each weak learner 

addresses one particular data property (e.g., the data 

distribution). Boosting techniques are mainly used in 

pattern classification (Cao et al., 2012; Schapire and 

Singer, 1999). In time series forecasting, the boosting 

techniques have also been employed to improve 

prediction accuracy (Drucker, 1997). A boosting 

technique can also be used as a training method to 

optimize model parameters. An Evolving AR (EAR) 

predictor is proposed in this study for time series 

forecasting. The EAR has the generic AR model 

structure; however, it uses an Adaptive Least Square 

Estimate (ALSE) method to train model parameters. 

Some samples are hard to learn because they are noisy 

samples or outliers. If more effects are put to correctly 

learn these hard-to-learn samples, the prediction 

accuracy of the already well learnt samples will drop 

and the training process will suffer from the 
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“overfitting” problem. The hard-to-learn samples are 

detected and their penalties are reduced in the 

proposed EAR to improve generalized prediction 

performance. The effectiveness of the proposed EAR 

predictor is verified here by simulations. 

The remainder of this paper is organized as follows: 

Section 2 presents the theoretical foundation of the 

proposed EAR predictor. In section 3, the effectiveness 

of the proposed EAR predictor is examined by 

simulation tests. Some concluding remarks of the study 

are given in section 4. 

The Proposed Evolving AR Predictor 

The EAR predictor assigns penalties to samples at 

each training epoch according to their fitting errors. 

The model parameters can be updated adaptively with 

respect to different samples penalties so as to improve 

prediction accuracy. Those hard-to-learn samples may 

distort the training process, so their penalties will be 

reduced in EAR. The proposed EAR technique is 

given as follows. 

EAR Model Structure 

Consider the training data sets u(k): 
 

1,  2,  ,k K= …  
 
where, K is the number of samples in the training data 

set. For s-step-ahead prediction, the training data set can 

be re-arranged as input vector x(i) = [u(i), u(i +1), …, u(i 

+ d-1)] and the output y(i) = u(i + d + s-1); i = 1, 2, …, 

N, where N = (K-d-s +1). d is the dimension of the input 

vector x(i). 

The EAR model has the form of: 
 

1 2 1
( ) ( 1) ( 2) ... ( 1)
t r
p i u i u i u i r

−

= Θ − + Θ − + + Θ − +  (1) 

 

where, Θi are linear parameters; i = 1, 2, …, r -1. 

Equation 1 can also be written in the following matrix 

form Equation 2, 3 and 5: 
 
Y X= Θ  (2) 
 

Where: 
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where, Nt is the number of system state u. 

Parameter Estimation Using ALSE 

The linear parameters increment θt of the EAR 

predictor at t
th
 training epoch can be derived using the 

weighted least square estimate, WLSE: 

 
1( )T T

t
X WX X WYθ

−

=  (6) 

 

The weight matrix W is represented by Equation 7: 

 

(1) 0 0

(2) 0

0

0 0 ( )

t

t

t

V

V
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⋮ ⋯
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⋯

 (7) 

 

where, N = Nt-r-s+1 and Vt(i) represent the penalties of 

sample i at training epoch t.  

Formulation of Sample Penalties 

In the proposed EAR, the penalties of sample i at 

training epoch one is set as 
1

1
( )V i

N
= , where N is the 

number of samples. Given the penalties Vt, the update 

of the penalties at step t+1 will be performed by 

Equation 9: 

 

( )
1

( )exp ( ) ( ) ( )
( )

t t d t t

t

t

V i y i p i i
V i

Z

β ω

+
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t d t tt

T

tt
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N Z

β ω
=

=

 − − − 
=

∑

∏
 (9) 

 

where, yd are the desired values; pt are the predicted 

values using Equation 1; βt is the learning rate of the tth 

parameter update epoch; ωt(i) is the weight regulator to 

reduce the penalties of hard-to-learn samples; 

( )
1

( )exp ( ) ( ) ( )
N

t t t d t ti
Z V i y i p i iβ ω

=

 = − − − ∑  is a 

normalization factor. 

The EAR model parameters in Equation 4 at step T 

are obtained from Equation 10: 

 

1

T

T t tt
βθ

=

′Θ =∑  (10) 
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where, θt is the linear parameter increment. The 

predicted values of EAR at step T are formulated as 

Equation 11: 

 

 
1

1

T T

T

t tt

T

t tt

P X

X

p

βθ

β

=

=

= Θ

′=
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∑
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where, 

1

t

t T

tt

β
β

β
=

′ =

∑
 are the normalized learning rates. 

Calculation of βt 

Let vt = |yd(i)-pt(i)|-ωt(i) with vt∈[0, Mt], where Mt is 

the maximum value of |yd(i)-pt(i)| and 
1

( ) ( )
N

t t ti
V i v iλ

=

=∑ . 

The upper bound of Zt can be derived as: 
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Let 0

t

U

β

∂
=

∂
 and the learning rate at step t will be: 

 

1
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2

t t

t

t t t

M

M M
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Substituting Equation 13 into Equation 12, the 

minimum upper bound of Zt can be derived as 

Equation 14: 

 

2

1 t

t

t

Z
M

λ ≤ −  
 

 (14) 

 

Since 0
t t

M λ≥ ≥ , then 
2

1 1t

t
M

λ − ≤ 
 

. 

Mean Absolute Training Error 

Since 0
t

β ≥ ,
1

1
T

tt
β

=

′ =∑ , 0
t

β ′ ≥ ,
11
( ) 1

N

Ti
V i

+
=

=∑ , 0
t

λ ≥  

and the final ensemble prediction 
1

( ) ( )
T

t tt
P i p iβ

=

′=∑ , the 

Mean Absolute Error (MAE) of the training data can be 

determined by Equation 15-18, 21, 23 and 24: 
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To satisfy Equation 19, 
t t

β β′ ≤  or 
1

1
T

tt
β

=

≥∑  should 

be satisfied. If T is sufficiently large, then 
1

1
T

tt
β

=

≥∑ . 

Equation 20 can be satisfied when 

[ ]
1

( ) ( ) 0,0.567
T

t d tt
y i p iβ

=

− ∈∑ . This condition can be 

satisfied by properly scaling the training data. To satisfy 

Equation 22, ( ) 0,
t
iω ≥  which will be shown in the 

following subsection. Therefore, the minimization of the 

training MAE is equivalent to minimizing
1

T

tt
Z

=
∏ , or 

minimizing Zt at each step t. 

Given
2

1 1t

t
M

λ − ≤ 
 

, the upper bound of training 

MAE can be given as: 

 

 
2

1 1
1

T T
t

tt t
t

MAE Z
M

λ
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 ≤ ≤ −  
 

∏ ∏  (25) 

 

Therefore, as more training epochs are used, the 

upper bound of the training MAE decreases. 

Weight Regulator 

Some samples may be noisy samples or outliers, 

which may mislead the training process and degrade the 
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prediction accuracy. The following equation can be used 

to detect these irregular samples Equation 26: 

 

1
( ) ( ) ( )

t

t t d tt
i y i p iπ β

=

′= −∑  (26) 

 

By summing up the previous weighted errors, the 

samples can be ranked according to their difficulty levels 

in learning. Then the weight regulator can be computed 

from Equation 27: 

 

1
( ) exp ( ) t

t t

t

M
i i

α

ω π
γ η

 
=  

 
 (27) 

 

where, sup( ( ))
t t

iη π= . It can be shown that ( ) 0
t
iω ≥ . 

By applying the weight regulator to the sample 

penalty update as shown in Equation 8, the hard-to-

learn samples can be identified and their penalties will 

be reduced to improve generalized prediction 

accuracy. 

Implementation of the EAR Predictor 

The proposed EAR predictor is implemented using the 

following steps: 

 

• Normalize the data over a proper range (e.g., [0, 1]), 

so that constraints can be satisfied 

• Initialize the penalties of the training data set 

1

1
( ) ; 1,  2, ,V i i N

N
= = …  

• Derive the parameter increment θt using Equation 6 

with the penalties Vt  

• Compute the sum of weighted absolute error 

( )
1

( ) ( ) ( ) ( )
N

t t d t ti
V i y i p i iλ ω

=

= − −∑ , where yd are the 

desired values and pt are the predicted values using in 

Equation 1 

• Calculate the learning rate of the t
th
 training epoch, 

1
ln

2

t t

t

t t t

M

M M

λ
β

λ

 +
=  

− 
 

• Update the penalties of the training samples, 

( )( )
1

( )exp ( ) ( ) ( )
( )

t t d t t

t

t

V i y i p i i
V i

Z

β ω

+

− − −

= , where 

( )( )
1

( )exp ( ) ( ) ( )
N

t t t d t ti
Z V i y i p i iβ ω

=

= − − −∑  is a 

normalization factor 

• Repeat steps 3 to 6 at t = 1, 2, …, T 

• Formulate the final EAR model 

parameters
1

T

T t tt
βθ

=

′Θ =∑ , where 

1

t

t T

tt

β
β

β
=

′ =

∑
 are 

normalized learning rates 

Performance Evaluation 

To verify the effectiveness of the proposed EAR 

predictor, simulation tests are conducted to examine its 

prediction performance. The AR model with the same 

structure as EAR, but trained by Kalman-filter-based 

Maximum Likelihood Estimate (MLE) (Hevia, 2008), 

AR-MLE, is used for comparisons. To satisfy 

constraints, the data sets used in this section are 

normalized over the range of [0, 1]. Test results, 

however, are shown in their original scales. 

The Mackey-Glass data set (Farmer, 1982; Li and 

Wang, 2011; Wang et al., 2012) is a commonly used 

simulation data set in the field of time series forecasting 

to compare the performance of predictors, due to its 

specific properties such as chaotic, non-periodic and 

non-convergence, it is given by: 

 

10

( ) 0 2 ( )
0 1 ( )

1 ( )

dz t . z t
. z t

dt z t

ϖ

ϖ

−

= −

+ −

 (28) 

 

In this simulation test, the data set is obtained from 

Equation 28 with the initial conditions of τ = 30, x(0) = 

1.2, dt = 1 and x(t) = 0 for t<0. About 500 samples are 

selected for training and 50 samples for testing. One-

step-ahead forecasting is conducted in the Mackey-Glass 

data prediction tests. To test the noise tolerance of the 

two predictors, noisy samples are intentionally added to 

the Mackey Glass training data; the red circled samples 

at time step 20, 100, 135, 215, 345, are shown in Fig. 1. γ 

is given the value of 2; α is given the value of 1. 

The training MAE convergences of EAR(3), EAR(6) 

and EAR(9) are shown in Fig. 2. It is seen from Fig. 2 

that the training MAEs decrease as more training epochs 

are used, which agrees with Equation 25. Figure 3a 

demonstrates the training data fitting and Fig. 3b shows 

the prediction performance. From Fig. 3b, it is seen that 

the EAR predictor outperforms AR-MLE, because EAR 

predictor can detect and process noisy samples to 

alleviate the noisy sample misleading effect. 

The training MAEs and test MAEs of the two 

predictors with respect to model orders of 3, 6 and 9 are 

listed in Table 1; their corresponding training RMSEs 

and test RMSEs are given in Table 2. 100 training 

epochs are used in the EAR. From Table 1 and 2, it is 

seen that the training errors of EAR decrease as the 

model order increases, because a larger model order 

indicates more information is input to the predictor for 

processing and the predictions become more accurate. 

From Table 2, the training RMSEs of the proposed 

EAR are larger than those of AR-MLE, because EAR 

reduces the penalties of noisy samples to improve the 

generalization capability of the predictor. Consequently, 

training errors at noisy samples are large, which leads to 

larger EAR training RMSE. 
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Fig. 1. The Mackey Glass training data with artificial noisy samples (red circled samples) 

 

 

 
Fig. 2. The training MAE of EAR(3) (black solid line), EAR(6) (brown dash-dotted line) and EAR(9) (red dotted line), 

corresponding to different number of training epochs 

 

       
 (a)  (b) 

 
Fig. 3. The performance of (a) training data fitting and (b) test data prediction. The black solid line is the real data; the brown dash-

dotted line represents AR(5)-MLE; the red dotted line represents EAR(5) with 100 training epochs 

 
Table 1. MAEs of AR-MLE and EAR predictors in terms of Mackey-glass data 

 AR-MLE  EAR 

Predictor ------------------------------------------------------- --------------------------------------------------- 

model order Training MAE Test MAE Training MAE Test MAE 

3 0.0670 0.0449 0.0545 0.0327 

6 0.0657 0.0437 0.0515 0.0279 

9 0.0632 0.0386 0.0506 0.0269 

 

Table 2. RMSEs of AR-MLE and EAR predictors in terms of Mackey-glass data 

 AR-MLE  EAR 

Predictor ------------------------------------------------------ ------------------------------------------------------ 

model order Training RMSE Test RMSE Training RMSE Test RMSE 

3 0.1505 0.0542 0.1589 0.0393 

6 0.1497 0.0534 0.1576 0.0342 

9 0.1478 0.0494 0.1553 0.0340 
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In terms of test MAEs and test RMSEs, Tables 1 and 

2 show that the EAR predictor outperforms AR-MLE at 

all three model orders. This better performance of EAR 

is attributed to its improved training technique and 

effective noise tolerance mechanism. 

Conclusion 

An evolving AR predictor, EAR, has been developed 

in this study for time series forecasting. The EAR can 

gradually learn the training data characteristics with 

more training epochs and accurately forecast the future 

states of a dynamic system. The noisy samples are 

addressed using a weight regulator to reduce their 

misleading effect in training. The effectiveness of the 

proposed EAR predictor is verified using Mackey-

Glass simulation examples. Test results have shown 

that the EAR predictor can effectively capture the 

dynamic behaviour of a time series and predict its 

future states accurately. 
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