
 

 
© 2015 Margherita Pettinato, Debolina Mukherjee, Silvestro Andreoli, Eros Rosalbino Minardi, Vincenza Calabro, Stefano 
Curcio and Sudip Chakraborty. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 

license. 

American Journal of Engineering and Applied Sciences 

 

 

 

Original Research Paper 

Industrial Waste-an Economical Approach for Adsorption of 

Heavy Metals from Ground Water 

 
1
Margherita Pettinato, 

1
Debolina Mukherjee, 

1
Silvestro Andreoli, 

1
Eros Rosalbino Minardi, 

1
Vincenza 

Calabro, 
1
Stefano Curcio and 

1,2
Sudip Chakraborty 

 
1DIMES, University of Calabria, Cubo, 44a, 87036 Rende (CS), Italy 

2Department of Chemical Engineering, Jadavpur University, Calcutt-700032, India 

 
Article history 

Received: 25-01-2015 
Revised: 07-02-2015 
Accepted: 09-02-2015 
 
Corresponding Author: 
Eros Rosalbino Minardi 
DIMES, University of Calabria, 
Cubo, 44a, 87036 Rende (CS), 
Italy  
Email: sheepshn@aol.com 

Abstract: A by product from steel industry mainly known as blast furnace 

slag is a waste product which was tested for the removal of As(III), from 

ground water. Steel slag is a commercial waste material mainly consisting 

of SiO2, Al2O3 and CaO, the former two chemicals being major components 

of zeolites and the latter a major component of Hydroxyapatite (HAP). 

Arsenic is highly toxic, mobile and predominant species present in 

groundwater. Batch experiment was performed to determine the feasibility 

of steel industry waste as an adsorbent for treatment of heavy metal present 

in ground water at a wide range of pH 3-12. The results suggest that steel 

slag is a suitable candidate for As(V) remediation and economically viable 

to apply in the areas where cost of a purification process is high. 
 
Keywords: Heavy Metal, Industrial Waste, Arsenic, Ground Water 

Contamination, Kinetic Study 

 

Introduction 

Contamination of arsenic in ground waters has 
attracted worldwide attention. From many countries, 
incidents of arsenic contamination have been reported 
(http://phys4.harvard.edu/~wilson/arsenic_project_articl
es.html). Arsenic (As) is a highly toxic contaminant 
exists in our environment naturally as well as 
anthropogenic ally. Million of people are suffering from 
its contamination around the world, especially in many 
developing countries like Bangladesh, Nepal, India, 
China, Mongolia, Taiwan, Vietnam, Chile, Argentina, 
Romania (Feeney and Kounaves, 2000) etc. Due to the 
lack of low cost technology, the control of Arsenic 
contamination in developing countries has not yet been 
successful, which may create one of the most devastating 
situations in near future. There is an urgent need to find 
out low-cost, highly effective and sustainable technology 
to remove arsenic from the groundwater. To achieve 
that, the feasibility study of efficient and economical 
adsorbents made up of industrial materials such as 
blast furnace slag or steel slag will be utilized. In a 
recent article studied the systematic analysis of slag 
material mostly having oxides of calcium, iron, silicon 
and phosphorous. The equilibrium time is shown to be 
2 h and the removal capacity is 99% with adsorbent 
loading of 1.25 g L

−1
 under the experimental 

conditions (Chakraborty et al., 2013). Using Steel slag 

and other effective adsorbent for removal of the same 
should be considered as it is cheap as well as very 
effective. Some recent article has also mentioned the 
same concept of reducing the cost of the process as 
steel slag is cheaply available and is a waste product 
(Oh et al., 2012). The US Environmental Protection 
Agency (EPA) has recently announced the reduction 
of permissible values of arsenic in drinking water 
from 50 to 10 µg L

−1
 in the light of recent 

epidemiological evidence to support the carcinogenic 
nature of the ingested arsenic and its connection with 
liver, lung and kidney diseases and other dermal 
effects (EPA, 2001). Many groups are working on 
remediation technologies that will effect the reduction 
of arsenic to less than 10 µg L

−1
 levels, in a cost 

effective manner with ease of operation that can be 
adopted at community or house-hold levels (NSF, 
2015). Our main aim is to study the kinetic parameters 
of arsenic adsorbent with zero valent iron 
nanoparticle. The reason behind choosing this study is 
due to many different socio economic factors. Many 
different treatment technologies/methods including 
precipitation-coagulation, co-precipitation, ion 
exchange, electro-coagulation, oxidation and 
adsorption has already being used for as remediation. 
But out of them the adsorption method has received 
more attention due to its high efficiency and cost-
effectiveness and is considered the most suitable 
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technology for developing countries. Metal oxides and 
hydroxides of iron or alumina (Bissen and Frimmel, 
2003) are the most common adsorbents studied for the 
removal of as from water and wastewater. The steel 
slag is an industrial waste product contain iron nano-
particle which has high surface area. It is a waste 
materials and cheaply available from the steel 
industry. It will not only make the process greener but 
also lower the footprint in the environment. However, 
there is an urgent need to develop low-cost 
alternatives due to the arising serious problem of 
arsenic contamination in groundwater in many 
developing countries such as Bangladesh, India and 
Nepal. This is our motivation to do this study for the 
development of cost effective mechanism in respect to 
our country’s socio-economic conditions. 

Causes of Contamination 

Arsenic contamination of the groundwater is 
believed to be caused by the dissolution of geological 
deposits containing iron, which had trapped arsenic. In 
addition, environmental arsenic contamination from 
uncontrolled industrial discharges, use of arsenical 
pesticides/herbicides and power generation from coal 
or geothermal sources also contribute to the arsenic 
contamination (Oh et al., 2012). 

The biological effects of arsenic depend mainly on 
the chemical form in which the element is ingested, the 
route of entry, the dose and the duration of exposure. 
Inorganic As(III) and (V) are identified to be more toxic 
than its organic forms. The arsenic is built up through 
intake of food or potable water contaminated with 
arsenic. In water, arsenate is more prevalent in aerobic 
surface waters and arsenite is more likely to occur in 
anaerobic ground waters. 

Treatment Technology 

Variety of treatment technologies have been used for 
the removal of arsenic from water (Xu et al., 2002). The 

common methods adopted for arsenic treatment include 
(i) co-precipitation (using Fe2(SO4)3 or FeCl3); (ii) 
coagulation (with ferric or aluminium salts such as 
Al2(SO4)3·18H2O as coagulants); (iii) passing through 
activated alumina; (iv) ion exchange; (v) use of 
adsorption media like activated carbon, ferric oxide, 

titanium oxide, bone charcoal, iron oxide/MnO2 coated 
sands, cellulose materials (saw dust and news paper 
pulp), steel slag etc.; (vi) the use of zero valent iron 
http://www.sciencedirect.com/science?_ob=ArticleUR
L&_udi=B6TGF-4378T8B-
9&_user=1521315&_coverDate=06%2F29%2F2001&_

alid=223968761&_rdoc=6&_fmt=full&_orig=search&
_cdi=5253&_sort=d&_st=13&_docanchor=&_acct=C0
00053471&_version=1&_urlVersion=0&_userid=1521
315&md5=62e7ac04a33ae79c1e194e35f7c353ba in the 
presence of sulphate; and (vii) reverse osmosis and 
electrodialysis. 

Despite the fact that a variety of treatment methods are 

available, the efficiency of these methods is not 

completely known. Many of them have been reported to 

be capable of removing arsenic to levels lower than 

50 µg L
−1

. With the impending revision of the permissible 

levels to 10 µg L
−1

 or lower, it is necessary to investigate 

remediation approaches that would consistently provide 

drinking water with arsenic at less than 10 µg L
−1

 levels 

(http://phys4.harvard.edu/~wilson/arsenic-conf.html). 

This study describes the development of a 

remediation approach based on the using the steel slag. 

This approach is simple, cost effective and produces 

water with total arsenic concentration after some time 

and the value is close to 50 µg L
−1

. We have used 

artificially added arsenic with various concentrations 

throughout our investigations. 

Materials and Methods 

In this study the steel slag comes from the Pohang 

Steel Industry. It was treated with hydrogen peroxide at 

60°C for 24 h to oxidize the adhering organic matter 

before use. In our work we use H2O2 instead of other acids 

such as H2SO4 or HNO3. If we see the reaction mechanism 

clearly we can see that there is a formation of Fe
2+

 and 

H2O2 on the corroding Fe
0
 surface in turn forms OH

.
 

radical (Voegelin and Hug, 2003; Joo et al., 2004a): 
 

Fe
0
 + O2 + 2H

+
→Fe

2+
 + H2O2 

Fe
2+

 + H2O2→Fe
III

 OH
2+

 + OH
 

 
After grounding, it was washed with distilled water to 

remove fine particles and was dried at 100°C for 12 h. It 

was then screened to get different geometrical sizes of 0 

to 75, 75 to 180, 180 to 425, 425 to 600 and 600 to 1700 

µm for the adsorption study. The steel slag was prepared 

by adding hydrochloric acid onto the steel slag using the 

reported method (Apak et al., 1998) and the material was 

stored in vacuum desiccators for further use. All other 

chemicals used in this study were of analytical grade, 

unless otherwise specified. Stock solution of As(III) 

were prepared from reagent grade NaAsO2, Conc HCL 

and Potassium Iodide all from the Aldrich Chemical 

Corporation, Germany. All the chemicals used are of 

analytical reagent grade unless specified otherwise. The 

used De-ionised water which is made by instrument 

(Double Distilled DI water 18 mΩ. NaBH4 (Sigma-

Aldrich Chemical, Germany) was freshly prepared in 

ice-cold water. After the sample were made we used the 

HGAAS-5100PC made by Perkin-Elmer Corporation, 

USA for determine the concentration of arsenic. We used 

polypropylene copolymer centrifuge tube made by 

Corning Corporation, USA. For all the materials, the 

leaching potential of pollutants using water was 

determined by a Korean standard test (Ahn et al., 2003). 

In this test, 500 mL of deionized water (pH 5.8-6.2) 
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was added to 50 g of each material and mechanically 

shaken for 24 h. The concentrations of As and 

dissolved metals in the leachate were determined by 

Inductively Coupled Plasma-Atomic Emission 

Spectrometry (ICP-AES, Jobin Yvon 138 Ultrace). 
As(III) adsorption studies: Stock solutions of   

1000 mg L
−1

 As(III) and As(V) were prepared by 
dissolving NaAsO2 and Na2HAsO4.7H2O, respectively, 
in Deionized (DI) water. Batch adsorption of As(III) was 
studied in 50 mL polypropylene copolymer centrifuge 
tubes containing 200 mg steel slag (unless otherwise 
specified) in 20 mL of As(III) reaction solution as 
described previously (Manning et al., 2002). The pH of 
the solution was not controlled from the beginning and 
monitored during the experiments. Equilibrium 
experiments were conducted for 72 h at 25ºC (unless 
otherwise specified) in a shaken water bath (185 rpm) 
kept in the dark by covering with aluminum foil. The 72 
h reaction time was shown to be adequate to attain 
equilibrium. After 72 h, the supernatant solution was 
filtered through a 0.45 µm membrane filter (Millipore), 
with a disposable syringe and analyzed by Hydride 
Generation Atomic Absorption Spectrophotometry 
(HGAAS; Perkin-Elmer 5100 PC) with a detection limit 
of 1 µg L

−1
 As. As(III) was the initial form of As in all 

experiments (unless otherwise specified) and total As 
(AsT) was measured after adsorption with steel slag. 
As(III) and As T concentrations were also measured in 
certain experiments using an anion exchange cartridge 
method and competing anionic experiments and 
speciation of As(III) studies were performed as described 
in our previous report (Manning et al., 2002). All the 
experiments has been performed at least 3 times in order 
to make it reproducible and standard error has been 
calculated which is within the range of 5-7%. 

Sample Preparation and Instrumentation  

First we take known amount of steel slag. After 
adding Distilled (DI) water and known amount of 
arsenic we put the sample in the mechanical shaker 
(Universal Shaker US-RRA) in room temperature at 
185 RPM for shaking all the solutions. After a frequent 
time interval we take the sample and filtered it through 
0.45 µ pore size membrane filter and take the filtered 
sample in an another tube. With the required amount of 
sample in the tube and adding required amount of 
potassium Iodide (KI) solution and concentrated 
Hydrochloric Acid (HCL) and kept the solution for 
more than 1hr and 20 min to react. After that the 
sample was made and turns yellowish we took it to the 
Hydride Generator Atomic Adsorption Photo 
spectrometer (HGAAS-5100 PC) and the concentration 
of the As was measured. 

Instrumentation 

The chemical composition of the steel slag was 

determined by the Philips PW 2400 X-Ray Fluorescence 

(X-RF) analyzer. The steel slag material was 

characterized by powder X-Ray Diffraction (XRD) using 

a Rigaku diffractrometer and monochromatized CuKα 

radiation (generator tension = 40 kV, current = 40 mA). 

Diffractograms were recorded from 5 to 85o (2θ) with a 

step size of 0.02º and a count time of 5 s per step. 

Morphological analysis of the samples was performed by 

Field Emission Scanning Electron Microscopy (FE-

SEM) using a Hitachi S-4700 microscope (at 15 kV). 

Analysis 

Arsenic (III) standard was prepared by dissolving 

arsenic powder at a room temperature. In this test, 

required amount of deionized water (DI-water) (pH 

5.8-6.2) was added to a certain amount of each sample 

and mechanically shaken for 0, 2, 4, 6, 8, 10, 12 h 

respectively. The concentrations of As in the leach ate 

were determined by HG AAS-5100 PC. For this HG 

AAS-5100 PC we need to prepare the Sodium Boro 

Hydride solution as a diductant and dilute hydrochloric 

acid as a Carrier by using the light acattering method we 

determine the concentration of Arsenic. The pH was not 

controlled during the test. At prescribed intervals (0,2,4, 

6, 8.10,12) those 7 tubes (the 6 materials and one blank) 

were sampled and then filtered through 0.1 µm 

membrane filters and analyzed for residual As by HG 

AAS-5100. The pH was determined of all the solutions 

with a HORIBA D-24 pH meter. We take the value of 

the pH of the solutions after and before shaking and 

compare it with the other parameters of the test like 

percentage of adsorbent, rate constant, as well as the 

dose of the arsenic and the steel slag to determine the 

cost effective adsorbent. It seems that oxidation of 

As(III) will occur with time so we also study the time 

effect of the arsenic removal. 

Results and Discussion 

Characterization of the Adsorbent 

The chemical composition of steel slag by XRF 

analysis is listed in Table 1. Steel slag is a complex 

heterogeneous material mainly composed of total iron 

(43.14%), CaO (35.43%), SiO2 (10.08%), Al2O3 

(3.24%), MnO (2.52%) and MgO (2.06%). The XRD 

study also confirmed that the main components of slag 

were oxides of iron and calcium (Fig. 1). The Brunauer, 

Emmett and Teller (BET) results showed that the 

specific surface area and pore size of steel slag is SBET 

= 12.56 m
2
/g and 794 nm, respectively. The isoelectric 

point of steel slag in aqueous solution was measured by 

a light scattering instrument, which was found to be 

3.2. Whereas (Lopex-Delgado et al., 1998) also 

reported the isoelectric point of blast furnace sludge 

was 3.23. The morphological appearance of the steel 

slag using SEM is shown in Fig. 2A and B. In both 
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samples, a hexagonal shaped structure was clearly seen, 

which was due to the presence of iron oxide. Finally 

TEM-EDX analysis was performed on As-adsorbed 

steel slag (Fig. 3B) and its control (Fig. 3A) to further 

confirm the As adsorption on steel slag. The spectrum 

showed that there was no As on the control sample 

(Fig. 3A), however, the As-treated steel slag contained 

different elements such as As, O, Fe, Ca, Al, Si, S, K, 

Cu and C (Fig. 3B), where the appearance of a C and 

Cu peak arose from the TEM grid (carbon coated 

copper grid). FTIR was used to find out the adsorption 

of As(III) on steel slag (Fig. 4). It was found that as the 

concentration of As(III) increased from 0 to 1000 mg 

L
−1

, the peaks at 426, 474 and 510 cm
−1

 were shifted to 

428, 477 and 516 cm
−1

, respectively, whereas the peaks 

at 2359 and 2520 cm
−1

 were shifted to 2330 and 2359 

cm
−1

, respectively. 

Table 1. Chemical composition of blast furnace slag 

Chemical composition of blast furnace slag (STEEL SLAG) by 

XRF analysis 

--------------------------------------------------------------------------- 

Contents %weight 

Fe2O3 43.14 

SiO2 10.08 

Al2o3 3.24 

TiO2 0.48 

ZnO 0.21 

SO3 1.35 

MnO 2.52 

MgO 2.06 

CaO 35.43 

V2O5 0.26 

K2O 0.09 

SrO 0.04 

P2O5 0.91 

 

 

 
Fig. 1. Main components of the waste steel slag 

 

  
 

Fig. 2. SEM images of the steel slag 
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(A) 

 

 
(B) 

 
Fig. 3. (A, B): TEM-EDX analysis of adsorbed steel slag 

 

  
 

Fig. 4. FTIR image of the steel slag after As adsorption 



Margherita Pettinato et al. / American Journal of Engineering and Applied Sciences 2015, 8 (1): 48.56 

DOI: 10.3844/ajeassp.2015.48.56 

 

53 

Dose Effect 

The data was taken from a sample with the 

adsorption capacity of arsenic and the percentage 

adsorption (Table 2) which describe about the dose of 

the arsenic and the adsorption capacity by steel slag and 

we put the values in the Fig. 5 which describe that 

adsorption is increases with the increases of dose of 

Steel slag and this is due to the increases of surface area 

of the Steel slag i.e., adsorbent. The As(III) adsorption is 

enhanced with increasing the amount of Steel slag and it 

is dependent on the effective surface area of the bound 

slag (Ahna et al., 2003). The significant decrease of 

effective specific surface area for steel slag is probably 

due to the clogging of the microspores by the excess 

deposit of the bound aluminum species. 

Effect of pH on As(III) Adsorption 

The dependence of removal percentage for As(III) 
upon pH of the aqueous solution is shown in Fig. 6 by 
using two dosages of Steel slag. The adsorption by Steel 
slag is found slightly dependent on the initial pH in the 
range 3-10 (Ahna et al., 2003; López-Gonzálvez et al., 
1994; Joo et al., 2004b). 

The final pH of the sample was taken and plotted on 
the Fig. 6 for various samples and we compare it with 
the adsorbent capacity to determine the effect of pH in 
this experiment. 

The As(III) removal mechanism is mainly due to 
spontaneous adsorption and co-precipitation of As(III) 
with iron(II) and iron(III) oxides/hydroxides, which form 
in-situ during ZVI oxidation (corrosion) (Manning et al., 
2002; Farrell et al., 2001; Charlet and Manceau, 1993). 
The oxidation of ZVI by water and oxygen produces 
ferrous iron (Ponder et al., 2000): 
 

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2

2 2 3 4

2

2

2 3 4 22

3 4 2 2 3

6Fe O 6H O 2Fe O s 12H

Fe 2OH Fe OH s

6 Fe OH s O 2Fe O s 6H O

Fe O s O aq 18H O 12Fe OH s

+ +

+ −

+ + → +

+ →

+ → +

+ + �

 

 
Fe(II) further reacts to give magnetite (Fe3O4), 

ferrous hydroxide (Fe(OH)2) and ferric hydroxide 
(Fe(OH)3) depending upon redox conditions and pH: 
Heterogeneous reactions at the corroding ZVI surface 
are  complex   and   result   in   a  variety  of potential 
adsorption surfaces for As(III) and As(V).

 

   
 

Fig. 5. Sorption of As(III) wrt doses of OGS in g/L 
 

 
 

Fig. 6. pH effect of As(III) adsorption by steel slag 
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Table 2. Dose effect on steel slag 

Amount (g) of steel  Res. Conc, 

slag (20 mL) Dose (g/L) ppb % Ads 

0.00 0.0 42.4400 0.00 

0.02 1.0 10.5800 75.07 

0.05 2.5 7.0290 83.44 

0.10 5.0 2.0898 95.06 

0.15 7.5 4.5620 89.25 

0.20 10.0 1.3500 96.83 

0.25 12.5 0.5800 98.64 

0.30 15.0 0.6200 98.55 

0.50 25.0 0.5600 98.68 

1.00 50.0 0.2400 99.43 

 

Despite this complexity, studies using X-ray 

absorption spectroscopy showed that the products 

after reaction of As(III) and As(V) with steel slag 

contain iron nano particle were inner sphere As(III) 

and As(V) surface complex oxides/hydroxide 

corrosion products (Farrell et al., 2001; Charlet and 

Manceau, 1993). 

From the Fig. 6 we can say that the pH of the solution 

is increasing with decreasing of the amount of As(III). 

This is due to (-Ve) charge gain in as well as in the 

Steel slag (Voegelin and Hug, 2003; Joo et al., 2004a; 

Apak et al., 1998; Ahn et al., 2003; Manning et al., 

2002; Le and Ma, 1997; Morin et al., 1991; Cantrell et al., 

1995; Su and Puls, 2001; Bothe Jr. and Brown, 1999). 

This is either due to preferential binding of arsenate 

with metal ions or higher diffusible characters of the 

interfering anions than arsenate present in water. 

Although a further precise mineralogical study is 

needed to verify the above results, iron oxides, the 

dominant components in steel mill waste materials 

(Steel slag), may become significant As adsorbents 

under near-neutral pH conditions. 

Kinetic Analysis 

In order to analyze the adsorption kinetics of As(III) 

onto steel slag from aqueous solution, the first order, 

pseudo-first order and pseudo-second-order kinetic 

equations were applied. 

The first order kinetic equation is as follows: 

 

log t

o

C
kt b

C

 
= − + 

 
 (1) 

 

where, C0 and Ct are the As(III) ions concentration at 

initial and time, t respectively. t the time ( h) and k the 

rate constant. The values for k, calculated from the slope 

of the respective linear plot of log (Ct/C0) versus t are 

6.4, 3.4, 2.3 h
−1

, respectively. 

From the first principle, the pseudo-first order rate 

expression is followed by: 

 

( )1

t

e t

dq
k q q

dt
= −  (2) 

 

where, qt represents amount of dye adsorbed at any time 

t (g.g
−1

) by steel slag and k1 is the pseudo-first-order rate 

constant (h
−1

). The integral linear form of Equation 2 is: 

 

( ) 1log log
2.303

e t e

k
q q q t− = − ×  (3) 

 

Pseudo-first-order rate constant, k1 is evaluated by 

plotting (qe-qt) versus t. Expression for the pseudo-

second order rate expression is followed by: 
 

( )
2

2

t

e t

dq
k q q

dt
= −  (4) 

 
where, k2 was the pseudo-second-order rate constant 

(g.g
−1

.h
−1

). The integral linear form of Equation 4 is: 
 

2

2

1

t e e

t t

q k q q
= −

×

 (5) 

 
Pseudo-second-order rate constant, k2 is evaluated 

by plotting (t/q) versus t. From the analysis of 

experimental data, it may clearly say that the 

adsorption is follow first order kinetics. The values of 

k and b have found to be 0.1 h
−1

 and 0.25. It is 

observed that adsorption of As(III) onto steel slag was 

found time dependent as seen in Fig. 7. It was 

revealed that the adsorption was rapid in the first 30 

min and then slowed considerably as the reaction 

approached equilibrium. The adsorption rate was 

found to accelerate with an increase in the amount of 

steel slag. The adsorption rate was described by a 

first-order equation, as demonstrated by the results in 

Fig. 7, plotted in a figure. The rate equation can be 

expressed for As(III) ions as follows (Bissen and 

Frimmel, 2003): 
 

t

o

C
Log kt b

C

 
= − + 

 
 

 
where, C0 and Ct are initial As(III) ions concentration 

and concentration at time t, respectively, t the time (h) 

and k the rate constant. The values for K, calculated 

from the slope of the respective linear plot of log 

(Ct/C0) versus t are 6.4, 3.4, 2.3 h
−1

, respectively. This 

rapid kinetics has significant practical importance as it 

will facilitate smaller reactor volumes ensuring 

efficiency and economy. 
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Fig. 7. Kinetic of adsorption 

 

Conclusion 

We have presented evidence that As(III) can be 

removed efficiently without any pretreatment by 

adsorption on low-cost and widely available BFS. 

Hardened paste of steel slag has been shown to be an 

effective adsorbent for arsenic removal. In view of the 

study reported here it appears possible to remove 

arsenic almost quantitatively (>99%) from drinking 

water. Many kind of adsorbent were used before but 

after doing this experiment we find that the steel slag is 

another cost effective material that has a great 

capability to remove arsenic from ground water as well 

from other water sources. We have also presented 

evidence that As(III) can be removed by 

adsorption/precipitation on steel slag (at neutral pH) in 

a relatively short time of only several minutes. As(III) 

strongly adsorbs on NZVI over a wide pH range, 

through the co precipitation of various iron oxide 

corrosion products. Finally, the study results presented 

here have confirmed the potential of steel slag as an 

efficient material for the treatment of As(III) and one 

that may be used as a possible solution for both in situ 

and ex situ groundwater arsenic contamination removal 

remediation. Promising results, indicating that it has 

great potential to be used as an effective adsorbent for 

groundwater treatment in developing countries. 
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